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ABSTRACT

The expansion of installed capacity in photovoltaic (PV) generation
systems requires automated methods for detecting faults in their
constituent cells. This paper proposes a hybrid convolutional neural
network (HCNN) model for fault detection in electroluminescence
(EL) images of PV panels. The model utilizes the ResNet50 and
VGG16 topologies for feature extraction and the support vector ma-
chine (SVM) for detecting defective cells. Fine-tuning the model’s
hyperparameters through a genetic algorithm resulted in accura-
cies of 98.17% and 99.67% in classification experiments conducted
with two public datasets. The challenges posed by the heterogene-
ity of these datasets in model training were addressed through data
augmentation techniques and contrast enhancement. The results
highlight the effectiveness of the HCNN, demonstrating its poten-
tial as a robust solution for the automated detection of defects in PV
cells, which is essential for maintaining optimal energy conversion
efficiency and extending the operational lifespan of these systems.
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1. INTRODUCTION

The demand for clean and renewable energy has led to the large-
scale installation of photovoltaic (PV) solar power plants world-
wide. Additionally, the reduction in the cost of photovoltaic com-
ponents has encouraged the widespread implementation of small-
scale generation units.
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However, PV generation has its own limitations. Improper main-
tenance of PV cells can result in failures that compromise the ef-
ficiency and longevity of these systems. Therefore, early fault de-
tection and preventive correction can prevent significant economic
and environmental losses.

Defects in PV cells can arise during manufacturing, transportation,
and operation. Failures may result from electrical issues such as
disconnections, open circuits, and short circuits in PV modules [5].
Overheating due to these conditions appears in PV cells as hotspots,
leading to energy loss and reduced power output [23]]. Furthermore,
these problems pose risks to both humans and the environment,
highlighting the importance of early identification and resolution
of faults in these systems.

Environmental factors also play a crucial role in PV system fail-
ures and energy losses. Storms, hail, partial shading from trees,
dust, and bird droppings can cause defects in PV cells, such as cor-
rosion, hotspots, cracks, microcracks, moisture ingress, fractures,
and delaminations [6].

Infrared thermography and electroluminescence (EL) imaging [20]
are commonly used methods for diagnosing the integrity of PV
cells based on images. Due to its inherent practicality and accu-
racy, infrared thermography has been widely researched [6} 3], as
the operating temperature of the modules is an important parameter
for hotspot detection. EL imaging [18| 26] is based on the princi-
ples of charge carrier recombination and photon emission when an
electric voltage is applied to a PV cell. The excess energy released
as photons generates images from the emission of visible and in-
frared light 28], revealing spatial variations in light-to-electricity
conversion efficiency and providing valuable information about the
quality and uniformity of solar cells.

Machine learning (ML) algorithms based on images [2] and volt-
age/current characteristics have received attention for fault detec-
tion in PV modules [30L119,127} [15]]. Image processing-based meth-
ods extensively adopt ML to distinguish between functional and
non-functional PV systems [24].
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This article presents a method for the automatic recognition of de-
fective monocrystalline silicon (Si-m) and polycrystalline silicon
(Si-p) PV cells through their EL images. The proposed method
uses a hybrid convolutional neural network (HCNN), composed of
a convolutional neural network (CNN) for image feature extraction
and a support vector machine (SVM) to classify cells as functional
or non-functional. The proposed network was trained and classified
using a dataset widely used in the literature with data augmentation
(DA) techniques to expand the number of training samples. More-
over, the method includes a preprocessing (PP) step for the images
and genetic algorithms (GA) for fine-tuning the CNN hyperparam-
eters. This article contributes with a method for hyperparameter
selection that enables fast convergence, overfitting control, and op-
timal generalization ability, in addition to a CNN architecture that
is competitive in both performance and complexity.

The remainder of this article is organized as follows: Sectionpro—
vides a comprehensive overview of works that use ML algorithms
for fault detection in PV cells. Section El describes the proposed
HCNN model, the dataset used for its validation, the hyperparam-
eter tuning process, and the training methodologies. Section@dis—
cusses the evaluation metrics used for the proposed models. Sec-
tion [3] presents and discusses the results obtained and provides an
analysis of the validation metrics used to evaluate the model’s per-
formance. Finally, Section [6| summarizes the main conclusions of
this work and suggests possible directions for future research.

2. RELATED WORKS

The following section reviews studies that use ML algorithms in
image processing techniques to identify and classify faults in PV
modules.

[13]] combined CNN and SVM to classify defects in monocrys-
talline (Si-m) and polycrystalline (Si-p) PV cells using datasets D1
(2,624 images, two classes) and D2 (1,028 images, three classes).
Feature extraction was performed using VGG16, and classification
with SVM achieved accuracies of 99.49% (D1) and 99.46% (D2).
No preprocessing techniques or hyperparameter tuning were ap-
plied.

[16] proposed a model based on ResNet to detect microcracks in
Si-p cells from EL images. The method included feature fusion,
transfer learning, and DA using mirroring and Fourier filtering to
reduce noise. The local binary pattern was used to highlight linear
microcracks. The model achieved 99.11% accuracy.

[29] developed a hybrid model to detect linear features in EL im-
ages of Si-p cells, with a CNN composed of five million trainable
parameters. The process included feature extraction using the Hes-
sian matrix and a multiscale line detector. The model was compared
with ResNet50, InceptionV3, VGG16, NASNet-A, and PNASNet,
achieving 93% accuracy without DA or fine-tuning.

proposed a deep feature-based method for multiclass detection
and classification of defects in Si-m and Si-p cells. Features were
extracted using deep neural networks and classified using SVM,
k-NN, decision tree, and Naive Bayes. Offline DA included 90°,
180°, and 270° rotations. A feature selection technique was used
to reduce dimensionality and improve classification. The hybrid L-
CNN approach trained from scratch achieved the best accuracies:
90.57% and 94.52% for the 4-class and 2-class datasets, respec-
tively.

[1] analyzed Si-m and Si-p PV cells from EL images and clas-
sified them into four categories (functional, microcracks, visible
cracks, and corrosion) using a DS-CNN network [21]]. Preprocess-
ing included geometric transformation. The average accuracy was
74.75%, ranging from 52% (microcracks) to 94% (corrosion).
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3. PROPOSED METHODOLOGY
3.1 Materials and data

This study uses images from the photovoltaic electroluminescence
(ELPV) dataset [T0]), which consists of 2,624 EL images of
PV cells, with a resolution of 300 x 300 pixels, extracted from
44 PV modules. Figure[I]shows images of Si-m and Si-p PV cells
available in the dataset, illustrating the differences between func-
tional and non-functional cells. The Si-m cells illustrated in Fig-
ures Eka) and Ekb) range from a functional state to defects with
cracks and microcracks. The Si-p cells shown in Figures Ekc) and
[[(d) exhibit a progression of defects, including cracks, fractures,
and delamination, highlighting severe material degradation.

r ! ~
ook

Fig. 1. EL images of silicon PV cells: (a) functional monocrystalline. (b)
monocrystalline with crack and microcrack defects. (c) functional polycrys-
talline. (d) polycrystalline with crack, fracture, and delamination defects.

3.2 Pre-processing

The images were normalized in terms of contrast and perspective.
The low contrast of EL images, due to the uneven luminescence
distribution [3], limits the discrimination of subtle details, making
it difficult to accurately identify defective areas.

The application of contrast limited adaptive histogram equaliza-
tion (CLAHE) to the EL images involves dividing the image into
small regions called tiles. In each tile, histogram equalization is
performed, adjusting the distribution of gray levels and increasing
local contrast in a controlled manner to avoid excessive amplifi-
cation of noise. A contrast limit is set to restrict the amplification
of high-contrast regions, preventing the emergence of artifacts that
could obscure important information. The tile size was set to 8 x8
pixels. The choice of smaller areas was made to reduce the chances
of noise proliferation. However, when noise is detected, a default
clipping limit factor of 2 is applied. Thus, if any histogram bin con-
tains noise above the specified clipping factor, this noise is removed
and redistributed before histogram equalization. Each tile was pro-
cessed individually for histogram equalization, ensuring that the
transformation was applied to all images in the augmented dataset.
Figure E{a) illustrates an example of a Si-p PV cell, while Figure
[2Ib) shows the result of applying the CLAHE technique during the
PP step. To verify the effectiveness of the technique on the dataset,
histograms of the pixel intensity of the images were generated. The
analysis of the histograms in Figures Ekc) and E[d) reveals signifi-
cant changes after the application of the CLAHE technique. In the
original image, the histogram shows a concentration of pixel values
within a narrow range of intensities, indicating low contrast.
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Fig. 2. (a) Original image of the Si-p PV cell. (b) Image resulting from the
application of the CLAHE technique. (c) Histogram of the pixel intensity of
the original image. (d) Histogram of the pixel intensity after the application
of the CLAHE technique.

On the other hand, the histogram of the image processed by
CLAHE exhibits a more uniform distribution of pixel intensities.
This redistribution indicates a significant increase in the image
contrast. With the pixel values more uniformly distributed across
the entire range of intensities, previously obscured details become
more visible.

This study employed four DA techniques: 1) image rotation by 90°
clockwise and counterclockwise to preserve the original character-
istics, 2) mirroring, 3) blurring, and 4) a 20% increase in brightness.
The resulting dataset, referred to here as DS2, comprised 13,120
images of PV cells, maintaining the original proportion of func-
tional and non-functional cells.

3.3 Hybrid convolutional neural network

The construction of the HCNN for defect classification in PV cells
proposed in this work combines the robustness of CNNs in feature
extraction with the precision of SVM in classification. The process
involves three main steps: genetic fine-tuning (GFT), definition of
the hyperparameter search space (see Table[T)), and configuration
of the SVM parameters. Figure [3]illustrates the architecture of the
network used for feature extraction. As illustrated, only the con-
volutional, max-pooling, and ReLU layers were used for feature
extraction, without the fully connected layers. These were replaced
by the SVM for classification.

3.3.1 Genetic fine-tuning. GFT uses concepts from genetic algo-
rithms (GA) to optimize the hyperparameters of the CNN. GAs
are inspired by the process of natural evolution and use operations
such as selection, crossover, and mutation to evolve solutions over
several generations [14]]. The hyperparameters of a CNN, such as
network depth, the number of filters in each convolutional layer,
filter size, learning rate, activation function type, among others, are
encoded as genes in a chromosome, where each chromosome rep-
resents a unique CNN configuration.

To better understand the process of evolutionary selection in GFT,
the steps proposed in the works of [33] and were used, in
which:
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Table 1. Hyperparameter search space: types of
hyperparameters, their possibilities, and quantities.

Hyperparameter Type Possibilities
CNN ResNet50, VGG16
Number of Layers 1,2

512,768, 1024

64, 128, 256, 512, 768, 1024
tanh, relu, selu, elu, exponential
adam, sgd, rmsprop, adadelta
30%, 40%, 50%, 60%

Neurons in Layer 1

Neurons in Layer 2

Activation Function
Optimizer

Dropout

—Individual: A pre-trained CNN with ImageNet (ResNet50 and
VGG16), whose hyperparameters are contained in an attribute
vector that specifies the number of layers, the number of neurons
per layer, the activation function, the optimizer, etc.

—Initial population: An initial population of 50 individuals was
created, considering that this value allows for a good initial sam-
pling of individuals, all generated randomly and without dupli-
cates.

—Reproduction: Two individuals were selected through a stochas-
tic sampling roulette with replacement [9]. Each individual is
chosen based on their fitness to solve the problem.

—New individual: In each reproduction, a new individual is gen-
erated, inheriting characteristics from both the father and the
mother in a process called crossover.

—Mutation: Whenever a new individual is generated by crossover,
mutation can alter a genotype in its attribute vector (a hyperpa-
rameter). The probability of mutation in this work is 7%, a value
that is not so high as to prevent the transmission of parental char-
acteristics, nor so low as to prevent the emergence of new char-
acteristics.

—Selection of individuals for the new generation: At the end
of each generation, 60% of the individuals with the best Kappa
(k) [[7] are selected, and the others are discarded. This selection
allows for finding the best characteristics to solve the problem.
The selected individuals will have another chance to reproduce
and transmit their characteristics to future generations.

—Stopping condition: To avoid infinite loops, three stopping con-
ditions were established: 1) if any individual reaches 100% x,
the algorithm must stop, as it would be impossible to obtain bet-
ter results; 2) from the 10th generation, the average accuracy of
the current generation is compared with the previous five gener-
ations. If the result is lower, the algorithm must stop, allowing
enough time to develop good results without interruptions and
ensure progression; 3) if the 100th generation is reached, the al-
gorithm must stop, as it is considered enough time to reach a
global optimum or stagnate at a local optimum.

To optimize the defect classification process, careful planning of
the hyperparameter search space was necessary. Table [T] presents
the types of hyperparameters, their possible configurations, and
quantities. The ResNet50 and VGG16 architectures were chosen
as bases for the CNNs. Both are well-established networks, recog-
nized for their high performance in image classification tasks, and
were pre-trained on the ImageNet dataset [13]). The choice of these
architectures offers a balance between depth and structural simplic-
ity, facilitating adaptation to new classification tasks.

3.3.2  Feature extraction using the CNN. After obtaining the net-
work hyperparameters through GFT, the pre-trained ResNet50 and
VGG16 networks were applied to the EL images of the PV cells,
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Fig. 3. Architecture of the CNN used for feature extraction.

where each convolutional layer extracted different levels of fea-
tures, from simple edges to more abstract patterns, specific for de-
fect detection in PV cells. The advantage of using pre-trained net-
works lies in their ability to reuse knowledge acquired in previous
tasks, which accelerates the training process and improves the ac-
curacy of feature extraction.

3.3.3  Support vector machine. The SVM [8] is a supervised
learning algorithm widely used in classification tasks. It is known
for its ability to handle high-dimensional data, its robustness
against overfitting, particularly in scenarios with a high ratio be-
tween dimensionality and sample size, and its versatility through
the use of different kernel functions, allowing the SVM to oper-
ate in the original feature space while implicitly computing scalar
products in the higher-dimensional space. These characteristics
allowed us to integrate the SVM as a suitable classifier in the
proposed model, mainly due to its ability to manage the high-
dimensional features generated by the CNNs.

The SVM parameters C' and ~y were determined through a grid
search using the GridSearchCV class from the Scikit-Learn library
[31], which explores different combinations of values for C' and y
to identify the configuration that maximizes classification accuracy.

4. VALIDATION METRICS

The implementation of classification algorithms in ML requires
an adequate evaluation mechanism. To ensure accuracy in perfor-
mance analysis, the careful selection of training and test samples is
essential.

Model evaluation was performed using k-fold cross-validation [22]]
with £ = 5, an approach that improves the robustness of results by
minimizing variations in training and test data. In the binary classi-
fication problem addressed, the possible outcomes are: true positive
(TP) and true negative (TN) for correct classifications; false posi-
tive (FP) and false negative (FN) for model errors.

The ~ index was used because it evaluates the agreement between
classification methods, considering chance agreement [[7} [17]]. Its
equation is represented by:

7P0_Pe
FEa TR

where P, is the observed agreement and P, is the expected chance
agreement, calculated by:

(C))

P TP+ TN
° TP+TN+FP+FN’

(@3]
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Convolution Max
+ ReLU pooling SVM

16x16x512

32x32x512

Table 2. Agreement levels of the « index.

Value of x Level of Agree- | Percentage of
ment Reliable Data

0-0.20 None 0-4%

0.21-0.39 Minimal 4-15%

0.40-0.59 Weak 15-35%

0.60-0.79 Moderate 35-63%

0.80-0.90 Strong 64-81%

Above 0.90 Almost Perfect 82-100%

(TP+TN)(TP+ FP)]+[(TN + FN)(TN + F'P)]

P =
© (TP+TN+ FP+ FN)?

3)
Table|2|categorizes the values of k, ranging from no agreement to
almost perfect [23].

The performance metrics used in this work also include accuracy,
recall, precision, specificity, and F-score, as per Equations @)-(8).
The F-score balances recall and precision, being useful for unbal-
anced datasets.

Accuracy = IP+TN . 4
TP+TN+FP+FN

Recall = TPIFN PT+PF N 5

Precision = 7TPT—|—PFP' (6)

Specificity = % (@)

Precision x Recall
F— =2 . 8
seore x Precision + Recall ®)

5. RESULTS AND DISCUSSIONS

In this section, the results obtained using the proposed methodol-
ogy for the DS2 dataset with PP through the CLAHE technique are
presented and analyzed. Each individual generated by the GFT was
trained for 100 epochs, using 80% of the images for training, 10%
for testing, and 10% for validation.
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5.1 Genetic fine-tuning with data augmentation

In this phase of the work, classification experiments were con-
ducted using the DS2 dataset with GFT to find the optimal hy-
perparameters for the HCNN pre-trained with ImageNet. Table [3]
presents the GFT results for the ten best HCNN models, where
Lay. represents the number of layers, N1 and N2 are the number
of neurons in layers 1 and 2, respectively, Act. represents the acti-
vation function, Optim. the optimizer used, and Drop. the dropout
rate.

The best results were achieved with the VGG164-SVM topology,
using a layer of 768 neurons, elu activation function, adadelta op-
timizer, and a dropout of 50%. This model reached a x index of
80.17% and an average accuracy of 99.67%. These values indicate
a strong agreement between the model’s predictions and the TP and
TN labels, as well as a high classification capability. The specificity
of 98.41% and sensitivity of 97.12% further reinforce the model’s
effectiveness in correctly distinguishing between classes, minimiz-
ing both FPs and FNs.

Meanwhile, the ResNet50+SVM topology, with a layer of 1,024
neurons, relu activation function, adam optimizer, and a dropout of
40%, achieved an accuracy of 98.17% and a « index of 85.26%,
demonstrating competitive performance. The specificity of 97.34%
and precision of 96.23% indicate that this model is highly effec-
tive in correctly identifying positive samples. Compared to the best
VGG16+4-SVM result, ResNet50+SVM showed slightly lower ro-
bustness but remained competitive. The DA techniques employed
contributed to this improvement, providing a broader and more var-
ied training base, resulting in more robust and generalizable mod-
els.

The VGG16+4-SVM, with its simpler architecture, has fewer train-
able hyperparameters compared to the ResNet50, which is deeper
and more complex. This difference may explain the slightly supe-
rior performance of VGG16+SVM in terms of accuracy and the x
index. However, the additional complexity of ResNet50+SVM al-
lows it to capture more detailed nuances of the data, reflected in its
high specificity and precision.

In the visual validation step of the images, some EL images of PV
cells were selected to evaluate the effectiveness of the proposed
technique, as shown in the images in Table [d] which displays the
predicted and expected results for each PV cell. As observed in
the table, the VGG16+SVM topology correctly classified 5 out of
6 images of functional and non-functional cells. Image 6 shows a
small delamination defect (dark tones) near the bottom right corner
of the cell, which prevents its classification as a functional cell.
Table 5] presents a comparison of the results of this study with pre-
vious works from Section 2] focusing on defect detection in Si-m
and Si-p cells. The compared studies used the ELPV dataset.

This work stands out for its use of advanced ML techniques, achiev-
ing the highest average accuracy (99.67%) among the compared
studies. The sensitivity, precision, specificity, and F-score are su-
perior or compatible with the best results in the literature. Further-
more, this is the only study to include the x metric (80.17%) and
to use GFT to optimize the hyperparameters of the ResNet50 and
VGG16 models, reinforcing the reliability of the results.

The combination of HCNN and hyperparameter optimization
proves to be a promising approach for defect detection in PV cells,
outperforming traditional methods in performance and robustness.

6. CONCLUSIONS

The detection and classification of defects in PV panels have at-
tracted the interest of many researchers in recent years. In this con-
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text, a new model was proposed for the detection of functional and
non-functional PV cells based on EL images. To increase the effi-
ciency of inspection using machine learning models, a new method-
ology was proposed for the fine-tuning of the hyperparameters of
the CNN models used, based on genetic algorithms.

The characteristics of CNNs and SVM were combined to form a
new topology called HCNN. Furthermore, the CNN hyperparam-
eters were obtained through GFT. The CNN accurately captures
the features of the EL images of PV panels, while the SVM per-
forms the classification step. The model was trained and evaluated
on a dataset widely investigated in the literature, using DA and pre-
processing techniques with CLAHE to improve image variations in
the dataset.

Finally, the presented results show that the proposed model accu-
rately detected images of functional and non-functional PV cells,
with an average accuracy of 99.67% and a x index of 80.17%, con-
sidered superior when compared to works investigated in the litera-
ture. However, a limitation of the proposed approach is its inability
to correctly classify certain defects in PV cells, such as those lo-
cated in the corners of the cells, which are considered part of the PV
cells rather than defects. Consequently, proposals for future work
should focus on the analysis of unrecognized defects to improve the
efficiency of the approach. Additionally, datasets can be expanded
to detect and classify all defects that may occur in Si-m and Si-p
PV cells.
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Table 3. Genetic fine-tuning results for the ten best individuals in the ResNet504+SVM and VGG16+4-SVM topologies, their
characteristics, and metrics obtained using the DS2 dataset.

HCNN Topology | Lay. | N1 N2 | Act. Optim. Drop. K Ace R S P F—score
VGG16+SVM 1 768 - relu adam 50% | 0.7523 | 0.9534 | 0.9321 | 0.9538 | 0.9337 0.9441
VGG16+SVM 1 1024 | 768 | tanh sgd 40% | 0.7235 | 0.9447 | 0.9243 | 0.9449 | 0.9214 0.9318
VGG16+SVM 1 512 - selu rmsprop 60% | 0.7148 | 0.9312 | 0.9128 | 0.9325 | 0.9135 0.9246
VGG16+SVM 2 1024 - relu adam 30% | 0.7452 | 0.9423 | 0.9249 | 0.9432 | 0.9256 0.9334
VGG16+SVM 1 768 - elu adadelta | 50% | 0.8017 | 0.9967 | 0.9712 | 0.9841 | 0.9742 0.9756
ResNet50+SVM 1 512 | 1024 | exponential | adam 60% | 0.7029 | 0.9328 | 0.9127 | 0.9215 | 0.9138 0.9241
ResNet504+-SVM 2 512 512 | tanh rmsprop 50% | 0.6941 | 0.9314 | 0.9146 | 0.9223 | 0.9131 0.9248
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