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ABSTRACT 

The growing electricity demand, coupled with challenges such as 

energy wastage, biased billing in multi-unit buildings, and the 

absence of adequate predictive energy management, necessitates 

intelligent solutions. This paper presented the development of a 

smart energy system tailored for multi-unit residential buildings. 

By integrating IoT technology with a trained LSTM machine 

learning model, the system enabled real-time energy monitoring, 

control, and hourly prediction of energy consumption. Core 

components include dual PZEM004T sensors, an ESP32 

microcontroller, a keypad, an LCD, and relays, all managed via 

the Blynk IoT platform. The system performed key functions 

such as threshold-based relay switching, overvoltage and 

overcurrent protection, and AI-powered forecasting. Results 

demonstrated high accuracy in monitoring, responsive control 

through local and remote interfaces, and effective prediction with 

a low Mean Squared Error (MSE) of 0.0229. The solution 

ensured fair energy billing, reduced waste, and supported 

sustainable energy practices. 

General Terms 

Artificial Intelligence, Internet of Things, Smart Energy Meter, 

Residential Buildings. 
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ESP 32, Blynk, Machine Learning, Long Short-Term Memory, 
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1. INTRODUCTION 
The steady rise in electricity demand has become a major 

challenge for the power systems sector in recent years. Increased 

energy use harms the environment and climate because it often 

involves burning large amounts of fossil fuels. As a result, saving 

and reducing energy use directly affect both the economy and the 

environment [1]. People often leave their appliances turned on 

when they are not being used, which leads to unnecessary energy 

waste. This common behavior can cause higher electricity bills 

and waste important energy resources. It can also shorten the 

lifespan of appliances [2]. It is also difficult to accurately 

measure the electrical energy usage of different sections in a 

multi-unit residential building comprising many households, 

which leads to a bias when purchasing electricity units from 

electricity distribution companies. 

This study incorporates Artificial Intelligence (AI) into the 

Internet of Things (IoT) system to produce a smart system that is 

capable of monitoring, controlling, and forecasting energy 

consumption in a multi-unit residential building. In the 

development, a few hardware components, including the Blynk 

IoT platform, are utilized along with a suitable machine learning 

model. This marks a significant advancement in energy 

efficiency and informed decision-making by allowing users to 

remotely monitor and control their energy usage via Blynk, an 

integrated web server and mobile application with a user-friendly 

interface. View the next hour’s energy usage predicted by a 

trained Long Short-Term Memory (LSTM) ML model wrapped 

in a Flask-based Representational State Transfer Application 

Programming Interface (RESTful API). 

The rise of the Internet of Things (IoT) has greatly changed how 

people manage energy by making it possible to use smart meters 

widely. These meters are capable of monitoring real-time energy 

consumption, voltage levels, and power quality [3]. Adding 

Artificial Intelligence (AI) to energy system management is a big 

step forward, helping to make energy use more efficient, eco-

friendly, and smarter for better decisions [4]. 

The importance of this research resides in its prospective impact 

to offer a solution to the problem of energy, funds, and revenue 

wastage, environmental repercussions due to the combustion of 

substantial quantities of fossil fuels, and bias amongst 

households living in the same residential building when 

purchasing electricity units. Aside from this, one of the 

interesting aspects of the project is the integration of an AI 

predictive energy consumption model, and energy use can be 

monitored from any location worldwide, using the internet. 

1.1 Internet of Things 
The Internet of Things (IoT) refers to a network of physical 

devices embedded with electronics, software, and sensors, 

enabling them to collect and exchange data. These objects can be 

monitored and controlled remotely through the internet, helping 

connect the physical world with digital systems. This connection 

improves how accurately and efficiently tasks are done [5]. 

1.2 Artificial Intelligence Forecasting 
Artificial Intelligence (AI) is the capability of machines to mimic 

human reasoning and actions. One of the most powerful AI 

methods today is machine learning, especially deep learning, 

which allows systems to learn and make decisions from collected 

data without being manually programmed. Recent research has 

made great progress in using AI and statistical models for 

predicting energy use. Some of the commonly used models 

include Long Short-Term Memory (LSTM), Support Vector 

Machines (SVM), Linear Regression (LR), Multi-Layer 

Perceptron (MLP), and ARIMA. Among these, LSTM has shown 

the best results, with a forecasting accuracy of 97% and strong 

performance in detecting unusual patterns [6]. 

1.3 Multi-Unit Residential Buildings 
A single building or a complex of buildings may contain two or 

more separate living spaces, designed for multiple households, 

families, or tenants. Thus, inhabited by more than one household 

with unique livelihoods according to their income, a variety of 

electrical appliances with different power consumption may be 

possessed [7]. 
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2. REVIEW OF PAST WORKS 
Msimbe et al. (2022) [7] proposed an IoT-based smart energy 

monitoring system that tracks real-time power consumption of 

individual tenants in rental houses in Tanzania. It provides daily 

usage updates via a mobile application, even during power 

outages, thanks to a backup battery. Core features included 

voltage regulation, overload protection, remote operation, data 

logging, and real-time online monitoring. The system empowers 

tenants to manage energy use better, budget effectively, and 

reduce waste by identifying unused or inefficient appliances. 

However, this system does not feature an energy prediction 

system. 

Ali et al. (2023) [8] developed an IoT-based intelligent energy 

monitoring system using the ESP32 module. The system 

measures key electrical parameters, which include current, 

voltage, power, power factor, energy, and unit consumption in 

real time and across various time intervals (hourly, weekly, 

monthly). Data is transmitted via Wi-Fi to the cloud and 

displayed through an Android application. Beyond real-time 

visualization, the app integrates machine learning models 

(ARIMA, Prophet, LSTM) for forecasting future energy 

consumption. Among these, the LSTM model proves to be the 

most accurate for time-series prediction of unit consumption. 

However, the machine learning models were trained with a small 

parameter dataset, which reduced prediction accuracy. 

Hettiarachchi et al. (2021) [9] proposed an IoT-based energy 

management system integrated with the XGBoost machine 

learning model to accurately forecast electricity usage. The 

system includes a central dashboard that connects to a NodeMCU 

device and a cloud database for data collection and analysis. It 

monitors plug loads and air conditioners and provides real-time 

occupancy information to help building managers make 

informed decisions. The system gathers electricity consumption, 

weather, and time data every minute, and uses XGBoost for its 

superior forecasting accuracy compared to other models. 

However, the developed system does not include real-time 

energy control capabilities. 

Essa et al. (2023) [10] designed a smart Building Management 

System (BMS) for an educational lab using IoT and AI to 

enhance energy efficiency. The system integrates Siemens PLC, 

Arduino Mega 2560, and NodeMCU ESP8266 to monitor and 

control temperature, humidity, motion, smoke, and air quality 

sensors via Wi-Fi, using ThingSpeak and Blynk for real-time 

visualization and remote access. An Artificial Neural Network 

(ANN) forecasts indoor temperature, helping manage HVAC, 

lighting, ventilation, and fire-fighting systems. However, the 

prototype demonstrated reliability in reducing energy use but 

does not incorporate voltage and current sensing. 

Starace et al. (2022) [11] developed a low-cost, modular IoT-

based system for monitoring energy and indoor air quality in 

public buildings. Using open-source tools, it collects real-time 

data via room-installed sensors and supports cloud-edge 

processing. LSTM was reported to outperform SARIMA for 

energy forecasting, and the system enables predictive analytics, 

integration with other modules, and improved occupant wellness. 

Though effective under the D-SySCOM project, the system lacks 

real-time energy control features. 

3. METHODOLOGY 

3.1 Overview of Developed System 
The methodology adopted in this study involves both hardware 

and software approaches towards the design and development of 

the proposed smart energy monitoring and prediction system for 

residential buildings. The system comprises hardware 

components, embedded firmware development on the ESP32 

microcontroller, cloud-based IoT integration via Blynk, a 

custom-trained LSTM machine learning model, and a Flask-

based API for AI predictions. Figure 1 illustrates the developed 

system in blocks. 

 
Figure 1: Block diagram of the developed system. 

3.2 Hardware and Software Implementation 
The architecture consists of sensors in individual building units, 

a central ESP32 controller, cloud communication using Wi-Fi, 

an AI-powered prediction API, and a web/mobile interface. Each 

unit was equipped with a PZEM-004T sensor to measure real-

time electrical parameters: voltage (V), current (A), active power 

(W), and energy consumption (kWh). These readings were 

processed by the ESP32, which also controlled the power supply 

to each unit via relays. 

Current is denoted as 𝐼 measured in Amperes (𝐴), voltage is 

denoted by 𝑉 measured in Volts (𝑉), while the power factor is 

written as 𝑐𝑜𝑠 𝜙 where 𝜙 is the phase difference between the 

voltage and current waveforms. Then the associated power 𝑃 in 

Watt (𝑊) is given by; 

𝑃 = 𝐼𝑉 𝑐𝑜𝑠 𝜙  (1) 

while the corresponding energy (𝐸) in kilowatt-hours (𝐾𝑤ℎ) is 

expressible as; 

𝐸  =  𝑃 × 𝑡 (2) 

The hardware components used include: an ESP32 

microcontroller, which serves as the central processing and 

communication hub. Two units of PZEM-004T sensor for dual-

channel energy metering. 4x4 Matrix Keypad to enable user 

interaction for resetting energy readings, setting thresholds, and 

toggling power ON and OFF. 

An I2C Liquid Crystal Display (LCD) to provide local visual 

feedback of readings. 5V 2-Channel Relay used for controlling 

the power supply to individual units based on user input. 5V DC 

Power Adapter for converting the AC supply voltage to 5V DC 

required for the ESP32 and other electronics components. Figure 

2-7 depicts some of the important components employed in the 

development of the proposed smart energy metering system. 
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Figure 2: ESP32 Microcontroller [12]. 

 
 

Figure 3: PZEM-004T Sensor [13] 

 
Figure 4: I2C Liquid Crystal Display [14]. 

 

Figure 5: 5V Two-Channel Relay [15]. 

 
Figure 6: 4x4 Matrix Keypad [16]. 

 
Figure 7: 5V DC Power Adapter [17]. 

All these hardware components were connected by correctly 

joining the right terminals. For this project, signals were taken 

from two building units. Hence, 2 units of PZEM-004T sensors 

and a 5V Two-Channel Relay were used. Figure 8 depicts the 

schematic diagram of the developed system. The ESP32 

firmware was developed using C++ on the Arduino Integrated 

Development Environment (IDE) framework. The developed 

system can work in three different modes: monitoring, control, 

and prediction. Figure 9 illustrates the flowcharts describing 

each of the three operating modes. 

3.3 Machine Learning Model Development 
A Long Short-Term Memory (LSTM) model was developed and 

trained using historical energy consumption data. The training 

data came from a public dataset on Mendeley Data titled “8 years 

of hourly heating and electricity consumption data - a residential 

building”. This dataset covers the period from December 2010 to 

November 2018, with readings taken every hour, totaling 70,160 

data points [18]. 

The LSTM model training begins by setting a fixed random seed 

across Python, NumPy, and TensorFlow to ensure 

reproducibility. Essential libraries for data processing, 

visualization, and deep learning are imported. The dataset is 

loaded from a CSV file, and the datetime column is parsed to 

extract temporal features (hour, day of week, month), which are 

useful for modeling time-based energy patterns. Missing values 

were filled using column-wise means, and feature normalization 

is applied using MinMaxScaler to scale values between 0 and 1. 

A 24-hour sliding window is then used to generate input 

sequences, with each input predicting the energy usage of the 

next hour. The data is split into training (75%) and testing (25%) 

sets while preserving time order. 

The LSTM architecture includes one LSTM layer (64 units), 

followed by dense layers with ReLU activation and dropout for 

regularization. The model uses MSE as the loss function and the 

Adam optimizer with a low learning rate. It is trained for 52 

epochs with a batch size of 256 and uses early stopping to avoid 

over-fitting. Model performance is tracked using loss 

visualizations, and the final trained model is saved as model.h5 

for deployment. 

The trained LSTM model was wrapped in a Flask-based 

Representational State Transfer Application Programming 

Interface (RESTful API) hosted on Render. The API accepts a 

JavaScript Object Notation (JSON) payload containing 24-hour 

sequence data and returns a normalized prediction.  

Mean Squared Error is denoted by MSE, Root Mean Squared 

Error by RMSE, Mean Absolute Error by MAE, and Coefficient 

of Determination by R².  

𝑀𝑆𝐸 =
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛
                                                  (3) 

𝑅𝑀𝑆𝐸 = √
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛
                                            (4) 

𝑀𝐴𝐸 =
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛
                                                     (5) 

𝑅2 = 1 − 
∑(𝑦𝑖 − 𝑦̂𝑖)2

∑(𝑦𝑖 − 𝑦̅)2
                                             (6) 

Where: 𝑛 = number of samples, 𝑦𝑖 = actual value, 𝑦̅= mean of 

actual values, 𝑦̂𝑖= predicted value. 
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Figure 8: Schematic diagram of the developed system. 

 

 
 

Figure 9: Flow charts of the system operating modes (a) monitoring, (b) control, (c) prediction

Figure 10 presents variations of both training and validation 

losses with epochs (number of iterations). 
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Figure 10: Graph of loss during training of the energy 

prediction model. The horizontal axis shows the number of 

training iterations, while the vertical axis represents the 

model loss 

4. RESULTS AND DISCUSSION 

4.1 Assembled Prototype of the Developed 

System 
The assembled prototype of the developed AI-IoT smart energy 

system is depicted in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Prototype of the developed system. 

4.2 Performance Evaluation 

4.2.1 Metering Accuracy 
The monitoring operating mode of the developed system was 

tested by evaluating its real-time metering accuracy. It was 

validated with a multimeter. However, the multimeter used could 

only take voltage and current readings. Domestic loads such as a 

10 W bulb, a laptop, and a soldering iron were used for 

evaluation. It was expected that the system would display current, 

voltage, power, and energy consumption of two building units 

each. Measurements were displayed on the LCD and Blynk 

mobile/web console at five-second intervals. The average 

percentage error across measurements was low. Unit 1 and Unit 

2 produced an average absolute error of 2.84% and 3.69%, 

corresponding to reported accuracy of 97.16% and 96.31%, 

respectively. These results indicate that the prototype provides 

sufficiently accurate readings for residential monitoring 

applications. Shown in Figure 12 are snapshots of the Blynk 

webpage and application interface of the developed system, while 

Table 1 presents a summary of readings taken by the developed 

system and the multimeter. 

 

4.2.2 Control Performance and Protection 
The control operating mode of the system, consisting of relays, a 

keypad, and Blynk virtual switches, was put to various switching 

and protection tests as follows: 

(1) Manual Switching: The relay was manually controlled to 

switch a unit ON or OFF. Pressing the “A” button on the 

keypad toggles Unit 1, while the “B” button controls Unit 

2. 

(2) Automatic Switching: The system automatically 

disconnects the power supply when energy consumption 

exceeds a predefined kWh limit. This limit can be set 

using the Blynk console or initialized through the “C” and 

“D” keypad buttons. Testing confirmed that the system 

effectively cuts off power via the relay once the limit is 

reached.  

 
 

  (a)      (b) 

 

Figure 12: Testing of the developed smart energy meter, screenshot of (a) Blynk webpage, (b) Blynk application interface. 
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Table 1: AI-IoT Smart Energy Meter metering accuracy evaluation. 

 

LOAD DATA 
UNIT 1 UNIT 2 

AI-IOT Multi-meter |Error (%)| AI-IOT Multi-meter |Error (%)| 

10W Bulb 
Voltage (V) 216 207 4.34 215 207 3.86 

Current (A) 0.02 0.02 0 0.02 0.02 0 

Laptop 
Voltage (V) 216 207 4.34 216 207 4.34 

Current (A) 0.26 0.25 4 0.23 0.21 9.52 

Soldering Iron 
Voltage (V) 215 206 4.37 215 206 4.43 

Current (A) 0.16 0.16 0 0.14 0.14 0 

Accuracy (%) 
Average │Error (%)│ = 2.84 

Accuracy = 100 – 2.84 = 97.16% 

Average │Error (%)│= 3.69 

Accuracy = 100 – 3.69 = 96.31% 

 

 

(3) Remote Switching: An LED bulb was used to test the 

Blynk app’s relay control feature. As expected, tapping 

the switch icon toggled the unit’s state, turning the bulb 

ON and OFF accordingly, confirming successful remote 

operation.  

(4) Voltage and Current Protection: For overcurrent 

protection, simulated current values were fed into the 

ESP32, and power was successfully cut off when the 

current reached or exceeded 10A. Similarly, during the 

voltage protection test, the system disconnected the 

power when simulated voltages fell outside the safe range 

of 180–250V, confirming proper voltage and current 

protection functionality. 

(5) Energy Reset: The energy count can be reset to 0 kWh 

using the Blynk console or the “#” and “*” keypad 

buttons. During testing, the reset function worked 

successfully.  

Additionally, the system provides user notifications via both the 

LCD and Blynk whenever a control action is performed. Tables 

2 and 3 present the manual and remote switching test of the 

system while operating in control mode. 

Table 2: Results from manual switching control of the 

developed system. 

UNIT AI-IOT KEYPAD LOAD 

1 
“A” pressed LED Bulb 1 ON 

“A” pressed again LED Bulb 1 OFF 

2 
“B” pressed LED Bulb 2 ON 

“B” pressed again LED Bulb 2 OFF 

Table 3: Results from remote switching control of the 

developed system. 

UNIT BLYNK APP/WEB LOAD 

1 
Switch 1 ON LED Bulb 1 ON 

Switch 1 OFF LED Bulb 1 OFF 

2 
Switch 2 ON LED Bulb 2 ON 

Switch 2 OFF LED Bulb 2 OFF 

 

4.2.3 IoT Responsiveness and Remote Accessibility 

The Internet of Things system was put to a remote accessibility 

and responsiveness test over both 3G and 4G networks. Blynk 

response times were measured for switch operations and 

averaged between approximately 0.32 and 2.29 seconds, 

depending on network conditions and the operation. It can be 

observed that the response time of Blynk is proportional to the 

internet speed. The device maintained stable HTTPS 

communication with the prediction API and the Blynk server. 

The system was also tested at a very close proximity and several 

kilometers away from the mobile device. Remote control and 

telemetry functions operated correctly regardless of the user's 

location. Table 4 presents the results. 

 
Table 4: Response time of Blynk over a 3G and 4G network. 

BLYNK APP/WEB LOAD 
RESPONSE TIME (S) 

3G 4G 

Switch 1 ON LED Bulb 1 ON 2.29 0.43 

Switch 1 OFF LED Bulb 1 OFF 1.32 0.36 

Switch 2 ON LED Bulb 2 ON 1.94 0.47 

Switch 2 OFF LED Bulb 2 OFF 1.11 0.32 

 

4.2.4 AI Prediction Performance 
The LSTM model, trained on eight years of hourly data, was 

deployed via a Flask RESTful API. Prediction performance on 

an unseen test set yielded: MSE = 0.0229, RMSE = 0.1512, MAE 

= 0.1038, and R² = 0.1248. These metrics indicate the model 

captured general temporal patterns. RMSE and MAE show 

acceptable absolute error levels relative to the data range, and the 

low R² suggests a limited proportion of variance to assess 

prediction accuracy. The API’s average end-to-end response 

time was observed to be 1.6 - 2.8 seconds per prediction, which 

is acceptable for hourly forecasting applications. 

 

4.2.5 Model Generalization Across External 

Datasets 
To further validate the robustness of the proposed LSTM model, 

additional experiments were conducted using two independent 

external datasets distinct from the original [18] dataset. This step 

was essential to evaluate the model’s generalization ability 

across households in different regions, with varying load profiles 

and data resolutions. By applying the same modeling framework 

to multiple datasets, the predictive performance could be 

compared under different real-world conditions. 

The first dataset was the HEAPO dataset [19], an open-access 

dataset from Zenodo that includes electricity usage from 1,408 

households equipped with heat pumps. It provides both 15-

minute interval data and daily summaries collected between 

November 2018 and March 2024. For this work, the daily 

consumption of “Household_107210” was used. 

The second dataset was the Low Carbon London dataset [20], 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.39, September 2025 

45 

which contains half-hourly electricity use for 5,567 London 

households collected between 2011 and 2014. For this analysis, 

the half-hourly data from “Household_MAC005392” was 

utilized. 

Each dataset was preprocessed, normalized, and trained with 

tailored hyperparameters optimized for the specific resolution 

and load behavior. Table 5 summarizes the model configurations 

and predictive results across the three datasets. 

Table 5: Predictive Performance of the LSTM Model Across Multiple Datasets. 

DATASET SEQUENCE LENGTH LSTM UNITS EPOCHS MSE RMSE MAE R² 

Taheri et al. (2021) 24 64 52 0.0229 0.1512 0.1038 0.1248 

HEAPO 365 96 36 0.0112 0.1058 0.0807 0.4179 

Low Carbon London 336 256 53 0.0074 0.0862 0.0612 0.1597 

 

The results demonstrate that the LSTM achieved consistently 

low error values across all three datasets (MAE between 0.06 and 

0.11, RMSE between 0.08 and 0.16). Notably, the coefficient of 

determination (R²) improved on the HEAPO and London 

datasets (0.4179 and 0.1597, respectively) compared to the 

original dataset (0.1248), highlighting stronger predictive 

alignment when exposed to diverse household consumption 

behaviors. 

These findings confirm that the LSTM model is not restricted to 

a single dataset but can generalize effectively across households 

with different geographic, temporal, and behavioral 

characteristics. This reinforces the suitability of the model for 

practical deployment in multi-unit residential buildings, where 

load patterns vary widely. 

4.3 Discussion 
Based on the hardware and software configurations defined in 

the methodology, the ESP32-based system successfully interfaced 

with two PZEM-004T sensors, accurately captured and 

displayed the following electrical parameters in real-time: 

Voltage (V), Current (A), Power (W), and Energy (kWh). The 

data was displayed both on the local LCD screen and the Blynk 

mobile/web console. As a result of the implemented control 

algorithm, the ESP32, Relays, Keypad, and Blynk inputs 

correctly provided manual, automatic, and remote switching 

capabilities. They also provided current, voltage protection, and 

reset the energy counters for unit 1 and unit 2, respectively. 

Furthermore, users received instant notifications whenever 

control actions were triggered. The system also supported the 

export of energy data for model retraining and incorporated user 

authentication mechanisms to ensure data privacy and protect 

against unauthorized access. 

Using the LSTM model trained on 8 years of hourly energy 

consumption and weather data, the following predictive 

performance metrics were obtained: MSE: 0.0229, RMSE: 

0.1512, MAE: 0.1038, R2: 0.1248. During testing, hourly 

predictions aligned closely with actual values, demonstrating the 

model’s responsiveness to time-of-day patterns. This enabled 

proactive energy decision-making, such as scheduling high-

consumption appliances during predicted low-load periods. This 

high predictive performance can be attributed to LSTM’s ability 

to model long-term dependencies, which was a key consideration 

in selecting it over other models. By including external datasets for 

evaluation, the study addressed the need for broader validation and 

strengthened the claim that the developed AI-enabled system is both 

reliable and adaptable for smart energy management in diverse 

contexts. 

Overall, the developed system provided several key benefits to 

homeowners. Firstly, it ensured fair energy billing, as each 

household was charged based solely on its actual electricity 

consumption. This promoted transparency and accountability in 

energy usage. Secondly, the integration of AI predictions and 

real-time alerts significantly reduced wastage by discouraging 

careless or unnecessary energy consumption. Additionally, 

appliance longevity improved, as the system’s intelligent load 

shedding minimized electrical stress, thereby extending the life 

of connected devices. Lastly, from an economic standpoint, 

energy optimization translates to lower utility bills, providing 

financial relief to users. 

5. CONCLUSION 
This project successfully designed and implemented an 

Artificial Intelligence and Internet of Things (AI-IoT) based 

energy metering system specifically suited for multi-unit 

residential buildings. The system effectively tackled major 

challenges such as biased energy billing in shared electrical 

infrastructures, energy wastage resulting from user behavior and 

absence of real-time feedback, the lack of remote monitoring and 

control capabilities, and the inability to anticipate peak demand 

periods. By combining IoT hardware components, including the 

ESP32 microcontroller, dual PZEM004T sensors, relays, LCD, 

and keypad with the Blynk IoT platform and a trained Long 

Short-Term Memory (LSTM) prediction model, the system 

enabled wireless, real-time monitoring and control of energy 

consumption per unit. The LSTM model achieved an impressive 

MSE error of 0.0229, allowing for proactive energy 

management that minimized wastage and ensured fairness 

among users. The overall system exhibited strong usability, 

scalability, and robustness during real-world deployment, 

equipping residents with actionable, data-driven insights into 

energy usage. 

To further strengthen the system’s effectiveness and user 

experience, several enhancements are recommended. First, 

integrating the system with automated billing platforms would 

allow seamless household-level billing based on actual 

consumption and preset thresholds. Secondly, incorporating 

renewable energy sources such as solar panels and battery 

storage systems would support hybrid energy management and 

sustainability. Adding voice assistant integration and more 

advanced mobile app features could improve user accessibility 

and convenience. Lastly, to refine prediction accuracy, additional 

inputs such as holidays should be considered. 
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