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ABSTRACT

Air pollution, particularly the concentration of particulate matter
(PM10), poses significant risks to public health and environmen-
tal quality. Therefore, this study proposes a Multilayer Perceptron
(MLP) optimized by a Genetic Algorithm (GA) to develop a pre-
dictive modeling approach for estimating PMq levels, capturing
the complex interactions between atmospheric conditions and pol-
lutants. The model incorporates twelve key input variables, includ-
ing meteorological conditions and pollutant indicators such as tem-
perature, CO, NO, NO;, NOy, PM; 5, O3, RH, SO;, wind direc-
tion (WD), wind speed (WS), and lagged PM( values. The dataset
was divided into 70% for training and 30% for testing. The rec-
ommended model demonstrated a remarkable capacity to identify
complex patterns in the PM | data by generating remarkably accu-
rate predictions and a strong correlation with actual results during
training. These results demonstrate the effectiveness of evolution-
ary optimization in enhancing FNN-based models for predicting air
quality.
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1. INTRODUCTION

It is widely acknowledged that air pollution poses a significant
threat to global public health. Numerous studies have connected
poor air quality to a wide range of dangerous medical conditions,
such as heart attacks, lung damage, respiratory and cardiovascular
disorders, and different types of cancer [1-5]. Furthermore, air pol-
lution is associated with a higher risk of premature mortality and
considerably worsens asthma symptoms in both adults and chil-
dren [6].

To protect human health, especially in densely populated and in-
dustrialized urban areas, it is crucial to understand, monitor, and
mitigate the effects of air pollution. The situation in China, where
air pollution is thought to be responsible for more than 1.6 million
deaths per year, serves as an example of how urgent it is to address
this issue [7]. In addition to its detrimental effects on health, air pol-
lution has a significant financial cost. When public health costs and
agricultural yield losses are taken into consideration, researchers

at the Chinese University of Hong Kong estimate that it causes an
annual economic loss of 267 billion yuan (roughly US$38 billion)
In Figure 1, we realize that China’s PM;, emission trends from
2013 to 2020 demonstrate a notable decrease, with overall emis-
sions falling by over 65% during that time. During Phase I
(2013-2017), when strict air pollution control regulations were im-
plemented, this decrease was most noticeable. The overall improve-
ment was driven by significant declines in both the residential and
industrial sectors, which were the main contributors in 2013. Emis-
sions from all sectors had decreased by 2020, with the power sec-
tor making up a tiny portion of the total. These patterns demonstrate
how well national laws work to reduce particulate matter, especially
in cities and industrial regions.

20

Phase| Phase ll

o
]

R I I I Power
] II I I Industry
Sclvent use
Residential

- I Transportation
Il Agriculture

Emissions (Tg)
3

o
&
35533888 88888888

PMy BC oc

Fig. 1: Sectoral Trends in Anthropogenic Emissions in China (2013-2020):
Supplementary Data for PM1, Black Carbon (BC), Organic Carbon (OC),
and Carbon Monoxide (CO) Emission Patterns [8]

In response to this crisis, China enacted the Ambient Air Quality
Standard in 2012 and has since established a nationwide Air Re-
porting System, comprising 945 monitoring stations spread across
190 cities. These measures demonstrate the urgent need for strin-
gent air quality regulations and effective environmental policies to
mitigate the detrimental effects of air pollution on human health
and economic growth.

In this study, we present a hybrid modeling framework that com-
bines an Artificial Neural Network with a metaheuristic optimiza-



tion method, the GA, to address the complex problem of PM;, con-
centration prediction in Taiwan. This hybridization is motivated by
the capacity of ANNs to model nonlinear relationships found in en-
vironmental data and the global search capabilities of GA, which
effectively optimize the network’s parameters and avoid conver-
gence to local minima. The GA-ANN model was systematically
developed and trained using a wide range of air quality and meteo-
rological factors relevant to PM;, formation and dispersion. Exten-
sive experiments were conducted to evaluate the performance of the
proposed method, and the results indicate that the GA-optimized
ANN significantly improves prediction accuracy in comparison to
conventional training methods. This illustrates how complex hybrid
intelligent systems can handle environmental modeling tasks.

This paper is formatted as follows: Section 2 provides a compre-
hensive review of the background and pertinent literature on meta-
heuristics (MHs), Artificial Neural Networks (ANNs), and hybrid
ANN models. Section 3 gives a summary of metaheuristic algo-
rithms, with a focus on Genetic Algorithms (GAs). Section 4 dis-
cusses the backpropagation (BP) learning process, the proposed hy-
brid methodology, and the fundamentals of ANNs. The dataset used
in this study is described in Section 5, and the evaluation metrics
are described in Section 6. A thorough explanation of the experi-
mental setup and findings is given in Section 7. Finally, we provide
the conclusion and future work.

2. BACKGROUND AND RELATED WORK

Air pollution is widely recognized as a major contributor to poor
health outcomes and premature mortality worldwide. According
to estimates from the World Health Organization (WHO), ambient
air pollution alone results in approximately 4.2 million preventable
deaths globally annually [9]. Several studies have found strong as-
sociations between short-term exposure to contaminated air and
increased rates of cardiovascular, respiratory, and cerebrovascular
death [10-12]. In response to these alarming statistics, consider-
able efforts have been made to monitor weather and atmospheric
pollutant levels to ensure that air quality remains within safe lim-
its [13]. Pollutants that are regularly measured include particulate
matter (PM,p), carbon monoxide (CO), sulphur dioxide (SO,), and
nitrogen oxides (NO, NO,, NOy) [14]. Furthermore, meteorologi-
cal variables such as temperature, wind speed, and relative humid-
ity are routinely measured due to their significant influence on the
concentration and dispersion of pollutants in the atmosphere.
Particulate matter with a diameter of 10 micrometres or less, or
PM,y, originates from a range of natural and man-made sources,
including waste burning, industrial operations, construction, vehi-
cle emissions, and wildfires. Because of its detrimental effects on
health and respiratory penetration, PM; is one of the most signif-
icant indicators used to evaluate the health impacts of air pollu-
tion [15]. Accurately forecasting PM; levels can support proactive
public health efforts and provide valuable data on regional trends
in air quality.

Over time, a variety of mathematical and computational models
have been developed to predict air pollution levels [16]. Due to
their ability to capture complex, non-linear relationships between
pollutant concentrations and input features, Artificial Neural Net-
works (ANNs) have garnered attention among these researchers
[17, 18]. Despite their potential, ANNs are still challenging to
train efficiently, particularly when dealing with nonlinear and high-
dimensional problems. Backpropagation (BP) and other traditional
gradient descent-based training techniques are sensitive to initial
weight configurations and often converge to local optima.
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To overcome these limitations, researchers have investigated meta-
heuristic (MH) search algorithms as a different training strategy.
MHs offer powerful global search capabilities and have proven ef-
fective in resolving complex optimization problems. In the context
of air pollution modeling, MHs have been utilized to develop em-
pirical models that forecast pollutants, such as CO, [16], using ex-
ponential regressions. Moreover, MHs have demonstrated promis-
ing outcomes in ANN training by improving convergence behavior
and avoiding suboptimal solutions [19].

This combination, sometimes known as the hybrid approach, com-
bines the predictive power of ANNs with the optimization capa-
bilities of MHs. By hybridizing ANNs with MHs, researchers can
overcome local optima, enhance training efficacy, and improve the
generalization performance of models [20]. This hybrid methodol-
ogy has been successfully applied in the field of air quality forecast-
ing on multiple occasions. For instance, [21] hybridised a Recur-
rent Fuzzy Neural Network (RFNN) with the Grey Wolf Optimiser
(GWO) to predict PM(, PM; 5, and ozone (O;) concentrations. The
proposed GWO-RFNN model outperformed the standalone RFNN
in terms of predictive accuracy and generalization ability.
Moreover, hybrid approaches have also outperformed in other do-
mains. In [22], a Multi-Layer Perceptron (MLP) was trained us-
ing a range of metaheuristic algorithms and compared with a tradi-
tional backpropagation-based MLP. The results demonstrated that
for high-dimensional and complex datasets, hybrid models consis-
tently outperformed conventional BP-MLP models, particularly in
terms of prediction accuracy and training stability.

These findings together demonstrate the potential of hybrid intel-
ligent systems, especially those that integrate ANNs and MHs,
for accurate and dependable modeling of air pollution phenom-
ena. Building on this growing body of work, this study optimizes
an ANN for PM;, concentration prediction in Taiwan using a GA,
demonstrating the ongoing relevance and efficacy of hybrid meth-
ods in environmental modeling.

3. METAHEURISTIC SEARCH ALGORITHMS

MHs are robust and effective due to their ability to explore and
exploit the solution space [23-25]. Exploration is the process of
globally searching for new candidate solutions within the solution
space. Exploitation is the process of utilizing known candidate so-
lutions to search for a better one locally [26]. MHs achieve these
global and local search methods by modeling natural phenomena
such as evolution, biology, physics, and swarm behavior to opti-
mize for a given problem. MHs are a broad category of search
algorithms, the hierarchy of which is depicted in Figure 2. These
search algorithms were utilized to handle many real-world prob-
lems [27-29].

While MHs do not guarantee optimal solutions, they can deter-
mine good approximations to complex problems within a reason-
able amount of time. This is particularly useful in real-world appli-
cations, where it is often the case that the solution is complex and
poses difficulties for other methodologies.

3.1 Genetic Algorithms

The GA is an evolution-based algorithm that draws inspiration from
Charles Darwin’s theory of evolution. GAs optimize for a solution
the same way a species evolves to survive its environment better.
A species that is better suited for its environment is more likely to
survive, mate, and pass on its genetics to its offspring. In the GA,
the more fit an individual is, the better it solves a given problem, and
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Fig. 2: Population-based Metaheuristic Search Algorithms [30]

the more likely it is to survive to reproduce offspring that inherit
some of its traits.

GAs consist of a population of individuals. Each individual repre-
sents a candidate solution to the problem, represented by a chro-
mosome. The chromosome serves as the base for the various GA
operations to be applied, through a process known as Reproduc-
tion. A goal of the GA is to maintain variety within the population,
to avoid getting stuck in local optima and early convergence. The
operations in the GA aim to strike a balance between exploration
and exploitation, while maintaining diversity within the population.
The first operation that takes place is determined with the selection
operation. This determines which individuals will be the parents
who produce the next generation. Several selection methods have
been utilized to select the parents [19]. These methods employ a
combination of the parents’ fitness and randomness to ensure vari-
ety within the next generation.

Just like how two biological mates produce offspring that inherit
their genetics, selected parents in the GA populate the next gen-
eration with offspring that are a combination of their chromo-
somes. The process of combining these chromosomes is known
as crossover. There are several methods of crossover [19]. These
methods primarily involve dividing two parent chromosomes at one
or more selected points and then swapping corresponding segments
to generate new chromosomes. Individuals of the new population
may then be subject to mutation. Mutation occurs at a predefined
rate, where some form of alteration is made to that individual’s
chromosome. This once again increases variety in the GA, avoid-
ing early convergence. The combination of crossover and mutation
rates in the GA helps create a balance between exploration and ex-
ploitation, thereby avoiding being trapped in local optima.
Through these operations, the GA aims to model the process of evo-
lution over a population of candidate solutions to a specific prob-
lem. This allows the GA to navigate complex solution spaces and
produce a reasonable solution (see Algorithm 1).

4. METHODOLOGY

Using evolutionary algorithms, such as Genetic Algorithms (GA)
[31, 32], Differential Evolution (DE) [33], Genetic Programming
(GP) [29,34-36], or Evolution Strategies (ES) [37], to optimize the
network’s connection weights is known as evolutionary weight op-
timization of ANNs [38]. Evolutionary approaches can efficiently
explore complex, multi-modal search spaces without the need
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Algorithm 1 Genetic Algorithm

1: Input: Population size n, mutation rate mr, total generations

2: Initialize: population of n individuals randomly

3: Evaluate: Determine the fitness of each individual in the initial
population

4: for generation g to G do

5 Selection: Select parents of the next generation

6: Crossover: Create offspring with parent chromosomes

7 Update population with the new offspring

8 for individual in population do

9: if mr > r ~ U(0, 1) then
10: Mutate: Alter chromosome
11: end if
12: end for
13: Evaluate: Determine the fitness of each individual
14: end for

15: Return: The most fit individual

for derivatives, in contrast to conventional gradient-based training
techniques, such as backpropagation. To reduce prediction error,
these algorithms iteratively evolve a population of weight solutions
by mimicking natural selection processes, such as reproduction,
mutation, and selection. This method enhances the performance of
ANN:G, particularly when working with noisy, non-differentiable, or
highly nonlinear data, which are challenging for standard optimiza-
tion techniques to handle. The following describes the algorithms
used in this paper for predicting air pollutants.

In the following section, we shall describe the main architecture of
a feedforward ANN.

4.1 Artificial Neural Networks

ANNs are made up of fundamental processing units called neurons,
just like the brain. Figure 3 shows an illustration of a neuron. Each
neuron has a weight (w) and a bias (b) that affect the input signals’
threshold and strength, respectively. Additionally, each neuron has
an activation function that adds non-linearity and bounds the out-
put values to control the neuron’s output y [19]. ANNs can model
intricate relationships in the data thanks to this mechanism.
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Fig. 3: A perceptron model showing weighted inputs, bias b, summation,
and activation function f.

The output of a perceptron can be mathematically expressed as:

y=1f (Z wiw; + b) ¢h)
i=1



Where:

—uy: Output of the perceptron.

—x;: The i*" input feature, where i = 1,2,...,n.

—w;: The weight associated with the 4" input.

—»b: The bias term.

—f(+): Activation function (e.g., step function, sigmoid, tanh).
—mn: The total number of input features.

The underlying architecture of an ANN is a key component of its
information processing. Typically, an input layer, one or more hid-
den layers, and an output layer make up the structured layers in
which neurons are arranged. There are no feedback loops in a feed-
forward ANN; information moves unidirectionally from the input
layer to the output layer via the hidden layers [39]. While each neu-
ron in a layer is completely connected to every other neuron in the
layer below it, it is not connected to any neurons in its layer.

Figure ?? shows an example of a fully connected feed-forward
ANN [40]. It is crucial to remember that there is no hard-and-fast
rule for determining the best ANN architecture for a given issue;
instead, empirical tuning and experimentation are often necessary.
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Fig. 4: Fully Connected MLP with 11 input features, one hidden layer of 10
neurons, and a single output predicting P M7g.

To achieve the intended result, the weights and biases of an ANN
need to be adjusted after it has been built. Typically, a training pro-
cedure that aims to minimize the error between the expected and ac-
tual outputs achieves this. The Backpropagation (BP) algorithm, a
gradient-based optimization technique, is the most commonly used
training method (see Algorithm 2).

To propagate error backward through the network, BP uses the
chain rule to calculate the gradient of a given loss function con-
cerning the weights [39]. The weights are then iteratively updated
using these gradients in a way that minimizes the loss. A predefined
parameter known as the learning rate controls the size of these up-
dates and determines how quickly or slowly the network adapts dur-
ing training. An epoch is a complete run through the entire training
dataset, and training usually continues for a predetermined number
of epochs until convergence or a stopping criterion is satisfied.
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Algorithm 2 Backpropagation Learning Algorithm

1: Input: Training data (z(¥),d®), learning rate 7, number of
epochs £

2: Initialize: Weights and biases to small random values

3: for epoch = 1to E do

4 for each training sample (x, d) do
5: Forward Pass:
6: Compute activations of all hidden and output neurons
7: Compute Output Error:
8: 0o = (d—1y) - f(net,) > Error at output layer
9: Backward Pass:

10: Compute error for hidden neurons:

11: on :f’(neth) 'Zéo'whg

12: Update Weights:

13: Wij < Wi +775sz

14: bj%b]'f"l’](sj

15: end for

16: end for

17: Return: Final weights and biases

4.2 The Backpropagation Algorithm’s Limitations:

Notwithstanding its widespread use, the BP has several drawbacks
that may affect the robustness and performance of ANNs:

—Sensitivity to Initial Weights: Slow convergence or entrapment
in local minima can result from poorly initialized weights.

—Gradient Exploding/Vanishing: Gradients in ANN can get in-
credibly small or large, which makes training challenging.

—Reliance on Variable Activation Functions: The selection of
activation functions is restricted by BP’s requirement that they
be differentiable.

—Overfitting Risk: When training data is scarce, BP can result in
overfitting if it is not properly regularized.

—Adjusting the Learning Rate: Selecting the correct learning rate
is essential; too low leads to slow training, while too high could
result in divergence.

—Caught in Saddle Points or Local Minima: Depending on the
error surface, the algorithm might converge to less-than-ideal so-
lutions.

4.3 Evolutionary MLP-ANN

For an MH, a hybridized ANN replaces conventional ANN training
methods. In this process, the ANN is somehow represented within
the MH. The weights and biases of a particular ANN are typically
arranged to form its representation. By doing this, the MH can ma-
nipulate them and start to maximize their values. Determining the
fitness function is another essential step in the hybridized approach.
This statistical measure is typically employed to assess the perfor-
mance of an ANN. The MH is striving for a more effective ANN
by optimizing it for this purpose.

Figure 5 illustrates the structure of a typical feedforward ANN con-
sisting of three main components: an input layer, a hidden layer,
and an output layer. This architecture demonstrates how input sig-
nals are transformed through weighted connections and activation
functions to produce output values. The complete set of weights
and biases of the MLP model is encoded as a single linear vec-
tor, known as an individual or chromosome, when training such a
network using GAs. Throughout the evolutionary optimization pro-
cess, this vector serves as the candidate solution.
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Fig. 5: Mapping a GA individual to a MLP neural network [41]

4.4 MLP Weight Optimization Network

Assuming a Multilayer Perceptron (MLP) network composed of
n input neurons, h hidden neurons, and o output neurons, the total
number of parameters—including both weights and biases—can be
calculated as follows. The number of weights connecting the input
layer to the hidden layer is n x h, and the hidden layer includes h
bias terms. Likewise, the number of weights from the hidden layer
to the output layer is A X o, with an additional o bias term in the
output layer. Thus, the total number of parameters in the MLP is:

Total Parameters = (n x h) +h+ (h X 0) + 0 2)

—Input-to-Hidden Weights: 1V (1) ¢ R

—Hidden Biases: b(*) ¢ R"

—Hidden-to-Output Weights: 1V (2) ¢ Rox?

—Output Biases: b ¢ R°

In the GA, each ANN has a chromosome representation, which
consists of its associated weights and biases; an example is shown

in Table 1. This chromosome representation serves as the basis for
the various GA operations.

Table 1. : ANN Chromosome Representation.

The k-point crossover method was used. This means that k points
along two parent chromosomes were selected, and the correspond-
ing segments were swapped to generate new offspring.

If a chromosome is subject to mutation, weights are randomly se-
lected at the defined mutation rate, to which their values are ran-
domly updated, as follows:

w=w+r~ N(0,1) 3)
The GA individual xga during evaluation is the

(1) Reformed back into W), bM)W b2,
(2) Used in a typical forward pass:

h = o (W®. in+bW),
y = c(W® h+b®) 4)

(3) The fitness score is calculated by comparing the ground truth
with the predicted output y.

With a basic MLP configuration consisting of n = 4 input neurons,
h = 3 hidden neurons, and o0 = 2 output neurons, the chromosome
used by the GA represents all trainable parameters of the network,
including weights and biases. The total number of parameters is
calculated as follows:

No of parameters = (4 x 3)+3+ (3 x2)+2
12+3+6+2
— 23 5)

This encoding allows the GA to optimize the entire set of MLP pa-
rameters simultaneously. Unlike traditional gradient-based meth-
ods, the GA navigates the search space through evolutionary op-
erations, making it well-suited for optimizing neural networks in
complex or non-differentiable environments.



5. DATA SET

As part of its national Air Reporting System and Ambient Air Qual-
ity Standard, China set up 945 monitoring sites in 190 cities in
2012. Meteorological factors such as wind direction, temperature,
relative humidity, wind speed, and solar radiation intensity have a
significant impact on the photochemical processes that govern the
production and degradation of ozone [7]. Similarly, over the past
three decades, Taiwan’s air pollution patterns have undergone sig-
nificant changes, shifting from point-source pollution in the 1980s
to predominantly urban pollution in the 2000s. The map of moni-
toring stations spanning Taiwan is shown in Figure 6.
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Fig. 6: Monitoring stations at TAQMN, Taiwan. Published March 12, 2020.

While particulate matter concentrations exhibit considerable vari-
ability, with an average of about 19 pg/m® but a maximum of 101.7
ug/m?3, the mean temperature is roughly 22.8°C, with a range of
9.2°C to 32.3°C. The average ozone level is 26.3 pg/m3, with a
wide range from 2.8 to 59.2. Significant variations are also ob-
served in relative humidity and wind speed, reflecting the diverse
atmospheric conditions recorded during the monitoring period. For
a more thorough examination of air quality trends and their possible
health effects, these statistics offer a fundamental understanding of
the environmental conditions and pollutant levels.

Temperature (T), carbon monoxide (CO), nitric oxide (NO), nitro-
gen dioxide (NO,), nitrogen oxides (NOy), delicate particulate mat-
ter (PM;5), ozone (Os), relative humidity (RH), sulphur dioxide
(SO;,), wind direction (WD), wind speed (WS), and lagged PM,,
[PM,o(t-1)] are included in the model’s input features (see Fig-
ure 7). These features were selected due to their availability in the
dataset and their demonstrated impact on particulate matter dynam-
ics. The main summary statistics for the various meteorological and
air quality variables measured in the dataset are presented in Table
2.
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6. EVALUATION CRITERION

Different performance metrics were utilized to assess the quality
of the developed model. The mean squared error (MSE), the root
mean squared error (RMSE), the Pearson correlation coefficient (r),
and the variance accounted for (VAF) were measured. These met-
rics are presented mathematically in the following equations. here,
y is the true value from the recorded data, and ¢ is the value pre-
dicted by the model.

—Mean Squared Error (MSE):

_1 )2
MSE = —~ > i — ) (©)

=1

—Root Mean Squared Error (RMSE):

@)
—Pearson Correlation Coefficient (r):
. 2 i1 (Wi = 9) (i — ) _ ®)
Yo (Wi = 9)2/ 22 (G — 9)?
—Variance Accounted For (VAF):
VAF = (1 - w) x 100 ©)
var(y)

7. EXPERIMENTAL SETUP AND RESULTS

In this study, we used a feedforward neural network optimized by
a Genetic Algorithm to create a predictive model for PM,, concen-
tration. The goal was to utilize an evolutionary search strategy to
optimize the network’s weights and biases, thereby increasing its
predictive accuracy. By using the previous PM, value as an input,
the model was specifically built to leverage temporal dependencies
and capture the nonlinear relationships between air quality vari-
ables and PM; levels.

Ten neurones with a nonlinear activation function (such as tanh)
make up the neural network’s single hidden layer. The predicted
PM,, concentration is represented by a single continuous value
generated by the output layer. To assess generalization perfor-
mance, the dataset was divided into 70% for training and 30% for
testing.

We used a GA setup with the following parameters to optimize the
neural network: a mutation rate of 0.001, a population size of 500
individuals, and a maximum of 100 generations. The mean squared
error between the actual and predicted PM,, values served as the
basis for the fitness function. To reduce prediction error over gen-
erations, the GA iteratively developed candidate solutions using
crossover, mutation, and selection operations. By avoiding local
minima and utilizing GA’s global search capabilities, we effectively
trained the neural network and enhanced the model’s capacity to
identify intricate relationships in the air quality data.

Figure 8 describes the convergence behavior of the Genetic Algo-
rithm used for model optimization. It demonstrates a sharp decline
in MSE in the first few generations, followed by stabilization, in-
dicating that the algorithm effectively identified a near-optimal so-
lution early on and refined it throughout subsequent generations.

The performance metrics compiled in Table 3 quantitatively sup-
port this visual evaluation. The training data produced a Mean
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Table 2. : Summary Statistics of Dataset Variables

Statistic T CO NO NO2 NO, PMs 5 O3 RH SO WD WS PM1g
Mean 22.836 | 0.388 4.537 | 11.242 | 15.782 18.991 | 26.296 | 80.041 2.624 | 190.358 | 1.702 37.992
Std Dev 5.262 | 0.126 2.679 3.526 5.245 11.189 | 10.453 8.443 1.583 44.456 | 0.676 21.232
Min 9.225 | 0.038 0.279 0.824 1.103 0.917 2.763 | 46.292 0.263 52.464 | 0.780 3.833
Max 32.250 | 0.939 | 29.380 | 27.203 | 43.938 | 101.667 | 59.208 | 97.083 | 22.750 | 302.298 | 8.610 | 377.500
T co NO NO2
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Fig. 7: Time series plots of all variables in the dataset utilized to predict PM;,
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Fig. 8: Best convergence curve of GAs showing Best MSE over generations.

Squared Error (MSE) of 51.37 and a Root Mean Squared Error
of 7.17, along with a Pearson correlation coefficient of 0.947 and a

Variance Accounted For of 0.892. A robust and predictive model is
confirmed by the testing data, which also show high accuracy with
an MSE of 60.25, RMSE of 7.76, Pearson r of 0.922, and VAF of
0.849.

Table 3. : Performance Metrics for Training and Testing

Metric MSE RMSE Pearson r VAF
Training 51.36901 7.16722 0.94728 0.89180
Testing 60.24747 7.76193 0.92168 0.84850

The comparison of actual and predicted PMj, concentrations for
both training and testing datasets is shown in Figure 9. Strong fit is
indicated by the predicted values in the top subplot closely match-
ing the real training data, and the bottom subplot suggests good
generalization ability, with similarly close alignment on the testing
dataset.

8. CONCLUSION AND FUTURE WORK

Using a set of twelve atmospheric and pollution-related input vari-
ables, an MLP NN optimized by a GA was successfully used in
this study to predict PM,, concentrations. The model’s high cor-
relation coefficients and low prediction errors on both training and
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Fig. 9: Actual vs. Predicted PM, using evolutionary MLP-ANN weights: top — training case, bottom — testing case.

testing datasets confirmed that evolutionary optimization is a suit-
able method for improving air quality prediction models.

Future research could explore additional methods to enhance the
model’s applicability and accuracy further. These include compar-
ing GA with other metaheuristic optimization algorithms, such as
Particle Swarm Optimization or Differential Evolution, utilizing
more complex network architectures like deep or recurrent neural
networks, and incorporating additional meteorological or tempo-
ral features. Furthermore, the model’s usefulness for environmental
management and public health planning would be increased by ex-
panding it to multi-step forecasting or integrating it with a real-time
air quality monitoring system.
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