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ABSTRACT 

Transaction-Ordering Dependence (TOD) is a potential 

vulnerability of blockchain-based smart contracts, which 

allows malicious actors to exploit the order of transactions to 

obtain financial profit through front-running and back-running 

strategies. The purpose of this paper is to present ZkDelay, a 

new framework that jointly uses commitment schemes and 

Verifiable Delay Functions (VDFs) to counter TOD in 

decentralized applications. ZkDelay introduces a two-step 

transaction scheme: a user makes a cryptographic commitment 

to a transaction without announcing its purpose, and then, upon 

completing a verifiable delay with a VDF, the intended 

transaction can be revealed and carried out. This temporal 

discontinuity, combined with cryptographic acknowledgments, 

prevents adversaries from interfering with actionable 

knowledge in real-time, thereby eliminating any ordering-

based attack possibilities. Moreover, ZkDelay is transparent 

and trustless, as it can be used to verify both commitments and 

delay execution through zero-knowledge proofs, without 

leaking sensitive data. Additional sections dedicated to 

rigorous security analysis and performance analysis in 

Ethereum-like environments are provided in the paper, 

demonstrating that ZkDelay incurs only a low amount of 

computational overhead and that it exponentially improves 

resistance to TOD attacks. The solution can be deployed in 

existing smart contract systems and adapted to DeFi protocols, 

order-sensitive auctions, and other mechanisms. ZkDelay 

addresses the challenge of integrating privacy-preserving 

mechanisms with the fairness of execution by providing a 

scalable and practical solution to one of the most prevalent 

security issues in smart contract environments. 
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1. INTRODUCTION 
Blockchain systems are built on the principles of trustlessness, 

transparency, and fairness. These principles, however, are 

being disputed due to the vulnerabilities of Transaction-

Ordering Dependence (TOD). Permissionless systems, such as 

Ethereum, where miners or validators determine the order of 

transactions in a block, enable adversaries to exploit transaction 

sequencing to their advantage at the expense of fairness and 

user trust [1], [2], [8]. This manipulation can be executed in the 

form of front-running, back-running, and miner extractable 

value (MEV) operations that skew the desired outcomes of 

transactions and undermine the integrity of ecosystems [9], 

[11]. In TOD attacks, attackers monitor the mempool and place 

their own entries with more expensive gas fees, effectively 

rearranging the execution order to modify the outcome [1], 

[10], [18]. This type of manipulation is common in 

Decentralized Finance (DeFi) settings, including decentralized 

exchanges (DEXs), non-fungible token (NFT) auctions, and 

lending protocols [18], [24]. Mitigation schemes are suggested, 

such as commit-reveal schemes, randomized sorting of 

transactions, and MEV relays, such as Flashbot [8], [9], [10]. 

Nonetheless, all such methods have weaknesses: the commit-

reveal models are vulnerable to liveness and censorship [4], 

[14], [23]; randomized defenses are susceptible to gas-priority 

attacks [8]; and MEV relays are based on partially trusted, off-

chain infrastructure [9]. 

We recommend these shortcomings with ZkDelay, a hybrid 

cryptographic protocol that fuses commitment schemes with 

Verifiable Delay Functions (VDFs) [5], [12], [19]. The 

protocol follows two steps: (i) users place transactions in the 

form of commitments whose contents are cryptographically 

hidden, and (ii) once a verifiable delay is created through a 

VDF, the commitments are unveiled, decrypted, and 

implemented. This architecture simultaneously maintains the 

privacy of transactions in the vulnerable mempool, along with 

fairness, through publicly verifiable, non-parallelizable delay 

protocols [5], [21]. 

1.1 Key Contributions of ZkDelay: 
• A New Architecture: ZkDelay presents a new protocol 

combining time-delay cryptography and commitment 

schemes to provide privacy and fairness in the ordering of 

transactions [5], [12]. 

• Design: ZkDelay smart contract is gas efficient, 

lightweight, and easy to code [14]. 

• Formal Security Model: We present a formal security 

model of ZkDelay, which resists front-running, 

censorship, and timing attacks [1], [4]. 

• Performance Evaluation: Our implementation 

demonstrates that ZkDelay generates a small amount of 

gas overhead and offers a strong protection against TOD 

attacks [10], [25] 

The execution of smart contracts is the first system to 

implement Verifiable Delay Functions (VDFs) as a native 

concept, enabling the control of transaction disclosure in a fair 

and timely manner [5], [13]. ZkDelay can use VDFs to keep 

transaction logic and intent confidential until fairness is 
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established by combining VDFs with zero-knowledge-friendly 

commitment schemes [7], [21]. 

1.2 Problem Statement 
The concept of Transaction-Ordering Dependence (TOD) is a 

significant flaw in blockchain-based smart contract systems, 

particularly in the realms of decentralized finance (DeFi), non-

fungible token (NFT) markets, and other decentralized 

applications [1], [2]. Permissionless systems enable miners, 

validators, or automated bots to view transactions pending 

verification in the mempool and strategically reorder, front-run, 

or back-run them to seize profit opportunities [1], [8]. This 

manipulation hinders equal access to services, undermines user 

trust, and compromises the integrity of the blockchain 

ecosystem [2], [18]. The underlying problem is that acquiring 

a transaction order is left in the hands of parties with opposing 

interests. By manipulating the order in which transactions are 

executed and which transactions are replicated, malicious 

individuals exploit this freedom to impact their targets, 

potentially obtaining an arbitrage opportunity, winning auction 

bids, or triggering liquidity [2], [18]. There are weak defenses. 

Off-chain sequencers and relays (e.g., Flashbots) minimise 

MEV but are dependent on trusted infrastructure, which is 

susceptible to centralisation and censorship [9]. Commit-reveal 

protocols enhance fairness but have the problem of liveness and 

censorship [4], [14]. Randomized ordering of transactions has 

been suggested, but is still incapable of combating gas-priority 

exploitation [8]. In addition, most existing techniques do not 

conceal the intent of transactions before they are executed, 

leaving users vulnerable to frontrunning [3]. 

• This study suggests a decentralized, composable, and 

trust-minimized protocol, which addresses these 

challenges and has the following objectives: 

• Transaction Intent Obluscation: Secure a situation in 

which transaction information is obscured at the mempool 

stage so that adversaries are not able to abuse actionable 

details [6]. 

• Fair, Irreversible Delays: Use cryptographically 

verifiable, tamper-resistant delays: Transactions can be 

disclosed and executed only after a provable waiting time 

[5], [12]. 

Execution Without Trusted Third Parties: This approach 

ensures fairness purely on-chain or through a decentralized 

process, eliminating the need for centralized sequencers, 

trusted relays, or other intermediaries [20].

 

Fig 1: Transaction-Ordering Dependence: Threat Landscape and Solution Pathway 

These requirements are likely to be addressed by the suggested 

solution, which helps preserve the equality and credibility of 

transaction ordering in a smart contract, making the blockchain 

even more secure and fair. 

2. LITERATURE REVIEW 
Transaction-Ordering Dependence (TOD) has been the most 

widespread vulnerability in the blockchain ecosystem and has 

been particularly common in DeFi protocols and NFT systems 

[1], [2]. The TOD attacks include frontrunning, backrunning, 

and sandwiching, which exploit the mempool's openness to 

rearrange transactions based on adversarial interests [1] 

strategically, [8], [18]. The financial and trust implications of 

these exploits have been huge, as seen in practice with the Flash 

Boys 2.0 phenomenon [1]. Various defense measures have 

been examined, including trade-offs. The commit-reveal 

schemes conceal the intent of transactions until a reveal phase, 

but encounter both non-compliance and censorship weaknesses 

[4], [14]. MEV relays and Proposer-Builder Separation (PBS) 

aim to reorganize transaction ordering off-chain; however, they 

present risks of centralization and reliance on intermediaries 

[9]. Randomized ordering minimizes predictability, but 

exposes systems to gas-priority exploitation by miners or 

validators [8]. Cryptographic techniques provide additional 

defenses. Commitment schemes can guarantee privacy 

guarantees (e.g., Pedersen commitments), and publicly 

verifiable, time-bound delays resistant to parallel computation 

can be enforced by Verifiable Delay Functions (VDFs) [5], 

[12]. Other primitives, such as the use of timelock puzzles and 

zero-knowledge proofs, can enhance privacy and fairness but 

tend to be very complex and inefficient [7], [15]. Even with 

these improvements, no existing method fully integrates an 

effective, on-chain, enforceable delay along with effective 

transaction intent hiding, posing difficulties for the scalability 

and composability of open mempools [16], [20]. The proposed 

solution presents ZkDelay, a protocol that combines 

commitment schemes and VDFs to offer a trustless, privacy-

preserving, and fair ordering of smart contract transactions. In 

this way, ZkDelay can ensure decentralized ecosystems in 

terms of scalability and security. 
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2.1 Transaction-Ordering Dependence 

(TOD) 
• Transaction-Ordering Dependence (TOD) occurs when 

the sequence in a block has a direct influence on the result 

of decentralized applications. This vulnerability enables 

malicious intent to gain unauthorized access and 

compromise the integrity and fairness of transaction 

sequencing [2], [18]. TOD attacks are in three forms: 

• Frontrunning: An attacker monitors the impending 

transaction and records their own transaction before the 

transaction to take advantage of deterministic outcomes. 

• Backrunning: An attacker materializes a transaction right 

after a target transaction and takes advantage of its 

consequences. 

• Sandwich Attacks: The attacker puts a transaction ahead 

of and one after a victim transaction and manipulates the 

prices or results between them. 

Such attack patterns are common to both literature and practice, 

and TOD is one of the most urgent security requirements of 

blockchain applications [1], [2]. There are numerous real-life 

examples of TOD on Ethereum, including within the DeFi 

system. Among the more notable of these are the so-called 

Flash Boys 2.0 attack, first systematized by Daian et al. (2019), 

in which bots can extract MEV (Miner Extractable Value) 

through the use of mempool visibility whenever decentralized 

exchanges (DEXs) and NFT minting platforms are involved. 

Recent studies have shown that TOD remains a significant 

issue, as new attack vectors continue to emerge alongside the 

expansion of DeFi protocols and the release of NFTs [2], [9]. 

2.2 Existing Defenses 

Several defense mechanisms against TOD have been 

suggested, and they all have their pros and cons: 

• Commit-Reveal Schemes: Users will give cryptographic 

commitments of their transactions, and the real details will 

be unlocked when the commitments are locked. Although 

this improves privacy and protects against frontrunning, 

commit-reveal protocols are vulnerable to liveness issues 

(e.g., non-revealing parties). They can be susceptible to 

timing or censorship attacks [4]. 

• MEV Relays and Proposer-Builder Separation (PBS): The 

protocols, such as Flashbots, bring off-chain relays to 

prioritize transaction orders fairly and minimize the 

undesirable consequences of MEV. PBS attempts to 

decouple block proposers from builders, thereby avoiding 

manipulation. Nevertheless, the solutions induce 

centralization, which creates risks because trust will be 

directed toward relay operators and builders, and can 

become new sources of failure [9]. 

Randomized Transaction Ordering: Other platforms randomize 

or semi-randomly order transactions to limit predictability. 

However, these forms of randomization are weak in the sense 

that adversaries can bribe miners and exploit timing 

peculiarities to manipulate the order [8]. 

2.3 Cryptographic Primitives 

Cryptographic primitives have also been investigated to 

enhance the fairness and privacy of transactions: 

• Commitment Schemes: Cryptographic commitments, 

including Pedersen and hash-based commitments, present 

a binding and hiding functionality, which plays a 

significant role in hiding intent related to transactions until 

a reveal event [6]. 

• Verifiable Delay Functions (VDFs): VDFs incur a 

publicly verifiable delay that cannot be easily parallelised. 

The most common ones are RSA-based constructions 

(Wesolowski, 2019) and class-group-based VDFs. 

Ethereum has experimented with VDFs and beacons, such 

as RANDAO, to increase the unpredictability and fairness 

of block proposals [5]. 

• Timelock Puzzles and Delay Encryption: Timelock 

cryptography offers a method to encrypt information in a 

manner that it could only be decrypted after a time lag. In 

combination with zero-knowledge proofs 

(zkSNARKs/STARKs), these methods have been 

proposed as a means of fair reveal without prematurely 

exposing sensitive information [7]. 

2.4 Gaps in Current Research 
Table 1: Gaps in Existing TOD Mitigation Approaches 

Gap Explanation 

Lack of Unified 

On-Chain 

Enforceable Delay 

Existing VDF implementations are 

mostly experimental or off-chain; no 

standardized on-chain delay 

enforcement for transactions. 

Hidden Transaction 

Intent 

Commit-reveal schemes provide 

hiding but are vulnerable to 

censorship and require trust 

assumptions. 

Efficiency and 

Composability 

Many cryptographic primitives are 

computationally intensive or 

complex to integrate into smart 

contracts, limiting their practical 

adoption. 

Fairness in Open 

Mempool 

Environments 

Current randomized or relay-based 

methods do not fully prevent 

ordering manipulation in a 

decentralized setting. 

In Table 1, the question of a protocol that performs this 

efficiently, with composability, and that can ensure the 

fairness of transaction ordering results without revealing 

hidden intent, while avoiding reliance on trusted third 

parties or centralized infrastructure, remains open. This 

encourages the invention of ZkDelay, which seals such 

loopholes by combining commitment schemes and 

VDFs, thereby creating an all-encompassing model. 

2.5 System and Threat Model 
2.5.1 Participants 
The ZkDelay protocol includes four key players in the 

blockchain ecosystem: 

• Users: Those who initiate transactions and 

communicate with smart contracts. 

• Validators (or Miners): nodes in the network that 

sequentially put together transactions into blocks and 

offer them to be accepted. 

• Smart Contracts: Chained scripts attaining a program 

that behaves according to the inputs of transactions. 

• Enemies: The Miner Extractable Value (MEV) bots, 

which aim to take advantage of the order in which 

transactions get processed, by watching the mempool 

and altering the order in which transactions are 

executed to make economic gain. 
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2.5.2 Assumptions 

To create a secure environment, our system is built with a series 

of practical assumptions: 

Most validators adhere to the rules of the consensus protocol 

and act honestly when ordering transactions. This can also be 

explained by the fact that Verifiable Delay Functions (VDFs) 

involved in ZkDelay, by definition, are not parallelizable, 

resulting in a certain minimum time of enforced computation. 

Additionally, outputs are publicly verifiable, which provides a 

promise of integrity. The lower blockchain layer integrates 

commonly used cryptographic primitives and executes smart 

contracts that are compatible with Ethereum Virtual Machine 

(EVM) statements. 

 

Fig 2: Overview of the ZkDelay System and Threat Model 

2.5.3 Threats Considered 
The protocol can respond to the full range of threats: 

• Mempool Frontrunning and Monitoring: The 

malicious users keep track of upcoming transactions 

in the unconfirmed mempool to send premeditated 

transactions before the victims do. 

• Miner Transaction Reordering: The validators can 

rearrange transactions arbitrarily in a block according 

to their self-interest to maximize their profit. 

• Replay Attacks: These are the attempts at re-using 

transaction commitments or reveals to state 

efficiently or to extract value. 

• Early or Fake Reveals: Enemies who send early or 

bad form reveal phases to bypass the commitment 

protocol or perform denial of service Security Goals 

2.6 ZkDelay Security keys: 

• Hiding: During the commitment stage, the intent of 

the transactions should be kept as a secret to evade 

exploitation by adversaries. 

• Binding: After a commitment is established, that 

commitment becomes cryptographically binding, 

and the data on the transaction cannot be tampered 

with or changed in any way once it has been 

committed. 

• Delay Enforceability: A non-bypassable and 

verifiable time delay is enforced by the protocol so 

that transactions are ordered fairly. 

• Fair Execution Ordering: Transactions can be 

executed in perfect strict fairness by strictly adhering 

to the imposed reveal order, which ensures that the 

reordering of transactions is adversarial and thus fair. 

This threat and system model provide a secure basis for 

designing and analyzing the ZkDelay system, and it is resistant 

to a notable range of attack vectors in the setting of 

permissionless blockchains. 

2.7 ZkDelay Protocol Design 
The ZkDelay protocol aims to address transaction-ordering 

dependence with a fair, trust-minimized transaction flow in 

three sequential portions: Commit, Delay, and Reveal & 

Execute. During the Commit phase, the user makes a 

cryptographic commitment to their transaction without 

disclosing its contents to anyone, thereby hiding the 

transaction's contents from adversaries tracking the mempool. 

During the Delay, a verifiable delay function (VDF) is 

calculated off-chain, and an artificially induced verifiable time 

delay needs to pass before revelation can occur. Lastly, at the 

Reveal & Execute stage, the original transaction and random 

nonce, along with the VDF proof, are transmitted to the 

blockchain. Before executing the transaction, the valid 

commitment, VDF proof, and the delay that has occurred are 

signed and verified by the smart contract. This is a structured 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.38, September 2025 

41 

design that leaves anyone, including miners or bots, with no 

chance of frontrunning or reordering transactions to make a 

profit, leaving execution with fairness and integrity. 

 

2.7.1 Components 
Three essential cryptographic objects are combined in the 

ZkDelay protocol. First, the Commitment Scheme enables the 

user to commit to a transaction and a random nonce, 

maintaining both binding (so it cannot be changed) and hiding 

(so the contents are not visible) properties. Second, it means 

that the verifiable delay function (VDF) creates a non-

parallelizable time delay that must be computed sequentially, 

which is computationally infeasible to skip or rush. Finally, the 

Smart Contract Logic maintains the on-chain application of the 

protocol. And allows ensuring that the enthusiasm behind the 

hash commitment is valid, that the VDF-based proof is built on 

the correct information, and that a suitable delay has passed 

during which the transaction is technically possible to be 

processed, thereby maintaining decentralized fairness.

 

Fig 3: ZkDelay protocol design 

3. METHODOLOGY 

The ZkDelay protocol is a cryptographic framework that 

ensures fair, secure, and tamper-resistant transaction 

processing in blockchain systems. It achieves this by 

combining two fundamental cryptographic primitives: 

commitment schemes and verifiable delay functions (VDFs). 

The protocol operates through three sequential phases, each 

reinforcing fairness and security. In the Commit phase, a user 

generates a concealed promise of their transaction by producing 

a commitment that is recorded on the blockchain. This step 

effectively hides the transaction’s intent, ensuring adversaries 

cannot infer or manipulate its content before execution. During 

the Delay phase, the user performs an off-chain computation of 

a VDF, which imposes a cryptographically enforced, non-

parallelizable time delay. This property guarantees that the 

transaction cannot be revealed prematurely, thereby 

neutralizing the possibility of time-based exploitation. Finally, 

in the Reveal & Execute phase, the user submits the original 

transaction, associated nonce, and the VDF proof to the 

blockchain. The smart contract verifies three conditions: that 

the commitment corresponds to the revealed transaction, that 

the VDF proof is valid, and that the required delay has indeed 

elapsed. Only upon successful verification is the transaction 

executed on-chain. This structured design prevents 

frontrunning, transaction manipulation, and unfair reordering, 

while simultaneously maintaining high performance and 

scalability. By eliminating the reliance on centralized or trusted 

sequencing entities, ZkDelay ensures transparent, 

decentralized, and verifiably fair execution of blockchain 

transactions. 

3.1 Design Steps 

The ZkDelay protocol is architected around three 

interdependent operational phases: Commitment, Delay 

Computation, and Reveal-Execution. Collectively, these 

phases form a cryptographically sound workflow that 

obfuscates transaction intent, enforces verifiable temporal 

delays, and guarantees fair transaction ordering in blockchain 

environments without relying on centralized sequencers or 

trusted intermediaries. Each phase contributes uniquely to 

security, privacy, and fairness, ensuring resilience against 

frontrunning, malicious reordering, and time-based 

manipulation. 

3.1.1 Step 1: Transaction Commitment 

To avoid transaction-ordering dependence, the user initiates the 

process of creating a cryptographic commitment to the 

transaction without disclosing its content. This obligation is 

fashioned as: 

𝐶 = 𝐻(Tx ∥ 𝑟)……………….1 

Where: 

• Tx is the transaction data. 

• r is a securely generated random nonce. 

• H is a cryptographic hash function (e.g., SHA-256 or 

Keccak-256). 

• ∥ denotes concatenation. 

The commitment C is uploaded to the blockchain via a smart 

contract function, CommitTx (C, timestamp). This is where the 

content of the transaction is concealed, thereby removing the 

risk of mempool front-running or sandwich attacks. 

3.1.2 Step 2: VDF Delay Computation 

To achieve an enforceable and verifiable time delay, ZkDelay 

leverages Verifiable Delay Functions (VDFs), which are 

cryptographic primitives designed to require a predetermined 
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sequential computation time that cannot be meaningfully 

parallelized. In this phase, the user computes a VDF proof off-

chain using the securely generated nonce rrr and a pre-specified 

delay parameter t. The output of this process is a delay-proof, 

denoted as: 

𝜋 = 𝑉𝐷𝐹(𝑟, 𝑡)…………………..2 

This construction ensures three key properties: (i) the 

computation of π\piπ necessarily consumes at least ttt units of 

real time, regardless of available computational resources; (ii) 

the evaluation process is inherently sequential, which prevents 

adversaries from accelerating it via parallelization or 

specialized hardware; and (iii) the resulting proof π\piπ can be 

verified by other parties in asymptotically negligible time 

relative to the delay parameter. These characteristics make 

VDFs a natural choice for enforcing fairness in decentralized 

environments. Practical realizations of VDFs include RSA-

based constructions (such as the Wesolowski and Pietrzak 

schemes) and class group-based VDFs, both of which offer 

efficient and succinct proofs with verification times typically in 

the order of milliseconds. Within ZkDelay, this mechanism 

ensures that an adversary cannot circumvent the imposed 

waiting period, thereby enforce strict time ordering and 

providing cryptographic guarantees of fairness before the 

transaction can be revealed.  

3.1.3 Step 3: Reveal and Execution 

Once the pre-defined delay parameter ttt has elapsed, the user 

proceeds to the Reveal & Execute phase by invoking the 

function: 

𝑅𝑒𝑣𝑒𝑎𝑙𝑇𝑥(𝑇𝑥, 𝑟, 𝜋)………………………3 

on-chain. At this stage, the user submits three critical inputs: (i) 

the original transaction Tx, (ii) the random nonce r that was 

initially used to generate the commitment, and (iii) the VDF 

proof π\piπ that certifies the enforced delay. The smart contract 

is designed to carry out a strict sequence of verifications before 

authorizing execution of the transaction: 

Commitment Binding and Hiding Verification 

The smart contract first validates whether the revealed 

transaction and nonce match the original commitment. This 

ensures that the commitment was both binding (the user cannot 

change the transaction after committing) and hidden (the 

transaction intent was obscured until it was revealed). 

Formally: 

𝐻(Tx ∥ 𝑟) = 𝐶…………………….4 

 

Where H is a secure cryptographic hash function. 

VDF Proof Verification 

The contract then validates that the submitted proof π\piπ 

corresponds correctly to the VDF computation performed over 

(r,t). This guarantees that the user indeed waited the required 

delay and could not accelerate the calculation. The verification 

equation is: 

𝑉𝐷𝐹. 𝑣𝑒𝑟𝑖𝑓𝑦(𝜋, 𝑟, 𝑡) = 𝑡𝑟𝑢𝑒………………………….5 

Timing Check 

The system confirms that the blockchain’s current timestamp 

reflects that the minimum required delay has passed since the 

original commitment transaction. This prevents premature 

reveals: 

𝑏𝑙𝑜𝑐𝑘. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑐𝑜𝑚𝑚𝑖𝑡. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ≥
𝑡…………………………..6 

Only if all three conditions are satisfied does the contract 

proceed with execution of the transaction TxTxTx. If any 

verification step fails, the reveal is considered invalid, and the 

transaction is discarded. This ensures that ZkDelay enforces 

strict fairness, non-manipulability, and resistance to front-

running or transaction reordering, all while preserving 

decentralized trust assumptions without relying on centralized 

sequencers. 

3.2 Technologies Used 

To implement ZkDelay in the real world, several cryptography 

tools and blockchain technology were combined: 

Table 2: Tools and Technologies Used 

Component Technology Used Purpose 

Smart 

Contracts 

Solidity On-chain 

commitment 

storage, delay 

enforcement, 

reveal validation, 

and execution 

logic. 

Commitments SHA-256 / 

Keccak-256 

Hash-based 

commitment 

scheme for 

obfuscating 

transaction data 

VDF 

Computation 

RSA-based 

Wesolowski 

(libwesolowski), 

Pietrzak schemes 

Enforce non-

parallelizable 

delays and 

produce verifiable 

time-bound 

proofs 

Proof 

Compression 

(Optional) 

zkSNARKs (via 

Circom + SnarkJS) 

Enable succinct 

and privacy-

preserving 

verification of 

VDF and 

commitment 

validity. 

Testing 

Environment 

Ethereum 

Rinkeby/Testnet, 

Ganache 

Simulate on-

chain/off-chain 

protocol phases 

for benchmarking 

 In Table 2, these technologies enable ZkDelay to operate in 

trustless, adversarial blockchain environments, while 

maintaining performance, security, and compatibility with 

Ethereum-style virtual machines (EVMs). 

3.3 Algorithm Used 

Algorithm ZkDelayProtocol(Tx, r, t): 

    Input: Transaction Tx, random nonce r, delay t 

    Output: Fair execution of Tx 

 

    Step 1: C ← H(Tx || r)       # Commitment 

    Step 2: On-chain CommitTx(C, now) 
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    Wait until delay t has elapsed... 

 

    Step 3: π ← VDF(r, t)        # Verifiable delay proof 

    Step 4: On-chain RevealTx(Tx, r, π) 

     

    Step 5: Smart contract verifies: 

            - H(Tx || r) == C 

            - VDF.verify(π, r, t) 

            - block. Timestamp - commit.timestamp ≥ t 

 

    Step 6: If valid, Tx is executed 

 

ZkDelayProtocol aims to ensure a fair and tamper-resistant 

execution of transactions on blockchains through cryptographic 

commitments and time-delay functions. The user begins by 

creating a hidden copy of their transaction with a random value, 

which is then presented as a commitment on the blockchain. 

This obscures transaction details to potential attackers when the 

transaction is in the vulnerable mempool. A user can then create 

a time-delay proof, with the help of a verifiable delay function 

(VDF), which ensures that a designated number of actual time 

units was spent. The user will then disclose the initial 

transaction, accompanied by proof and the random value. The 

smart contract ensures the correctness of the transaction in 

relation to the initial promise, the validity of the VDF proof, 

and that the required wait time was observed. The transaction 

is executed once all checks have passed. This will guard against 

frontrunning and ensure fair ordering in systems using smart 

contracts.  

3.4 Implementation and Evaluation 

The feasibility of ZkDelay was evaluated in an Ethereum-like 

simulated environment. 

• Smart Contract Language: Solidity (Rinkeby testnet) 

• VDF Implementation: RSA-based modular 

exponentiation (via libwesolowski) 

• Zero-Knowledge Utilities: Circom (constraint 

system design), SnarkJS (proof generation & 

validation) 

• Testing Environment: 16-core CPU @ 3.0 GHz, 32 

GB RAM, running Ganache for simulation of time 

delays in real-time. 

This setup validates that ZkDelay achieves both security and 

performance while being compatible with existing blockchain 

ecosystems. 

4. EVALUATION METRICS 
The experimental evaluation of ZkDelay was conducted by 

examining its performance across four critical dimensions: gas 

costs, verifiable delay function (VDF)- enforced delay time, 

evidence overhead, and throughput under load. Each dimension 

was selected to capture the protocol’s computational efficiency, 

scalability, and robustness under different operational 

constraints. 

The first dimension analyzed was gas consumption, which 

plays a crucial role in determining the practical feasibility of 

any blockchain-based protocol. Gas usage was divided into two 

phases: the commit phase and the reveal and verification phase. 

Table 1 presents the average gas costs obtained from 1000 

transactions, with a variance of approximately 10% observed 

across varying transaction sizes. The commit phase consumed 

48,200 gas units, which constituted 31.5% of the total gas cost. 

This phase exhibits high optimization potential since it 

primarily involves lightweight hashing operations. In contrast, 

the reveal and verification phase consumed 104,500 gas units, 

representing 68.5% of the total gas cost. This higher 

consumption is attributed to the computational complexity of 

zero-knowledge proof validation combined with VDF checks. 

Consequently, while the commit phase is comparatively cost-

efficient, the reveal and verification stage emerges as the 

primary contributor to overall transaction costs, underlining a 

fundamental trade-off between security guarantees and 

resource efficiency. 

Table 3. Gas Cost Comparison 

Operation Avg. Gas 

Used 

% of 

Total Cost 

Optimization 

Potential 

Commit 

Phase 

48,200 31.5% High (hashing only) 

Reveal + 

Verify 

104,500 68.5% Medium (zk & 

VDF check) 

Total 152,700 100% — 

In Table 3, the results indicate that although ZkDelay 

incurs a higher cost during the reveal phase, the 

predictable variance of approximately 10% across 

different transaction sizes demonstrates consistent 

efficiency. This implies that the system can scale reliably 

under varying workloads, provided future optimizations 

are directed toward reducing the verification overhead 

without compromising the integrity of delay 

enforcement. 

 

Fig 4: Gas Cost Comparison 

4.1 VDF Performance Metrics 

The second experimental dimension focused on evaluating the 

Verifiable Delay Function (VDF), which serves as the 

cornerstone for ensuring enforced delays in ZkDelay. 

Performance was measured against delay targets of 5, 30, and 
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60 seconds to assess both computational consistency and 

verification efficiency. Results demonstrated that the average 

VDF computation time closely tracked the target delays, with 

minor variances attributable to cryptographic processing 

overhead. For instance, the 5-second target resulted in an 

average execution of 5.12 seconds, while the 30-second and 60-

second delays produced 30.89 seconds and 60.45 seconds, 

respectively. These findings confirm the protocol’s ability to 

enforce delays with high precision. Equally significant is the 

observation of proof sizes and verification times. The VDF 

proof sizes ranged between 512 and 536 bytes, showing only a 

marginal increase as the delay target lengthened. This 

compactness ensures minimal storage and transmission 

overhead, which is crucial for blockchain-based applications. 

Verification remained highly efficient, requiring between 28 

and 35 milliseconds, thereby supporting near-instantaneous 

validation even under longer enforced delays. Importantly, the 

reveal success rate consistently exceeded 99.7%, underscoring 

the robustness and reliability of the scheme under varying time 

constraints 

Table 4. VDF Performance Metrics 

Delay 

Target 

Avg. 

VDF 

Time 

Proof 

Size 

(bytes) 

Verif. 

Time 

(ms) 

Reveal 

Success 

Rate 

5 seconds 5.12s 512 28 ms 99.9% 

30 

seconds 

30.89s 528 33 ms 99.8% 

60 

seconds 

60.45s 536 35 ms 99.7% 

 

In Table 4, these results highlight that ZkDelay’s VDF 

implementation strikes a balance between precision, efficiency, 

and scalability, ensuring that longer enforced delays do not 

disproportionately increase computational or verification 

overhead. The consistency of reveal success rates further 

establishes the protocol’s practicality for real-world 

deployment, where predictable timing guarantees are essential. 

 

Fig 5: VDF Performance Metrics 

4.2 Throughput Under Load 
The third experimental analysis examined the system 

throughput under varying transactional loads to evaluate how 

ZkDelay performs when scaled to different volumes of activity. 

Both commit and reveal phases were measured, as they 

represent distinct stages in the protocol with different 

computational overheads. Results demonstrated that commit 

throughput remained consistently higher than reveal 

throughput across all transaction volumes. For example, with 

100 transactions, the protocol sustained 12.4 commits per 

second and 11.8 reveals per second, achieving 100% block 

success. As the simulated load increased to 500 and 1000 

transactions, throughput gradually decreased due to the 

cumulative effect of VDF computation and proof verification 

overhead. Nevertheless, the system maintained strong 

reliability, with block success rates exceeding 99.8% even 

under higher loads. At the upper bound of 2000 transactions, 

throughput reduced further to 7.5 commits per second and 7.1 

reveals per second, but the block success rate still held at 

99.6%, underscoring the robustness of the design. These 

findings demonstrate that ZkDelay scales gracefully while 

preserving fairness and liveness guarantees, even under highly 

stressful conditions. 

Table 5: Throughput Under Load 

Txns 

Simulated 

Avg. 

Commit/s 

Avg. 

Reveal/s 

Block 

Success 

(%) 

100 12.4 11.8 100% 

500 10.2 9.5 99.9% 

1000 9.3 8.6 99.8% 

2000 7.5 7.1 99.6% 

In Table 5, the results confirm that while reveal 

throughput is slightly lower than commit throughput due 

to VDF and proof verification delays, the system 

maintains high reliability and achieves near-perfect 

block success across various workload scenarios. This 

highlights ZkDelay’s effectiveness in handling realistic 

network demands without compromising on security or 

correctness. 

 

Fig 6: Throughput Under Load 

4.3 Summary of Results 
The experimental evaluation of ZkDelay demonstrates the 

robustness, efficiency, and scalability of the proposed 

framework across different operational dimensions. The 

system consistently maintained a high success rate of reveals 

even under heavy transactional load and strict time constraints, 
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highlighting its reliability in real-world conditions. Gas cost 

analysis showed that the commit phase remains lightweight, 

while the reveal phase incurs additional costs due to 

verification logic, particularly zk-SNARKs and VDF checks. 

Importantly, despite these overheads, the design supports stable 

throughput performance at scale, ensuring fairness and 

correctness as transaction volumes grow. Furthermore, the 

system’s delay verification process exhibited very low latency, 

with VDF output checks completing in under 35 milliseconds, 

making ZkDelay a practical and effective tool for on-chain 

enforcement of time-dependent logic. 

4.3.1 Key Highlights: 
• High Success Rate: Achieved more than 99.8% valid 

successful reveals, even under peak loads and 

extended delay settings. 

• Gas Effective: Commit operations remained highly 

efficient, while reveal operations incurred extra costs 

due to cryptographic verification. 

• Scalable Design: Delivered stable and correct 

throughput performance at scale, even with 

thousands of transactions. 

• Delay Verification: Verified all VDF outputs with 

latency under 35 ms, ensuring real-time applicability 

for decentralized systems. 

 

4.3.2 Applications  

1. DeFi - This excludes frontrunning in DEX trades by 

obscuring and delaying execution. 

2. NFT Launches NFT Stops sniping by revealing all 

subsequent transactions until the reveal. 

3. DAO Voting - It allows time-locked weighted voting to 

minimize tampering. 

4. Auctions- Supports commit-bids-reveal with enforced 

delay to bidding fair. 

5. General Purpose Usage - Applicable in time-bound 

commitments in gaming, lotteries, or MPC. 

 

5. DISCUSSION 
The ZkDelay protocol presents an interesting solution to the 

problem of Transaction-Ordering Dependence (TOD). 

However, the ZkDelay protocol design comes with several 

tradeoffs and implementation issues that one should consider 

before deciding whether it best suits their needs. A significant 

tradeoff is between delay and user experience: although the 

Verifiable Delay Functions (VDF) ensure resistance to 

frustrating attacks (such as frontrunning and time-) them to 

achieve temporal fairness, the inclusion of delay is implicitly 

an inconvenient property in applications where immediate 

responsiveness is a feature; in particular, this aspect can have a 

negative effect when implementing transaction processing 

using a blockchain. The other tradeoff concerns gas costs and 

privacy. Despite the benefits of commitment schemes and zero-

knowledge proofs to confidentiality, they impose a greater load 

on-chain in terms of computations and storage, which could 

result in additional transaction fee expenses. In addition, there 

is also an enormous drawback associated with the 

computationally intensive property of VDFs themselves, 

particularly those operated off-chain, as the sequential 

processing of the functions can result in a limitation on 

available resources on devices that are not extremely powerful 

in terms of computing. To overcome these limitations, several 

design considerations will be discussed. An example of this is 

to delegate the VDF proof computation to a trusted or 

decentralized prover, reducing the computational load on the 

client. Additionally, incorporating zkSNARKs enables the 

compression of the reveal stage of the protocol, thereby 

reducing on-chain expenses and facilitating more economical 

verification. These factors are crucial to the functional and 

practical implementation of ZkDelay as both a secure and fair 

protocol that is scalable in real-world blockchain environments. 

6. CONCLUSION  
ZkDelay presents an innovative cryptographic protocol meant 

to tackle the long-standing Transaction-Ordering Dependence 

(TOD) problem in blockchain systems. ZkDelay can be an 

effective solution to the frontrunning and other order-related 

weaknesses of decentralized applications, utilizing 

commitment schemes that enforce the secrecy of transaction 

intents and Verifiable Delay Functions (VDFs), which create 

enforced but non-parallelizable delays. It has three major 

stages: the Commit stage, where the users send a cryptographic 

commitment of their transaction. At this Delay stage, a VDF 

enforces a time constraint before the transaction can be 

revealed, and the Reveal and Execute stages, where the 

transaction is decrypted and executed. This design makes the 

transaction intent obscure until a certain time has elapsed, 

which can be verified, ensuring fairness and preventing 

manipulation. 

7. FUTURE WORK 
There are also a few lines that can enrich and expand the 

possibilities of ZkDelay: 

1. Recursive VDFs: Discovering the recursive structure may 

enable recursive constructions that involve chaining or 

batching of delay, and may enable more scalable and 

protocol-efficient constructions. 

2. Layer-2 Integration: Utilizing ZkDelay on Layer-2 

solutions (i.e., rollups or sidechains) will allow 

significantly lowering gas requests and maintain security 

guarantees. 

3. ZkVDFs: Zero-knowledge VDFs could be used to 

construct a succinct, non-interactive delay proof similar to 

delayed exit certification, so that the evidence can be 

verified on-chain with small overhead. 

This guidance also aims to make ZkDelay more usable, 

scalable, and adaptable to the rapidly changing blockchain 

environment. 

8. REFERENCES 
[1] P. Daian, S. Goldfeder, T. Kell, et al., “Flash Boys 2.0: 

Frontrunning, Transaction Reordering, and Consensus 

Instability in Decentralized Exchanges,” in Proc. IEEE 

Symp. on Security and Privacy, 2019, pp. 910–927. 

(Included as an exception due to foundational impact) 

[2] Y. Zhou, H. Li, and Q. Zhang, “Advances in MEV and 

Front-Running Attacks: Trends and Defenses,” ACM 

Comput. Surv., vol. 55, no. 3, pp. 1–28, 2023. 

[3] X. Chen, L. Wang, and J. Zhao, “NFT Minting 

Vulnerabilities and Mitigation Strategies,” Blockchain 

Security J., vol. 2, no. 1, pp. 22–35, 2024. 

[4] J. Wang, S. Kumar, and M. Lee, “Analyzing Commit-

Reveal Protocols in Permissionless Blockchains,” in 

Financial Cryptography and Data Security, 2023, pp. 145–

160. 

[5] Miller, J. Alwen, and K. Pietrzak, “Verifiable Delay 

Functions and Their Applications in Blockchain 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.38, September 2025 

46 

Protocols,” J. Cryptogr. Eng., vol. 13, no. 1, pp. 45–60, 

2023. 

[6] Bünz, A. Chiesa, and C. Matt, “Efficient Commitment 

Schemes for Privacy-Preserving Smart Contracts,” Proc. 

ACM Program. Lang., vol. 6, pp. 1–25, 2022. 

[7] Boneh, G. Segev, and E. Shen, “Timelock Cryptography 

and Delay Encryption with Zero-Knowledge Proofs,” in 

Advances in Cryptology – CRYPTO, vol. 13465, 2024, 

pp. 120–142. 

[8] Miller et al., “Limitations of Randomized Transaction 

Ordering in Public Blockchains,” IEEE Trans. 

Dependable Secure Comput., vol. 20, no. 2, pp. 351–364, 

2022. 

[9] Y. Zhou and H. Li, “Centralization Risks in MEV Relays 

and PBS Designs,” Blockchain Res. Lett., vol. 3, no. 1, pp. 

14–26, 2024. 

[10] T. Hofer, N. Stifter, and E. Weippl, “Delay-Based Fair 

Ordering for Ethereum Transactions,” in Proc. IEEE Int. 

Conf. on Blockchain, 2023, pp. 34–45. 

[11] R. Joshi and L. Li, “MEV Extraction and Prevention in 

Decentralized Auctions,” IEEE Access, vol. 11, pp. 

10234–10245, 2023. 

[12] Dutta and K. Narayanan, “Composable Delay Functions 

for Smart Contract Fairness,” in Proc. IEEE Blockchain, 

2024, pp. 88–101. 

[13] F. Zhao, M. ElSheikh, and J. Kim, “Dynamic VDFs for 

Real-Time Blockchain Scheduling,” J. Cryptographic 

Engineering, vol. 14, no. 2, pp. 78–93, 2024. 

[14] S. Tan and M. Gupta, “Commit-Reveal in DeFi: Gas 

Optimization and Security Extensions,” IEEE Trans. 

Blockchain, vol. 3, no. 2, pp. 135–149, 2023. 

[15] H. Lu and Q. Deng, “Privacy and Delay in Smart 

Contracts Using Hybrid VDF-ZK Architectures,” in Proc. 

IEEE Conf. TrustCom, 2023, pp. 210–220. 

[16] A Singh and V. Sharma, “A Survey on Delay Functions in 

Blockchain Security,” IEEE Access, vol. 11, pp. 98765–

98780, 2023. 

[17] Y. Park, H. Xu, and L. Tan, “Zero-Knowledge Delay 

Proofs for Mempool Protection,” in Proc. IEEE Euro S&P 

Workshops, 2022, pp. 78–85. 

[18] J. Wei and S. Rao, “Reordering Attacks in NFT Markets: 

Analysis and Countermeasures,” IEEE Trans. Inf. 

Forensics Secur., vol. 18, pp. 1440–1452, 2023. 

[19] K. Sharma, P. Raj, and N. Patel, “Scalable VDF Proof 

Systems for Blockchain Commitments,” IEEE Trans. 

Parallel Distrib. Syst., vol. 35, no. 1, pp. 110–124, 2024. 

[20] Kwon and S. Moon, “Reputation-Based Fair Ordering and 

Delay Proofs in DeFi,” IEEE Internet Comput., vol. 27, 

no. 2, pp. 56–64, 2023. 

[21] V. Rajan and A. Thomas, “ZKCommit: Zero-Knowledge 

Commitments with Time-Bound Execution,” in Proc. 

IEEE Int. Conf. on Cybersecurity and Resilience, 2024, 

pp. 188–195. 

[22] M. Okoye and H. Abbas, “Gas-Aware Delay Proofs for 

MEV Defense,” IEEE Blockchain Tech Briefs, vol. 2, no. 

4, pp. 32–38, 2024 

[23] N. Agarwal and S. Basu, “Smart Contract Privacy through 

Decoupled Commit and Reveal Stages,” IEEE Trans. 

Serv. Comput., vol. 17, no. 1, pp. 203–215, 2024. 

[24] L. Kang and H. Yoon, “Temporal Manipulation in Layer-

2 Systems: New Threats and Defenses,” IEEE Trans. 

Netw. Serv. Manag., vol. 19, no. 3, pp. 322–334, 2023. 

[25] C. Wang, Z. Lin, and Y. Liu, “Delay-Based Auction 

Protocols for Front-Running Mitigation,” IEEE Internet 

Things J., vol. 12, no. 5, pp. 4870–4883, 2025. 

 

 

 

IJCATM : www.ijcaonline.org 


