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ABSTRACT
This paper presents a name analysis technique for statically typed
languages to automatically classify and localize specific bugs in
source code, eliminating the need for manually designed algorithms
or heuristics. Name-based bug detection involves analyzing source
code to detect potential bugs based on the names or labels used for
variables, functions and other elements in the code. The Abstract
Syntax Tree (AST) of the source code is utilized to automatically
generate negative (buggy) samples due to the unavailability of
a large set of negative samples. Approximately 720,000 code
snippets of C language are collected from a large C code corpus
and parsed into their corresponding ASTs using LibClang. Positive
samples are extracted from AST and their contents are adjusted
to generate negative samples. These samples are tokenized using
a fine-tuned tokenizer and fed into a classification model for
training to identify potential bugs. This paper describes techniques
for detecting bugs related to swapped function arguments, wrong
binary operators and wrong operator precedence, with a high F1
score between 83% and 95%. Moreover, the detection of new types
of bugs can be easily accomplished by following similar steps
taken in developing current bug detectors. The resulting system can
automatically detect specific types of bugs in source code, serving
as a tool that enhances code quality for software developers.
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1. INTRODUCTION
Identifiers, such as variable and function names, are used by
programmers to make the program more meaningful beyond the
syntax provided by programming language and hence are crucial
for program analysis. These names have been used by researchers
to develop tools for identifier name recommendation [1], code
recommendation [2] and bug detection in source code [3, 4, 5,
6]. However, most existing program analysis tools often ignore
identifier names [7, 8] and sometimes replace them with less
meaningful names [9], mainly because extracting the semantic
meaning embodied in the identifiers is difficult.
Consider the three code snippets provided in Table 1 as examples
of bugs detected by the trained models. Example 1 includes an
operator precedence bug where the programmer wrongly assumes
the execution order of logical operators and omits the parentheses.
Example 2 shows a bug related to swapped function arguments
where the function arguments are accidentally passed in reverse
order. Example 3 shows a wrong binary operator bug where the
programmer accidentally uses the subtraction operator (-) instead
of the addition operator (+). The detection of these types of bugs
would not have been possible without the use of identifier names.
Most existing name-based bug detectors [2, 3, 4, 6, 10] use
lexical distance functions to calculate the similarity between

13



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.39, September 2025

Table 1. : Samples of bugs detected using the proposed approach
S.N. Part of C code with bug Explanation

1

int discountable(int age , int is_member)

{

int res = age <18 || age >65 && is_member;

return res;

}

Due to missing parentheses, precedence changes
and the expression is executed in unintended
order, as the precedence of && is greater than ||.
The expression should instead be: (age<18 ||
age>65) && is member

2

void copyString(char *src , char *dest) {

if (src==NULL || dest==NULL) return;

strcpy(dest , src);

}

char source [50] = "Hi", destination [50];

copyString(destination , source );

The copyString function requires a source
string and a destination string. However, the
arguments are passed in reverse order in the
code.

3

int array[] = {1,2,3,4}, size=4, sum=0;

for (int i = 0; i < size; i++) {

sum = sum - array[i];

}

The code incorrectly uses the subtraction
operator (-) instead of the addition operator (+).
The expression should instead be: sum +
array[i]

identifiers and manually design rules for bug detection. Recent
research on name-based bug detection [5, 11] has employed
Deep Learning-based algorithms with datasets consisting of a
dynamically typed object-oriented language. Instead, this paper
uses Deep Learning on a dataset of C, a statically typed procedural
language, where bug detection is more challenging due to the
lack of class-based identifiers and fewer existing and synthetically
producible buggy samples due to static type checking. Allamanis
et al. [11] use a self-supervised approach for dataset generation
and bug detection, but the localization accuracy of 85% or less
for 6 out of 7 types of bugs significantly degrades the overall
performance of bug detectors. In contrast, this paper’s approach
has 100% localization accuracy by locating the node of a probable
bug in the Abstract Syntax Tree (AST) before extracting the data
required for model input.
The proposed approach uses vector embeddings to reason about
identifier names and trains a binary classification model to predict
whether a given code snippet is correct or buggy. While datasets
of correct code are abundant due to the presence of open-source
repositories, assuming the code in them is mostly bug-free, buggy
code samples are rarely available and difficult to create manually.
To tackle this challenge, the proposed approach synthetically
generates buggy code samples through simple transformations
of correct code samples. This paper presents techniques for
detecting bugs related to swapped function arguments, wrong
binary operators and wrong operator precedence, with an F1 score
ranging from 83 to 95 percent, where the detection of operator
precedence bugs has never been done before.
The key contributions of this paper are:

(1) This paper presents a method to synthetically generate buggy
data samples from correct samples of statically typed source
code.

(2) This paper introduces a novel technique for the detection of
operator precedence bugs with an accuracy of 94%.

(3) This paper presents a reusable system for bug detection, which
can be used for training new bug detectors, especially for

statically typed languages. The source code for this system is
available as open-source at: https://github.com/dipudl/
deepscan

2. RELATED WORKS
2.1 Machine Learning for Bug Detection
Initial bug detection techniques [2, 3, 4, 10] used a rule-based
approach that needed to be manually designed and was less
generalizable compared to Machine Learning (ML) based methods.
Murali et al. [12] train a Recurrent Neural Network for detecting
incorrect usage of Android APIs using only correct code samples.
Wang et al. [13] create an n-gram-based model for detecting bugs
in source code. Choi et al. [14] train a memory neural network
to detect buffer overrun bugs from the raw form of source code.
Devlin et al. [15] designed a custom neural network architecture
for their use case of logical bug detection, where each node of
the Abstract Syntax Tree (AST) is passed as input in the form of
vector embeddings. In contrast to this paper’s approach of using a
small part of the source code as a sample, they synthetically inject
bugs into the source code to create buggy samples of code and
use the whole source code as a sample of data. DeepBugs [5] is
the first reported tool to use ML for name-based bug detection,
doing so on a dynamically typed language to detect the bugs
related to swapped function arguments, wrong binary operators and
wrong operands in binary operation. Allamanis et al. [11] use a
self-supervised approach to create the training data, detect bugs and
repair them. However, the localization accuracy of 85% or less for
6 out of 7 types of bugs seems to significantly degrade the overall
performance of the bug detector.

2.2 Name-based Bug Detection
Name-based analysis for bug detection began with manually
designed rules or heuristics [2, 4, 10] for identifying specific classes
of bugs. Pardel and Gross [4] detect swapped function arguments
in function calls using lexical similarity between arguments and
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parameters. Lexical similarity (e.g., len and length) doesn’t always
apply to semantically related identifiers (e.g., length and count), so
approaches that rely on such similarity often perform poorly. Rice
et al. [10] use a similar approach but with additional heuristics
to reduce false positives. They apply handpicked rules, such as
excluding functions that intentionally send arguments in a different
order (e.g., flip, invert, rotate) and removing common prefixes from
function names. The present work is related to DeepBugs [5],
which trains feed-forward neural networks separately for detecting
each of the three types of name-based bugs in Javascript. Guangjie
et al. [6] detect buggy return statements in functions using a
sequence of heuristic rules and Jaccard distance to compute the
lexical similarity between identifier names.

2.3 Other Approaches
The detection of syntax errors or compile-time errors [9, 16] is
also being done using ML, but it is beyond the scope of this paper
as it focuses on logical errors, mainly because syntax errors can
be detected by the compiler and are easier to resolve. Rule-based
vulnerability addition techniques [17, 18] focus on generating
buggy code samples by injecting vulnerabilities into source code
for the evaluation of bug detection tools, which differs significantly
from this paper in terms of the method and purpose.

3. SYSTEM ARCHITECTURE AND
METHODOLOGY

The system architecture for creating a name-based bug detector
includes data preparation, code tokenization, embedding vector
generation, model training, and finally, model inference for bug
classification as shown in Figure 1. The core principle of this
architecture is to train a classification model that can distinguish
between correct code and buggy code samples. The steps involved
in developing a bug detector using this system are explained in
Sections 3.1, 3.2, 3.3 and 3.4.

3.1 Preparation of Positive and Negative Samples
Advanced deep learning-based bug detection models require a
large amount, possibly hundreds of thousands to millions, of
both positive and negative training data. Such a number of
positive samples (correct code) can be collected from open-source
repositories, assuming that the code snippets in them are mostly
correct. However, there are insufficient or no buggy codes available
for specific types of bugs, making it challenging to obtain them
from bug reports and filtered commit histories of code repositories.
To address this challenge, this paper automatically generates
training data from a large C code corpus [19] consisting of
approximately 722,366 C code files. The extraction of positive
code examples involves generating an Abstract Syntax Tree (AST)
from a C code file, filtering the required nodes of the AST and
collecting a specific set of data from those nodes. Negative code
samples are generated through swaps and adjustments in positive
code samples. For example, a positive training sample for the
operator precedence bug detection model is obtained by filtering
out the root node of a unary or binary operator expression involving
the required number of operands (at least three for expressions
with only binary operators) and extracting the expression from that
node. Meanwhile, the negative sample is generated by changing
the precedence of the unary or binary operator expression through
the insertion or removal of parentheses, whichever method is
appropriate. The entire process of generating positive and negative

samples, as well as the structure of these samples, are explained in
detail in Section 4.
As shown in Figure 2, most of the C files in the dataset have less
than a thousand lines of code and only 1,700 out of 722,366 C
files have more than ten thousand lines of code. Since the AST
generation and traversal times depend on code size, files with more
than 10,000 lines of code are highly rare and excluded from dataset
generation. However, model inference can accommodate any code
size for bug classification and is independent of the code sizes used
during model training.

3.2 Code Tokenization and Embedding Vector
Generation

In the case of name-based bug detectors developed using machine
learning (ML), semantically similar identifiers (e.g., count and
size) can be distinguished from semantically different ones
(e.g., count and country) based on the cosine distance of their
vector embeddings, regardless of their lexical similarity. Vector
embeddings of identifiers are generated after their tokenization.
Tokenization in ML models refers to converting a sequence of
text into a sequence of tokens that can be easily processed and
analyzed by the ML model. In this project, code tokenization is
done using the base version of the CodeT5 [20] tokenizer from
Salesforce, which was fine-tuned on a C code corpus to create a
new tokenizer with a vocabulary size of 20,000, well-suited to this
type of C language dataset. Subword-level tokenization is used,
which includes BPE (Byte-Pair Encoding) that merges the most
frequent characters into one. For example, if the dataset consists
of ’get’, ’getting’ and ’gets’, then with byte pair encoding, it gives
’get’ as one token and splits the other tokens as (’get’, ’ting’) and
(’get’, ’s’). Hence, getting, gets and get will not be considered
semantically different words in the vocabulary. Each token from
the input sample is then grouped sequentially to generate the
embedding vector of dimension 768 for each token using the base
variant of the DistilBERT model [21].
In Transformer architecture [22] based models like DistilBERT,
the input embedding for each token is generally calculated through
the sum of token embedding and positional embedding. Positional
embedding is used to represent the position of a token in the
input sentence or code sample, as the meaning of an input sample
highly depends upon the position of its tokens. The equation for
calculating positional embedding for each token is as follows:

PE(pos, 2i) = sin

(
pos

10000
2i

dmodel

)

PE(pos, 2i+ 1) = cos

(
pos

10000
2i

dmodel

) (1)

where dmodel is the dimensionality of the embedding (e.g., 768 for
this paper), i is an integer in the range

[
0, dmodel

2

]
and PE is the

matrix containing the positional encoding for each token.

3.3 Model Training and Hyperparameter Tuning
A binary classification model is trained for bug detection, which
outputs the probability that the given code is buggy. Any
model with binary classification capability can be used for bug
classification. This paper trains DistilBERT for the detection of
each type of bug, with a feed-forward neural network on top of
it as a classification layer. DistilBERT is selected among the BERT
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Fig. 1: System architecture for creating a bug detector

variants because it is a smaller, lighter and faster version, making it
particularly suitable for resource-constrained situations like ours.
DistilBERT can be trained to perform a wide range of natural
language processing tasks and bug detection is one of them, as the
identifiers and keywords in source code contain beneficial natural
language information. The DistilBERT model used in this paper
has the GeLU [23] activation function, the AdamW [24] optimizer
with a weight decay of 0.01, a classification layer dropout of 0.2
and binary cross entropy as the loss function.
The data samples are split into training, validation and test sets
before the models are trained. In this study, the data is divided as
follows: 80% for training, 10% for validation and 10% for testing.
The training set is used to train the bug detection model to classify
input samples, the validation set is used for hyperparameter tuning
and monitoring model performance during training, and the test
set is used to compute unbiased evaluation metrics for the final
trained model. Choosing appropriate values for hyperparameters is
the most important step in model training, as they help accelerate
the convergence of model loss and determine the final accuracy
of the model. This paper tunes two hyperparameters: learning rate
and batch size, as they are the most important hyperparameters for
the model used. Four learning rate values (2 × 10−3, 2 × 10−4,

2 × 10−5 and 2 × 10−6) and two batch sizes (32 and 64) are
used for hyperparameter tuning, which requires training of eight
models to determine the best values for these hyperparameters. A
model is allowed to train up to 10 epochs, considering the resource
constraints. However, more hyperparameters, such as weight decay
and hidden layer dimension, can also be tuned and the number of
epochs for training the model can be adjusted for convenience.

3.4 Model Inference for Bug Classification
The inference of a trained bug detection model involves using
that model to make predictions on unseen code snippets. A model
trained on sufficient samples of positive and negative code can learn
patterns from them that allow it to perform well on unseen code
snippets not included in its training set. A code snippet can contain
multiple types of bugs and also multiple instances of a single type
of bug, all of which are extracted and detected one by one from
the appropriate model. Before the model inference, the input data
for identifiable types of bugs are extracted from the AST of the
given code snippet, as explained in Section 4. After that, the input
samples are tokenized and fed to the respective models for vector
embedding generation and classification to get the probability of

16



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.39, September 2025

0-1000 1000-2000 2000-5000 5000-10000 above 10000
Total Lines of C Code

0

1×10⁵

2×10⁵

⁵×10⁵

4×10⁵

5×10⁵

6×10⁵

To
ta

l C
 la

ng
ua

ge
 fi

le
s

628920

58301
28452

4993 1700

Fig. 2: Total lines of C code vs. total C code files in the dataset

bugginess for each input sample. Each input sample’s location (start
and end lines and character positions) is stored at the time of its
extraction from the AST and displayed to the user along with the
inference result.
As shown in Figure 1, this paper presents a complete web
application to facilitate model inference for the end user. The client
side of the web application contains an input section where users
can provide code snippets to test, as well as a section for displaying
results. The server side processes the code through a sequence of
steps: AST generation, feature extraction, tokenization and model
inference, to detect and localize bugs within the code.

4. IMPLEMENTATION OF BUG DETECTORS
This paper implements detectors for three types of name-based
bugs: swapped function arguments, wrong binary operators and
wrong operator precedence. The first two bug detectors have
been implemented in some related papers using ML [5, 11]
for dynamically typed languages; however, no prior work has
been identified on detecting the third bug, namely the operator
precedence bug. The system presented in this paper simplifies the
development of new types of bug detectors and its application for
creating new detectors is anticipated.
Creating a bug detector requires two steps: generating training data
and training the bug detection model. Each bug detector has a
separate code for dataset extraction, but the training code is similar
and only varies slightly during data preprocessing. An AST of a
source code file is required for training data extraction, which is
generated through the Clang module in Python, providing access
to the Clang1 compiler using LibClang2 as an interface. Positive
training examples are generated through simple AST traversals and
slightly transformed to create negative examples. The DistilBERT
model from HuggingFace’s transformer3 library in Python, which
primarily uses the Pytorch framework internally, is the base model
for training bug detectors. The process of generating training data
for each of the three types of bug detectors is described briefly in
Sections 4.1, 4.2 and 4.3. After generating the training samples for
a particular type of bug detector, each sample is tokenized using the

1https://clang.llvm.org
2https://clang.llvm.org/doxygen/group__CINDEX.html
3https://huggingface.co/docs/transformers/index

finetuned CodeT5 tokenizer and fed to the DistilBERT model for
embedding vector generation for each token and training for bug
detection.

4.1 Swapped Function Arguments Bug
Bugs related to swapped function arguments occur in functions that
require two or more arguments of the same type in statically typed
languages like C, which is the focus of this paper. The compiler
can detect the accidental swap of arguments of different types in
a function call, so this situation is not considered while generating
training samples and during model inference. Training examples
are generated by traversing the AST of each file in the C code
corpus to identify function calls that contain exactly two arguments
of the same data type. However, the detection of this type of bug
in functions with more than two equally typed arguments can be
easily done during inference by creating multiple test samples from
one function call through different combinations of two arguments
in each sample. For example, if x1, x2 and x3 are three equally
typed arguments of a function, then three test samples i.e. (x1, x2),
(x2, x3) and (x1, x3) can be created to independently query the bug
detector.
The following information is extracted from each function call
having two equally typed arguments:

Positive example (Xpos) = (fn, arg1, arg2, type, pm1, pm2)

Negative example (Xneg) = (fn, arg2, arg1, type, pm1, pm2)

where,

—fn: Name of the called function
—arg1 and arg2: Names of the first and second arguments passed

to the function
—type: Data type of arg1 and arg2
—pm1 and pm2: Names of the first and second parameters of the

function

The negative example (Xneg) is created by swapping the arguments
from the positive example (Xpos) for this type of bug detection
model. If an expression involving two or more identifiers is present
as an argument in a function call, the full expression is taken as an
argument without applying any heuristics for modifying it to keep
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Table 2. : Example input sample for swapped function arguments bug
detector

feature value
fn copyString

arg1 destination

arg2 source

type char *

pm1 src

pm2 dest

the process simple and robust. However, if any argument exceeds
100 characters in length, the sample is not included for training
the bug detector. Before feeding the input samples for training
or testing the model, text pieces or features in the input sample
are separated by a special token called a separator token (</s>).
The separator token makes it easier for the model to distinguish
between different parts of the input. For example, the final form of
the positive sample (Xpf) looks like this:

Xpf = fn</s>arg1</s>arg2</s>type</s>pm1</s>pm2

The extraction of input samples for bug detection in unseen code
is performed in the same way as the extraction of positive samples.
For example, Table 2 presents the input sample for detecting the
swapped function arguments bug in the second code example from
Table 1.

4.2 Wrong Binary Operator Bug
The accidental use of a wrong binary operator leads to bugs that
are quite difficult to figure out, e.g., low && high in place of low
& high. Training examples are generated by traversing the AST
of each file in the C code corpus to identify the root nodes of each
binary operation. A positive and a negative sample are created from
each binary operation.
The following information is extracted from each binary operation:

Positive example (Xpos) = (l, op, r, tl, tr, p, gp)

Negative example (Xneg) = (l, op′, r, tl, tr, p, gp)

where,

—l and r: Names of the left and right operands in the binary
operation

—op: Operator in the binary operation

—tl and tr: Data type of the left and right operands in the binary
operation

—p and gp: Types of the parent and grandparent AST nodes of the
binary operation

—op′: A randomly selected binary operator from the list of possible
swaps for the original operator (op) as given in Table 3.

The list of possible swaps for each binary operator in Table 3
contains the operators most likely to be accidentally replaced by
the programmer, which helps create relevant negative examples. If
the length of any operand exceeds 100 characters, the sample is not
included for training the bug detector.

Table 3. : Binary operators with their corresponding possible swaps
Operator Possible swaps separated by comma
== >,<, ! =,>=,<=,=

< >,==, ! =,>=,<=,<<,∧,>>

+ −, ∗, /,%,+ =

∗ +,−, /,%, ∗ =

− +, ∗, /,%,− =

! = >,<,==,>=,<=,=

> ==,<, ! =,>=,<=,<<,∧,>>

& |,∧,<<,>>,&&, ||
>= >,<, ! =,==,<=,<<,∧,>>

/ +,−, ∗,%, / =

<= >,<, ! =,>=,==,<<,∧,>>

&& ||,&, |
<< |,&,∧,>>,&&, ||,<=,<

>> |,&,∧,<<,&&, ||,>=,>

|| &&, |,&, /

% +,−, ∗, /,<,>,>=,<=, ! =,% =

| &,∧,<<,>>,&&, ||, /
∧ |,&,<<,>>,&&, ||,<,>

The separator token is added between each feature in the input
sample as described in Section 4.1. The extraction of input samples
for bug detection in unseen code is done the same way as the
extraction of positive samples. For example, Table 4 presents the
input sample for detecting the wrong binary operator bug in the
third code example from Table 1.

Table 4. : Example input sample for wrong binary operator bug detector
feature value
l sum

op -

r array[i]

tl int

tr int

p BINARY OPERATOR

gp COMPOUND STMT

4.3 Operator Precedence Bug
An operator precedence bug occurs when a programmer makes
incorrect assumptions regarding the order in which operators
are evaluated in an expression involving multiple operators with
different precedence. For example, writing reg & err == 0
instead of (reg & err) == 0 leads to incorrect results because
the precedence of the equality comparison operator (==) is higher
than that of the bitwise AND operator (&), making the expression
err == 0 execute first. Since the operator precedence bug mainly
arises from missed parentheses, only this case is considered during
training data generation. The negative sample for this type of bug
detector can be created by changing the execution order of positive
expression in two ways:

(1) Removal of parentheses from the positive sample: If a unary
or binary operation is enclosed in parentheses and at least
one of its adjacent operators is of higher precedence, then
removing the parentheses changes the execution order of the
whole expression. For example, removing parentheses from
a / (b + c) creates a bug because the operator enclosed in
parentheses has lower precedence than its adjacent operator in
the expression. But no bug can be created from the expression
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Table 5. : Bug detector training and prediction metrics
Bug detector Training time for one epoch Training epochs Prediction time per sample Total data samples

Swapped function arguments 64 minutes 8 1.36 ms 531,140
Wrong binary operator 104 minutes 4 1.31 ms 1,111,986
Wrong operator precedence 96 minutes 5 2.01 ms 633,945

a + (b / c) by removing parentheses since the condition
does not hold.

(2) Insertion of parenthesis in a sub-expression of the positive
sample: If a unary or binary operator expression has lower
precedence than its adjacent operators, it can be enclosed
in parentheses to change the execution order of the whole
expression. For example, inserting parentheses in the lower
precedence operation of a + b / c creates (a + b) / c,
which is a bug.

If the execution order of the positive expression cannot be changed
by inserting or removing parenthesis in a sub-expression, it is
discarded. Expressions containing only arithmetic operators with
equal precedence (e.g., + and -) are also discarded because
inserting or removing parenthesis in those expressions only
changes the order of execution, not the final result. The training
sample generation process for this bug detector considers all unary
and binary operators except the assignment operators, as this type
of bug is not prevalent in them. Training examples are generated by
traversing the AST of each file in the C code corpus to identify the
root nodes of each unary or binary operation containing multiple
operators with different precedence. A positive and a negative
sample are created from each of those expressions.
The exact expression in the code snippet is used as the input sample
without modification. The extraction of input samples for bug
detection in unseen code is done in the same way as the extraction
of positive samples. For example, the input sample for detecting
the operator precedence bug in the first code example of Table 1 is:
age < 18 || age > 65 && is member.

5. RESULTS
This section presents the metrics of the bug detection models and
data samples and compares the performance of this project with
similar projects.

5.1 Training Data and Training Time
The C code corpus [19], containing 722,366 C code files gathered
from various open-source repositories, is used for generating the
dataset for training and testing the three bug detectors. After the
positive and negative samples are collected, duplicate samples are
removed and the samples are divided into training, validation and
testing sets containing 80%, 10% and 10% of the total samples
respectively. The total number of data samples generated for each
bug detection model is provided in Table 5. The training of bug
detectors and their testing is done in parallel on two NVIDIA T4
GPUs of 16 GB each. The training and prediction times for each
bug detector using the same GPU configuration are presented in
Table 5. The prediction time for a sample ranges from 1.31 ms
to 2.01 ms. The training time for each bug detector depends on
the number of training samples and ranges from 64 minutes to 104
minutes for this project.

5.2 Metrics of Bug Detection Models
This subsection presents the F1 score and ROC (Receiver
Operating Characteristic) curve of all bug detectors. The F1 score
is the harmonic mean of precision and recall and is used to
evaluate the performance of classification models. The F1 score
is a balanced measure of a model’s performance, considering false
positives and negatives.

F1 Score = 2 · Precision × Recall
Precision + Recall

(2)

where,

Precision =
True Positives

True Positives + False Positives
(3)

Recall =
True Positives

True Positives + False Negatives
(4)

The ROC curve is a plot of True Positive Rate vs. False Positive
Rate at different classification thresholds, and AUC-ROC (Area
Under the ROC Curve) measures the entire area under the ROC
curve, ranging from 0 to 1, where an AUC-ROC of 1 represents a
perfect classifier.
Model training is stopped either after the completion of 10 epochs
or when the validation loss does not decrease by at least 0.01
for two consecutive epochs. The training of all three models
seems to stop before reaching 10 epochs due to the same reason.
Hyperparameter tuning is performed during model training and
the best-performing hyperparameters and corresponding model
are saved for inference. For example, the hyperparameter tuning
metrics for the operator precedence bug detection model across
different combinations of learning rate and batch size are presented
in Table 7, where a learning rate of 2 × 10−5 and a batch size
of 64 yield the best results. The highest F1 scores of the models
range from 83.97% to 95.55%, as shown in Table 6. Similarly, the
AUC-ROC values of bug detection models are quite good, ranging
from 0.9274 to 0.9890, as shown in Table 6.

Table 6. : Metrics of bug detectors for testing set
Bug detector AUC-ROC F1 score

Swapped function arguments 0.9522 88.28%
Wrong binary operator 0.9274 83.97%
Wrong operator precedence 0.9890 95.55%

5.3 Comparison of Metrics with Similar Projects
The language of source code used in datasets varies among
similar projects on name-based bug detection. Among the projects
using datasets of the same programming language as this project,
the dataset itself is different. Therefore, the direct comparison
of metrics among the projects in Table 8 is invalid and the
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Fig. 3: Plot of swapped function args bug detector metrics: (a) F1 score vs epochs (b) ROC curve
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Fig. 4: Plot of wrong binary operator bug detector metrics: (a) F1 score vs epochs (b) ROC curve
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Fig. 5: Plot of operator precedence bug detector metrics: (a) F1 score vs epochs (b) ROC curve

metrics are presented only for qualitative study of the projects.
Pardel and Gross [4], Rice et al. [10] and this paper use a
dataset of the C language, while Liu et al. [2] and DeepBugs [5]
use Java and Javascript datasets respectively. Direct comparison
between bug detectors of different languages is not valid, but
their accuracy and precision should not differ significantly. Among

precision and accuracy, only one of the metrics is available in
similar papers, so the unavailable metric is left blank in Table 8.
Compared to the swapped function arguments bug detectors of
the C language, this project has the highest precision of 88.69%
and greater model training efficiency, as the other projects involve
rule-based algorithms or hand-picked patterns. DeepBugs, which
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Table 7. : Hyperparameter tuning for operator precedence bug detection model
Learning rate Batch size Validation loss Total epoch Accuracy Precision Recall F1-score
2× 10−3 32 0.673336 3 0.599334 0.599334 1 0.749480
2× 10−3 64 0.673314 3 0.599334 0.599334 1 0.749480
2× 10−4 32 0.673450 3 0.599334 0.599334 1 0.749480
2× 10−4 64 0.673457 3 0.599334 0.599334 1 0.749480
2× 10−5 32 0.142283 4 0.944594 0.936895 0.973098 0.954653
2× 10−5 64 0.134386 5 0.949501 0.954414 0.961674 0.958030
2× 10−6 32 0.211942 7 0.905832 0.910915 0.934245 0.922433
2× 10−6 64 0.247917 7 0.889977 0.903224 0.914398 0.908776

Table 8. : Bug detector training and prediction metrics
Bug detector Project Dataset language Precision Accuracy

Swapped function arguments

Pradel and Gross C 80% -
Liu et al. Java 80% -
Rice et al. C 85.47% -
DeepBugs JavaScript - 94.70%
This Project C 88.69% 88.33%

Wrong binary operator
DeepBugs JavaScript - 92.21%
This Project C 86.52% 84.43%

Wrong operator precedence This Project C 95.13% 94.60%

uses Javascript, has slightly higher accuracy for the first two bug
detectors compared to this project, but a direct comparison is not
feasible due to the difference in programming languages. The
detector for the wrong operator precedence bug is implemented
solely in this project and has a precision of 95.13% and an accuracy
of 94.60%. In summary, this project has the highest precision
among bug detectors of the same language and has comparable
metrics to other projects using different languages.

6. CONCLUSION
This paper presents a machine learning-based method to detect
bugs in source code through the analysis of identifier names, which
is useful for both statically and dynamically typed programming
languages. The automatic generation of buggy code samples
through simple code transformations helps create hundreds of
thousands of training data samples for bug detectors, which would
have been impractical otherwise. This paper outperforms the
previous name-based bug detectors for statically typed languages,
at least in terms of training efficiency, by excluding heuristic rules
and using advanced machine learning algorithms on top of more
than half a million automatically generated training samples. The
three bug detectors created through the proposed system, using a
large corpus of source code, yield F1 scores between 83% and
95%, demonstrating the effectiveness of the system. In contrast
to the training or use of Large Language Models (LLMs) for bug
detection, this approach is cost-effective and resource-efficient for
detecting specific but highly frequent types of bugs in source code.
In the future, the system developed in this project is anticipated
to be utilized in the development of new bug detectors and as an
automatic data generation technique for training a variety of source
code analysis tools.
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