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ABSTRACT  
Lung cancer is a type of cancer that starts in the lungs. It can 

cause different symptoms, such as coughing, chest pain, 

shortness of breath, and weight loss. The objective of this study 

is to develop and validate a robust and reliable predictive model 

that can accurately differentiate between small cell lung cancer 

and pneumonia based on medical imaging data, such as chest 

X-rays or CT scans. The data collection phase is to identify 

reliable sources of medical images that encompass both 

pneumonia cases and healthy individuals without pneumonia.   

From the collected dataset, the image is pre-processed using 

Principal Component Analysis (PCA) which is a 

transformation technique that reduces the size of the p-

dimensional dataset. A sophisticated approach is adopted, 

combining t-distributed stochastic neighbour embedding (t-

SNE) and an Ant Lion-Based Autoencoder (ALBAE) 

technique. The findings of the proposed technique, however, 

achieved the highest accuracy of 99 %. The study seeks to 

generate an integrated framework for the diagnosis and risk 

assessment of lung cancer and pneumonia using Python 

software. The future scope lies in further refining and 

optimizing the deep learning models to improve their accuracy 

and reliability in clinical settings. 

Keywords  
Early Diagnosis, Small Cell Lung Cancer, Pneumonia Risk 

Level Prediction, Deep Learning, Principal Component 

Analysis, and Coati Optimization Algorithm.  

1. INTRODUCTION 
Lung cancer is a type of cancer that originates in the tissues of 

the lungs, particularly in the cells lining the air passages. It is 

one of the most prevalent and deadly forms of cancer 

worldwide, responsible for a significant number of cancer-

related deaths. Lung cancer is a malignant condition 

characterized by the uncontrolled growth of abnormal cells 

within the lung tissues [1]. It is a multifaceted disease, often 

attributed to various factors, but most commonly linked to long-

term exposure to carcinogens, primarily found in tobacco 

smoke [2]. This exposure can lead to genetic mutations in lung 

cells, triggering the development of cancer. Lung cancer 

comprises several distinct types, with non-small cell lung 

cancer (NSCLC) and small cell lung cancer (SCLC) being the 

most prevalent [3]. These types differ in their cellular 

characteristics and treatment approaches. Further, lung cancer 

patients are particularly vulnerable to pneumonia due to 

compromised immune systems and diminished lung function, 

which often happens because of a history of smoking [4]. This 

heightened susceptibility underscores the importance of 

preventive measures, early detection, and vigilant management 

to minimize the risks associated with pneumonia in this at-risk 

population, ultimately aiming to enhance both the quality of 

care and patient outcomes [5]. Moreover, understanding an 

individual's risk level for developing lung cancer is pivotal for 

targeted prevention strategies, emphasizing the importance of 

smoking cessation programs and lung cancer screenings, 

particularly for those at higher risk due to smoking history or 

occupational exposures [6]. In this exploration of lung cancer 

detection and risk level prediction, the study will delve into the 

intricacies of this disease, its various types, and the vital role 

played by early detection and risk assessment in the fight 

against lung cancer [7]. The diverse risk factors associated with 

this condition shed light on the complex interplay between 

genetics, lifestyle, and environmental influences [8].  

Pneumonia is a common complication in lung cancer patients 

and can significantly impact their prognosis and overall health. 

Early detection and accurate assessment of pneumonia severity 

are crucial for timely intervention and effective management of 

the condition [9]. In recent years, machine learning and deep 

learning techniques have shown promising results in predicting 

risk levels and assessing the severity of pneumonia [10]. One 

innovative approach proposed in recent research involves 

combining t-distributed Stochastic Neighbour embedding (t-

SNE) and an ALBAE technique. By utilizing the advantages of 

both algorithms, researchers aim to improve the accuracy and 

efficiency of pneumonia severity assessment in lung cancer 

patients [11]. The research suggests integrating the long short-

term memory network with a graph neural network (LSTM-

GNN) model with the Coati Optimization Algorithm for 

predicting risk levels and assessing pneumonia severity. This 

cutting-edge method leverages the strengths of both models to 

enhance the performance and reliability of the predictions [12]. 

This novel approach represents a significant advancement in 

the field of medical imaging and computational biology. By 

incorporating state-of-the-art machine learning techniques and 

optimization algorithms, researchers aim to provide healthcare 

professionals with a valuable tool for early detection and 

precise assessment of pneumonia in lung cancer patients [13]. 

This integrated approach has the potential to improve patient 

outcomes, enhance treatment strategies, and ultimately save 

lives. The problem statement revolves around the early 

diagnosis of Small Cell Lung Cancer (SCLC) and predicting 

the risk level for Pneumonia. This is a critical issue in the 

medical field as early detection and accurate risk assessment 

can significantly improve patient outcomes and treatment plans 
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[14]. To address this problem, the motivation is to develop an 

optimized deep-learning approach that can efficiently diagnose 

SCLC in its early stages and predict Pneumonia risk levels. This 

will contribute to better patient care, improved treatment 

strategies, and more effective resource allocation in healthcare 

settings [15]. The Contribution of this is more smoke and the 

earlier in life you begin smoking, the greater your risk for 

SCLC. Other risk factors include exposure to second-hand 

smoke, workplace carcinogens, radiation and/or environmental 

pollution, as well as family history of lung cancer and previous 

HIV infection. While imaging tests indicate that lung cancer 

may be present, only a biopsy can confirm it. In a biopsy, 

pathologists who study diseases in a laboratory examine tissue 

under a microscope to determine the size and shape of the cells 

and whether they look like small-cell lung cancer. The 

following section has a Literature survey in section 2, a 

proposed research methodology in section 3, an Experimental 

and results discussion in section 4, and a Research conclusion 

in section 5. 

2. LITERATURE SURVEY 
Lung cancer can also increase the risk of getting infections, 

especially pneumonia, which is a serious infection of the lungs. 

Guo, et al [16] developed and validated a simple and non-

invasive model which could assess and stratify lung cancer risk 

in non-smokers in China. A large sample size, population-based 

study was conducted under the framework of the Cancer 

Screening Program in Urban China (CanSPUC). Related risk 

factors were identified through multivariable Cox regression 

analysis, followed by the establishment of a risk prediction 

nomogram. The AUC (Area under the curve) was 0.753, 0.752, 

and 0.755 for the 1-, 3- and 5-year lung cancer risk in the 

training set, respectively. In the validation set, the model 

showed moderate predictive discrimination, with the AUC 

being 0.668, 0.678, and 0.685 for the 1-, 3- and 5-year lung 

cancer risk. Hou, et al [17] aimed to construct a deep learning 

model combining both radio mic and clinical features to predict 

the overall survival of patients with non-small-cell lung cancer 

(NSCLC). To improve the reliability of the proposed model, 

radiomics analysis complying with the Image Biomarker 

Standardization Initiative and the compensation approach to 

integrate multicentre datasets was performed on contrast-

enhanced computed tomography (CECT) images. The C-index 

values of the combined model achieved 0.74, 0.75, and 0.75, 

respectively, and AUC values of 0.76, 0.74, and 0.73, 

respectively, 8, 12, and 24 months after diagnosis. Mikhael, et 

al [18] developed a model called Sybil using Low-dose 

computed tomography (LDCT) from the National Lung 

Screening Trial (NLST). Sybil requires only one LDCT and 

does not require clinical data or radiologist annotations; it can 

run in real-time in the background on a radiology reading 

station. Sybil achieved an area under the receiver-operator 

curves for lung cancer prediction at 1 year of 0.92 (95% CI, 

0.88 to 0.95) on NLST, 0.86 (95% CI, 0.82 to 0.90) on Mass-

Gathering Health (MGH), and 0.94 (95% CI, 0.91 to 1.00) on 

Chang Gung Memorial Hospital (CGMH) external validation 

sets. Oh, et al [19] proposed a deep-learning-based solution to 

classify four lung diseases (pneumonia, pneumothorax, 

tuberculosis, and lung cancer) and healthy lungs using chest X-

ray images. To achieve high performance, the Efficient Net B7 

model with the pre-trained weights of ImageNet trained by 

Noisy Student was used as a backbone model, followed by the 

proposed fine-tuned layers and hyperparameters. This study 

achieved an average test accuracy of 97.42%, sensitivity of 

95.93%, and specificity of 99.05%.  

 Du, et al [20] aimed to develop a deep neural network model 

to differentiate pneumonia-type lung carcinoma from 

pneumonia based on chest CT scanning and evaluate its 

performance. Lesion areas were extracted and classified by a 

designed spatial attention mechanism network. The model 

AUC and diagnostic accuracy were analyzed based on the 

results of the model. The model accuracy rate, sensitivity, and 

specificity were 74.20%, 60.37%, and 89.36%, respectively. 

The model AUC and diagnostic accuracy were analyzed based 

on the results of the model. Some biomarkers have been 

proposed by Yin, et al [21] to predict the outcomes of 

immunotherapy and targeted therapy, including programmed 

cell death-ligand 1 (PD-L1) expression and oncogene 

mutations. Nevertheless, the detection tests are invasive, time-

consuming, and have high demands on tumour tissue. By 

combining AI methods with radiomics, pathology, genomics, 

transcriptomics, proteomics, and clinical data, the integrated 

model has shown predictive value in immunotherapy and 

targeted therapy, which significantly improves the precision 

treatment of lung cancer patients. Guo, et al [22] aimed to 

develop and internally validate a risk prediction model for lung 

cancer. Using data from the Cancer Screening Program in 

Urban China (CanSPUC) in Henan province, China between 

2013 and 2019, the study conducted a prospective cohort study 

consisting of 282,254 participants including 126,445 males and 

155,809 females. The C-index of the model for 1-year lung 

cancer risk was 0.766 and 0.741 in the training set and 

validation set, respectively. Li et al [23] studied a hybrid 

approach, merging GLCM with Haralick and autoencoder 

features. SVM RBF and SVM Gaussian achieved perfect 

performance, with SVM polynomial at 99.89% accuracy using 

GLCM and auto encoder features. SVM Gaussian reached 

99.56%, and SVM RBF at 99.35% accuracy with GLCM and 

Haralick features. These results highlight the potential of this 

method for enhancing lung cancer diagnosis and treatment 

planning systems. Lin et al [24] aimed to develop a combined 

model integrating deep learning, radionics, and clinical data for 

classifying lung nodules into benign or malignant categories 

and further categorizing them into different pathological 

subtypes and Lung-RADS scores. The model achieved high 

accuracy in all three classification tasks, with F1 scores ranging 

from 75.5% to 80.4%.  Feng et al [25] aimed to develop a 

prediction model for radiation-induced pneumonia (RP) in 

early non-small-cell lung cancer (NSCLC) patients undergoing 

stereotactic body radiation therapy (SBRT). The Hybrid model, 

which combined all features, showed the best performance with 

accuracy, sensitivity, specificity, and area under the receiver 

operator characteristic curve of 0.857, 1, 0.875, and 0.920, 

respectively.  

3. RESEARCH PROPOSED 

METHODOLOGY 
Small cell lung cancer (SCLC) is a type of lung cancer that can 

be affected by pneumonia, which is a lung infection caused by 

bacteria, viruses, or fungi [26-28]. Pneumonia can also worsen 

the symptoms and complications of lung cancer, such as cough, 

chest pain, haemoptysis, dyspnea, and weight loss [29-30]. 

Predicting Small Cell Lung Cancer (SCLC) and assessing the 

risk level of pneumonia affecting lung cancer severity is crucial 

for early intervention and patient care. SCLC prediction 

involves analysing medical data, such as patient history and 

imaging, to detect the presence of SCLC tumours in the lungs. 

Concurrently, assessing the risk level of pneumonia in lung 

cancer patients helps determine potential complications and 

their severity. Combining these predictive approaches enhances 

patient outcomes by enabling timely diagnosis and 

personalized treatment plans, ultimately improving the 
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management of SCLC and its associated pneumonia risks. 

Parameters of PCA compute metrics, Method impute missing 

[31-32]. The t-SNE parameters are Perplexity, Early 

exaggeration, Learning rate, and components. Parameters of 

ALBE Nutrients, Temperature, Salinity, and Turbulence. 

Figure 1 depicts the block diagram of the proposed work [33]. 
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Fig 1: Block diagram of the proposed work 

In the initial phase of this research, a diverse dataset of medical 

images containing both pneumonia and healthy cases was 

collected while ensuring ethical approvals. Principal 

Component Analysis (PCA) and adaptive iterative guided 

filtering were used for image pre-processing. In the feature 

extraction and classification step, a combination of t-SNE and 

an ALBAE was employed to extract meaningful attributes from 

lung cancer images. Finally, a DenseNet121 technique was 

used to classify the images into normal, cancer-affected, and 

pneumonia-affected categories. In the risk level severity 

prediction stage, a novel approach merged LSTM-GNN models 

with the Coati Optimization Algorithm to predict pneumonia 

severity in lung cancer patients, considering shared and 

disease-specific risk factors. This research has the potential to 

enhance risk assessment and improve patient care for lung 

cancer and pneumonia management. 

3.1 Data collection and image pre-

processing 
In the data collection phase, the first critical step is to identify 

reliable sources of medical images encompassing both 

pneumonia cases and healthy individuals. This involves careful 

selection of datasets and medical institutions capable of 

providing high-quality images, while ensuring ethical 

approvals are obtained to comply with privacy and regulatory 

standards. The lung cancer dataset used in this study was 

sourced from Kaggle and includes CT scans of patients at 

different stages of lung cancer, as well as healthy subjects. 

Additionally, IQ-OTH/NCCD slides were annotated by 

oncologists and radiologists from these centers to ensure high-

quality labelling. Data cleaning procedures, including imputing 

missing values and detecting outliers, were applied to maintain 

dataset integrity. The dataset is designed to be diverse, covering 

multiple pneumonia types, age groups, and ethnic backgrounds, 

which supports the development of a model that is broadly 

applicable across real-world scenarios. Pre-processing involves 

Principal Component Analysis (PCA) to reduce dimensionality 

and generate uncorrelated features, followed by an adaptive 

iterative guided filtering method to suppress noise and enhance 

image quality. To further strengthen the study, a more extensive 

evaluation is planned across multiple datasets and varied 

clinical scenarios. This includes testing on external hospital 

datasets, different imaging modalities (X-ray and CT scans), 

and noisy or artifact-affected images to assess model robustness 

and generalizability. Such a comprehensive evaluation will 

provide stronger evidence of the model’s reliability, practical 

utility, and applicability in diverse clinical settings. 

3.1.1 Principal component analysis  
Principal component analysis (PCA) is a commonly used 

technique in image processing to reduce the dimensionality of 

data while retaining important information. In the context of 

early diagnosis of small cell lung cancer, PCA can be used as a 

pre-processing step to extract relevant features from medical 

images such as CT scans or X-rays, which can then be used for 

accurate classification of lung cancer. 

The main idea behind PCA is to transform the original image 

data into a new set of orthogonal variables, called principal 

components, which capture the maximum amount of variance 

in the data. Mathematically, PCA involves finding the 

eigenvectors and eigenvalues of the covariance matrix of the 

image data. The eigenvectors represent the directions of 

maximum variance in the data, while the eigenvalues indicate 

the amount of variance explained by each principal component. 

Calculate the mean image vector from the input data matrix X, 

denoted as μ. M observations of an N length random vector z¯, 

the PCA transform is completed by first subtracting the mean 

from the vector 

𝑥̅ = 𝑧̅ − 𝐸|𝑧̅|                                                   (1) 

The 𝑁 × 𝑁 covariance matrix 𝐶𝑥 is computed 

𝐶𝑥 = E[𝑥̅𝑥̅′]                                                     (2) 

The principal components 𝑠̅  of 𝑥̅  are given in terms of the unit-

length eigenvectors (𝑒1̅….𝑒𝑁̅̅ ̅), of 𝐶𝑥 

𝑠̅ = 𝑊𝑥̅                                             (3) 
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Where the projection matrix W contains the eigenvectors 

(𝑒1̅….𝑒𝑁̅̅ ̅). Usually, the M observations would typically be 

exemplars taken from any one of C's possible classes. By 

applying PCA to pre-process medical images for early 

diagnosis of small cell lung cancer, the study can effectively 

reduce the dimensionality of the data while preserving 

important information. The extracted features from the 

principal components can be used as input for classification 

algorithms to distinguish between lung cancer patients and 

healthy individuals with improved accuracy and efficiency. 

Moreover, PCA helps with the visualization and interpretation 

of high-dimensional image data, enabling clinicians to identify 

patterns and abnormalities that may indicate the presence of 

small-cell lung cancer at an early stage. 

3.2 Feature extraction and classification 
In the domain of lung cancer analysis, the process of feature 

extraction is pivotal for discerning pertinent information from 

medical images. This involves the extraction of crucial 

attributes from the images, including edges delineating 

structures, pixel intensity rates conveying texture and density, 

and the identification of blood clots. To achieve this, a 

sophisticated approach is adopted, combining t-distributed 

stochastic neighbour embedding (t-SNE) and an ALBAE 

technique. T-SNE aids in the reduction of high-dimensional 

image data into a lower-dimensional representation, preserving 

essential data relationships. Auto encoders are neural network 

models used for feature extraction and dimensionality 

reduction. Finally, in the classification stage, the lung CT 

images are classified into three different categories such as 

normal lung, cancer-affected lung, and pneumonia-affected 

lung using the DenseNet121 technique. 

3.2.1 T-distributed Stochastic neighbour 

embedding (t-SNE) with ant lion-based auto 

encoder (albae) technique 
The combination of t-distributed stochastic neighbour 

embedding (t-SNE) and the ALBAE technique for feature 

extraction in early diagnosis of small cell lung cancer can 

provide an advanced approach for identifying patterns and 

clusters within high-dimensional data. t-SNE is a powerful 

technique for visualizing and understanding high-dimensional 

data by mapping it to a lower-dimensional space while 
preserving local structure. It is commonly used for 

dimensionality reduction and visualization of complex datasets. 

𝐶 = 𝐾𝐿((𝑃||𝑄) = ∑ ∑ 𝑝𝐼𝐽𝑙𝑜𝑔
𝑃𝑖𝑗

𝑄𝑖𝑗
𝐽𝐽                       (4) 

Where again, 𝑝𝐼𝐽 and 𝑄𝑖𝑗 is set as zero. This type of SNE is 

symmetric SNE for ∀𝑖, 𝑗 the low-dimensional map 𝑄𝑖𝑗 are given 

by in equation (5),  

𝑄𝑖𝑗 =
exp⁡(−||𝑌𝑖−𝑌𝑗||

2)

∑ exp⁡(−||𝑌𝑘−𝑌1||
2)𝐾≠1

                                                       (5) 

The pairwise similarities in the high-dimensional space 𝑃𝑖𝑗 in 

equation (6),  

𝑃𝑖𝑗 =
exp⁡(−||𝑥𝑖−𝑥𝑗||

2/2𝜎2)

∑ exp⁡(−||𝑥𝑘−𝑥1||
2/2𝜎2)𝐾≠1

                                                  (6) 

When a high-dimensional data point 𝑥𝑖 is an outlier (i.e., all 

pairwise distances ||𝑥𝑖 − 𝑥𝑗||
2 are large for xi). For such an 

outlier, the values of 𝑃𝑖𝑗 are extremely small for all j, so the 

location of its low-dimensional map point yi has very little 

effect on the cost function. As a result, the position of the map 

point is not well determined by the positions of the other map 

points. This study circumvents this problem by defining the 

joint probabilities pi j in the high-dimensional space to be the 

symmetrized conditional probabilities, that is, 𝑃𝑖𝑗 =
𝑃𝑖|𝑗+𝑃𝑖|

𝑗

2𝑛
. 

This ensures that ∑ 𝑃𝑖𝑗𝑗 >
1

2𝑛
 for all data points 𝑥𝑖 , as a result 

of which each data point 𝑥𝑖 makes a significant contribution to 

the cost function.  

𝑞𝑖𝑗 =
⁡(1+||𝑦𝑖−𝑦𝑗||

2)−1

∑ (1+||𝑦𝑖−𝑦𝑗||
2)−1

𝐾≠1
                                            (7) 

The gradient of the Kullback-Leibler divergence between P and 

the Student-t-based joint probability distribution 𝑄 (computed 

using equation 4) is derived, and is given in equation (8),  

𝛿𝐶

𝛿𝑦𝑖
= 4∑ (𝑃𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗)(1 + ||𝑦𝑖 − 𝑦𝑗||

2)−1
𝑗                

(8) 

Euclidean distances in the high-dimensional and the low-

dimensional space (i.e., as a function of(𝑃𝑖𝑗 − 𝑞𝑖𝑗) and (𝑦𝑖 −

𝑦𝑗) for the symmetric versions of SNE, UNI-SNE, and t-SNE. 

positive values of the gradient represent an attraction between 

the low dimensional data points 𝑦𝑖 and 𝑦𝑗  , whereas negative 

values represent a repulsion between the two data points. 

 
Table 1: Algorithm for t-distributed stochastic neighbour embedding 

Algorithm 1: T-Distributed Stochastic Neighbour Embedding 

Data: data set 𝑋⁡ = ⁡ {𝑥1, 𝑥2, . . . , 𝑥𝑛}, 
Cost function parameters: perplexity Perp, optimization 

parameters: number of iterations T, learning rate η, momentum α(t). 

Result: low-dimensional data representation 𝑌⁡(𝑇) ⁡= ⁡ {𝑦1, 𝑦2, . . . , 𝑦𝑛}. 
begin to compute pairwise affinities 𝑃𝑖𝑗 with perplexity Perp (using Equation (1) set 

𝑃𝑖𝑗 =
𝑃𝑖|𝑗+𝑃𝑖|

𝑗

2𝑛
. 

sample initial solution 𝑌⁡(0) ⁡= ⁡ {𝑦1, 𝑦2, . . . , 𝑦𝑛} from N (0,10−4 I) for 𝑡 = 1⁡𝑡𝑜⁡𝑇 

do compute low-dimensional affinities 𝑞𝑖𝑗 (using Equation 4) compute gradient 𝛿𝐶⁡𝛿𝑌 

(using Equation 5) 

set 𝑌⁡(𝑡) ⁡= ⁡𝑌⁡(𝑡 − 1)⁡+ 𝜂⁡𝛿𝐶⁡𝛿𝑌⁡ + 𝛼(𝑡)⁡𝑌⁡(𝑡 − 1)⁡− 𝑌⁡(𝑡 − 2) 

end 

end 

 
The ALBAE technique is inspired by the foraging behaviour of 

ant lions, which are known for their efficient and effective 
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hunting strategies (table 1). This technique can be applied to 

auto encoders, which are neural networks designed for learning 

efficient representations of input data. 

 𝜆𝑝 =
∆q

𝜇(𝑄)
× 𝜏        

 (9) 

Where, 𝜆𝑝refers to the parameter used for the pre-processing 

function, s defines the total number of images given to pre-

processing. The parameter ∆𝑞 defines the actual quality of the 

pre-processed image. However, the parameter 𝜇(𝑄) defines the 

enhanced image quality.  

𝑍 = 𝑓𝜃(𝐴) = 𝑆(𝑤𝑡𝐴 + 𝑏𝑎)               (10)  

𝐴′ = 𝑔𝜃(𝑍) = 𝑆(𝑤𝑡′𝐴 + 𝑏𝑍)               (11)  
Where 𝑓𝜃(𝐴)⁡𝑎𝑛𝑑⁡𝑔𝜃(𝑍) denotes encoded and decoded 

functions. The parameters 𝑤𝑡⁡and 𝑤𝑡′ are weight matrices of 

the encoder and decoder, 𝑏 is biased for input data 𝐴 and 𝑆 is 

an activation function. The decoder function g reconstructs 𝐴 

using the hidden representation of 𝑍. For the 𝐴 dataset, the auto-

encoder learning technique is used to set the parameters 𝑏𝑎 and 

𝑏𝑧 for minimizing reconstructive loss. The target function is 

shown in equation (12). 

𝜃 = 𝑚𝑖𝑛𝐿(𝐴, 𝐴′) = 𝑚𝑖𝑛𝐿(𝐴, 𝑔 ((𝑓(𝐴)))                 (12)  

The reconstructive loss is obtained from the square errors for 

linear reconstruction (𝐿1)is derived as, 

𝐿1(𝜃) = ∑ ||𝑎𝑖 − 𝑎𝑖
′||2𝑁

𝑖=1                 (13)  

The reconstructive loss is obtained from cross entropy for 

nonlinear reconstruction (𝐿2)is derived as follows in equation 

(14),  

𝐿2(𝜃) = ∑ [𝑎𝑖 log(𝑍𝑖) + (1 − 𝑎𝑖)log⁡(1 −𝑁
𝑖=1 𝑍𝑖)]    

            (14)  

Scattered moments of an ant’s area, 

𝑋(𝑡) = 0, 𝑐(𝑡1)2𝑟 − 1, 𝐶((𝑡1)2𝑟 − 1),… , 𝐶((𝑡1)2𝑟 − 1)]              

(15)  

𝑎(𝑡) = {
0⁡𝑖𝑓⁡𝑟𝑎𝑛𝑑 ≤ 0.5
1⁡𝑖𝑓⁡𝑟𝑎𝑛𝑑⁡ > 0.5

                 (16)  

Preserving the ant placements in the resulting matrix is the next 

stage in the optimization process, 

𝑀𝑎𝑛𝑡=

[
 
 
 
𝑋1,1 𝑋1,2 ⋯ 𝑋1,𝑑

𝑋2,1 𝑋2,2 ⋯ 𝑋2,𝑑

⋮
𝑋𝑛,1

⋮
𝑋𝑛,2

⋮
⋯

⋮
𝑋𝑛,𝑑]

 
 
 

                      

(17)  

Where 𝑛 indicates the number of ants, the 𝑀𝑎𝑛𝑡 is where the 

ant is located, the term 𝑘𝑖,𝑗  which includes the 𝑗 the variable’s 

value of the ith ant, and the 𝑑 refers to the adjustable number. 

It is possible to compare the particles in both this technique and 

the PSO approach broadly. A fitness term is depicted in 

equation (18),  

𝑀𝐴𝐿=

[
 
 
 
𝑋𝐿1,1 𝑋𝐿1,2 ⋯ 𝑋𝐿1,𝑑

𝑋𝐿2,1 𝑋𝐿2,2 ⋯ 𝑋𝐿2,𝑑

⋮
𝑋𝐿𝑛,1

⋮
𝑋𝐿𝑛,2

⋮
⋯

⋮
𝑋𝐿𝑛,𝑑]

 
 
 

                                      (18) 

The position of each antlion is suggested to be stored in the 

MAL matrix in equation (18), and the MOA will preserve the 

ants’ physical condition. Nonetheless, this is evidenced by the 

fact that ants constantly recalculate their positions,  

𝑌𝑖
𝑡 =

(𝑌𝑖
𝑡−𝑎𝑖)(𝑏𝑖−𝐶𝑖

𝑡)

𝑑𝑖
𝑡−𝑎𝑖

+ 𝐶𝑖                                            (19) 

𝐶𝑡 =
𝐶𝑡

𝑔
                                                         (20) 

𝐴𝑛𝑡𝑗
𝑡 = 𝐴𝑛𝑡𝑖

𝑡; 𝑖𝑓⁡𝑓(𝐴𝑛𝑡𝑖
𝑡) > 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡)                           

(21) 

                                              𝜆𝐶 =

{

𝑃𝑛(∆𝜋) = 1; 𝑛𝑜𝑟𝑚𝑎𝑙

𝑃𝑛(∆𝜋) > 1; 𝐿𝑢𝑛𝑔⁡𝑐𝑎𝑛𝑐𝑒𝑟

𝑃𝑛(∆𝜋) < 1; 𝑃𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎

                                          (22) 

Classifying the three different categories of images among the 

data set. This approach is developed for detecting lung cancer 

effectively. So, the parameter 𝑃𝑛(∆𝜋) > 1;⁡defines the image 

data that contains lung cancer. 

Table 2: Algorithm for ALBAE technique 

Algorithm 2:  ALBAE Technique 

Input: CT image of lungs 

Output: classification output of the lung disease 

pre-processing function of the proposed model can be declared through the equation. 

(22), 

𝜆𝐶 =Δα /μ(Q)× χτ 

The reconstructive loss obtained from cross entropy for non-linear reconstruction (L2) is 

derived as, 

𝑌𝑖
𝑡 =

(𝑌𝑖
𝑡 − 𝑎𝑖)(𝑏𝑖 − 𝐶𝑖

𝑡)

𝑑𝑖
𝑡 − 𝑎𝑖

+ 𝐶𝑖 

The constant ratio g is represented as follows: 

𝐶𝑡 =
𝐶𝑡

𝑔
 

adaptive mechanism increases the possibility of a fresh hunt, as seen by Equation (21) 

𝐴𝑛𝑡𝑗
𝑡 = 𝐴𝑛𝑡𝑖

𝑡; 𝑖𝑓⁡𝑓(𝐴𝑛𝑡𝑖
𝑡) > 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡) 

𝜆𝐶 = {

𝑃𝑛(∆𝜋) = 1; 𝑛𝑜𝑟𝑚𝑎𝑙

𝑃𝑛(∆𝜋) > 1; 𝐿𝑢𝑛𝑔⁡𝑐𝑎𝑛𝑐𝑒𝑟

𝑃𝑛(∆𝜋) < 1; 𝑃𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎

 

Evaluate and test the network 

Classify the signals and return 𝑂𝑐𝑠 

 
Table 2 takes a computed tomography (CT) image of the lungs 

as input and aims to classify any lung disease present. The first 

step in the algorithm involves pre-processing the input data 

using a function which calculates the parameter 𝜆𝐶. Next, the 

algorithm calculates the reconstructive loss using cross entropy 

for non-linear reconstruction (L2), as shown in the equation. 
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The constant ratio g is then determined, and the algorithm 

adapts the mechanism based on this ratio to increase the 

chances of accurate classification. The adaptive mechanism 

guides the algorithm towards making a fresh prediction. The 

classification output is based on the evaluation and testing of 

the neural network, and the final output is 𝑂𝑐𝑠, which 

corresponds to the classification of the signals indicating the 

presence of lung disease (such as normal, lung cancer, or 

pneumonia). Overall, this combined approach can enhance the 

accuracy and efficiency of early diagnosis in small cell lung 

cancer by uncovering hidden patterns and relationships in the 

data that may not be apparent through traditional methods. 

Transforming data using learning can have many motivations. 

The most common motivations are visualization, compressing 

the data, and finding a representation that is more informative 

for further processing. One of the simplest and most widely 

used algorithms for all of these is principal component analysis. 

The two algorithms: Linear Discriminant Analysis, commonly 

used for feature extraction in supervised learning, and t-SNE, 

which is commonly used for visualization using 2-dimensional 

scatter plots. Feature extraction is a process of dimensionality 

reduction by which an initial set of raw data is reduced to more 

manageable groups for processing. A characteristic of these 

large data sets is a large number of variables that require a lot 

of computing resources to process. Feature extraction is the 

name for methods that select and /or combine variables into 

features, effectively reducing the amount of data that must be 

processed, while still accurately and completely describing the 

original data set. 

3.2.2 Densenet121 technique 
DenseNet121 is a convolutional neural network architecture 

that has shown strong performance in image classification 

tasks. In the context of early diagnosis of small cell lung cancer 

and pneumonia risk, DenseNet121 can be used in the feature 

extraction stage to extract relevant features from medical 

imaging data, such as chest X-rays. The layer generates the 

feature maps such as 𝑥0, …, 𝑥𝑙−1from the upcoming layers, 

and it is explained in equation (23) 

𝑋𝑙 = 𝐻𝑙([𝑋0, 𝑋1, … , 𝑋𝑙−1])                 (23) 

Where, [𝑋0, 𝑋1, … , 𝑋𝑙−1]⁡is known as the feature maps that are 

concatenated and produced with layers ranging from 0, ..., 𝑙 − 

1. An activation function like ReLU is applied to increase the 

non-linearity at the pooling layer when the feature maps are fed. 

The 𝐻𝑙 function generates the 𝑘 level-based mapping features 

that are followed by 𝑙 𝑡ℎ the layer which is evaluated using 

equation (24) 

𝐻𝑙 = 𝐾0 + 𝑘 × (𝐿 − 1)                                            (24) 

Where, 𝐾0 is known as the overall number of channels that are 

present in the input layer. 𝐾 is known as the hyperparameter 

having a better growth rate in the network. 𝐾 Feature maps are 

added at every layer having their state. The obtained activation 

functions are fed to the convolutional layers which are 

expressed as shown in equation (25),  

𝑔𝑖
𝐿 = 𝑏𝑖

𝐿 + ∑ 𝛹𝑖,𝑗
𝐿 × ℎ𝑗

𝐿−1𝑚1(𝐿−1)
𝑗−1                                             (25) 

From the above equation (25)  𝑔𝑖
𝐿 is known as the output layer 

represented as 𝐿,⁡𝑏𝑖
𝐿 represents the base value, 𝛹𝑖,𝑗

𝐿  is called the 

filter connection with feature map, 𝑖 𝑡ℎ level feature maps, and 

𝑗 level features. ℎ𝑗is the output layer having 𝐿⁡ − ⁡1 features. 

The model has reduced the unwanted features which solved the 

overfitting problem, 

𝑚1
𝐿 = 𝑚1

𝐿−1                                                      (26) 

𝑚2
𝐿 =

𝑚2
𝐿−1−𝐹(𝐿)

𝑆𝐿 + 1                                                   (27) 

𝑚3
𝐿 =

𝑚3
𝐿−1−𝐹(𝐿)

𝑆𝐿 + 1                                                    (28) 

Where, 𝑆𝐿 is known as the neural network parameters which 

change the image movements that are expressed as 𝑚1
𝐿 , 𝑚2

𝐿 , 

𝑚3
𝐿 are feature maps that are obtained from the filter. The ReLU 

and FC are the other layers that present the equation (29) 

𝑅𝑒𝑖
𝑙 = max⁡(ℎ, ℎ𝑖

𝐿−1)                                                  (29) 

] 

𝐹𝐶𝑖
𝐿 = 𝑓(𝑍𝑖

𝐿)⁡𝑤𝑖𝑡ℎ⁡𝑍𝑖
𝐿

= ∑ ∑ ∑ 𝑤𝑖,𝑗,𝑟,𝑠
𝑙 (𝐹𝐶𝐼

𝐿−1)𝑟,𝑠

𝑚3(𝑙−1)

𝑠−1

𝑚2(𝑙−1)

𝑠−1

𝑚1(𝑙−1)

𝑗−1

      (30) 

Where, 𝑅𝑒𝑖
𝑙is called the ReLU layer, the output layer is 

represented as ℎ, 𝐹𝐶𝑖
𝐿 is called the FC layer followed by the 

convolutional layers that evaluate the activation function. The 

DenseNet is used for feature reuse which is a central concept 

that results in extremely compact versions. Overall, leveraging 

DenseNet121 for feature extraction in the context of early 

diagnosis of small cell lung cancer and pneumonia risk can help 

improve the accuracy and efficiency of diagnosis, allowing for 

earlier detection and intervention to improve patient outcomes. 

DenseNet121 is one of the implementations of the Dense Net 

network with four dense blocks, and each dense block consists 

of 6, 12, 24, and 16 dense layers sequentially.  Dense Net, short 

for Dense Convolutional Network, is a deep learning 

architecture for convolutional neural networks (CNNs). 

DenseNet revolutionized the field of computer vision by 

proposing a novel connectivity pattern within CNNs, 

addressing challenges such as feature reuse, vanishing 

gradients, and parameter efficiency. Unlike traditional CNN 

architectures where each layer is connected only to subsequent 

layers, DenseNet establishes direct connections between all 

layers within a block. This dense connectivity enables each 

layer to receive feature maps from all preceding layers as 

inputs, fostering extensive information flow throughout the 

network. 

3.3 Risk level severity prediction 
The combination of the LSTM-GNN model with the Coati 

Optimization Algorithm offers a cutting-edge approach for 

predicting pneumonia severity in lung cancer patients. By 

optimizing hyperparameters and architecture, this model 

effectively assesses risk levels and severity, enhancing patient 

care and treatment decisions. Through training on a diverse 

dataset of medical images, the LSTM-GNN model accurately 

predicts pneumonia severity, with potential implications for 

improving outcomes in lung cancer and pneumonia 

management. This innovative research holds promise for 

advancing risk assessment and patient care in the context of 

lung cancer and pneumonia. 

3.3.1 LSTM-GNN model with coati 

optimization algorithm: 
The Long Short-Term Memory-Graph Neural Network 

(LSTM-GNN) model combines the strengths of both LSTM 

and GNN to achieve better performance in various machine 

learning tasks. LSTM-GNN, a hybrid model consisting of 

temporal and graph encoding components the input of LSTM-

GNN through the network as follows, 

𝐿 = 𝐿𝐿𝑆𝑇𝑀−𝐺𝑁𝑁 + 𝛼𝐿𝐿𝑆𝑇𝑀                                                     (31) 

https://www.geeksforgeeks.org/introduction-convolution-neural-network/
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Where LLSTM-GNN is the loss on the full model prediction, 

LLSTM is the loss on the prediction made by the LSTM 

component LSTM (computed by passing through a distinct 

fully-connected layer), and 𝛼 is treated as a hyperparameter. 

The Coati Optimization Algorithm is a novel optimization 

technique inspired by the behaviour of coatis, which are social 

mammals known for their cooperative foraging strategies. This 

algorithm mimics the hunting behaviour of coatis in search of 

optimal solutions to complex optimization problems.  

𝑋𝑖: 𝑥𝑖𝑗 = 𝑙𝑏𝑗 + 𝑟. (𝑢𝑏𝑗 − 𝑙𝑏𝑗), 𝑖 = 1,2,… , 𝑁,⁡⁡⁡𝑗 = 1,2,… . ,𝑚          

(32) 

Where, 𝑋𝑖 is the position of the ith coati in the search space, 𝑥𝑖𝑗  

is the value of the jth decision variable, 𝑁 is the number of 

coatis, m is the number of decision variables, 𝑟 is a random real 

number in the interval [0, 1], and 𝑙𝑏𝑗  and 𝑢𝑏𝑗 .𝑋 =

[

𝑥1,1
⋯ 𝑥1,𝑗 ⋯ 𝑥1,𝑚

𝑥𝑖,1 ⋯ 𝑥1,𝑗 ⋯ 𝑥𝑖,𝑚

⋮ ⁡
𝑥𝑁,1 ⋯

⋮
𝑥𝑁,𝑗 ⋯

⁡ ⋮
⁡ 𝑥𝑁,𝑚

]                                     (33) 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

=

[
 
 
 
 
𝐹(𝑥1)

⋮
𝐹(𝑥𝑖)

⋮
𝐹(𝑥𝑁)]

 
 
 
 

                                                       (34) 

𝑋𝑖
𝑝1

: 𝑥𝑖𝑗
𝑝1

= 𝑥𝑖𝑗 + 𝑟. (𝐼𝑔𝑢𝑎𝑛𝑎𝑗 − 𝐼. 𝑥𝑖,𝑗), 𝑓𝑜𝑟⁡𝑖 = 1,2,… . . , [
𝑁

2
]          

(35) 
Where, 𝑗 = 1,2, … ,𝑚. Based on this random position, coatis on 

the ground move in the search space, which is simulated using, 

𝐼𝑔𝑢𝑎𝑛𝑎𝐺: 𝐼𝑔𝑢𝑎𝑛𝑎𝑗
𝐺 = 𝑙𝑏𝑗 + 𝑟. (𝑢𝑏𝑗 − 𝑙𝑏𝑗), 𝑗 = 1,2, …𝑚  (36) 

𝑋𝑖
𝑝1

: 𝑥𝑖,𝑗
𝑝1

= {
𝑋𝑖,𝑗 + 𝑟. (𝐼𝑔𝑢𝑎𝑛𝑎𝑗

𝐺 − 𝐼. 𝑋𝑖,𝑗), 𝐹𝐼𝑔𝑢𝑎𝑛𝑎𝐺

𝑋𝑖,𝑗 + 𝑟. (𝑋𝑖,𝑗 − 𝐼𝑔𝑢𝑎𝑛𝑎𝑗
𝐺), 𝑒𝑙𝑠𝑒,

< 𝐹𝑖               

(37) 

       For 𝑖 = [𝑁/2] + 1, [𝑁/2] + 2,… . , 𝑁 and 𝑗 = 1,2,… ,𝑚    

(38) 

The new position calculated for each coati is acceptable for the 

update process if it improves the value of the objective function, 

otherwise, the coati remains in the previous position. This 

update condition is for 𝑖 = ⁡1, 2, . . . , 𝑁, 

𝑋𝑖 = {
𝑋𝑖

𝑝1
, 𝐹𝑖

𝑝1
< 𝐹𝑖

𝑋𝑖 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑒𝑙𝑠𝑒
                                               (39) 

The new position calculated for the 𝑖𝑡ℎ coating, 𝑋𝑖
𝑝1

 is its jth 

dimension, 𝐹𝑖
𝑝1

 is its objective function value, 𝐼𝑔𝑢𝑎𝑛𝑎 

represents the iguana’s position in the search space, which 

refers to the position of the best member, Iguanaj is its 𝑗𝑡ℎ 

dimension, I is an integer, which is randomly selected from the 

set {1, 2}, 𝐼𝑔𝑢𝑎𝑛𝑎𝑗
𝐺  is the position of the iguana on the ground, 

which is randomly generated, 𝐼𝑔𝑢𝑎𝑛𝑎𝑗
𝐺is its 𝑗𝑡ℎ dimension, 

𝐼𝑔𝑢𝑎𝑛𝑎𝑗
𝐺  is its value of the objective function, and ⌊·⌋ is the 

floor function (also known as the greatest integer function). The 

Coati Optimization Algorithm is the fundamental idea of COA 

is the simulation of the two natural behaviours of coatis: their 

behaviour when attacking and hunting iguanas and their escape 

from predators. The implementation steps of COA are 

described and mathematically modelled in two phases of 

exploration and exploitation. 

 
Table 3: Coati optimization algorithm 

Algorithm 3: Coati Optimization Algorithm 

Input: Initialize the population of coatis with random solutions to the optimization 

problem. 

Output: The fitness of each coati in the population based on the objective function of 

the optimization problem. 

Set parameters of 𝑁 and 𝑇. 

Set 𝑖 = 𝑡 = 1⁡.⁡⁡⁡Update the position of each coati in the subgroup using a combination of 

exploration and exploitation strategies. 

Evaluate the fitness of each coati in the subgroup by 𝑋𝑖
𝑝1

. 

Replace the worst coatis in the population with the best coatis from the subgroup. 

𝐼𝑔𝑢𝑎𝑛𝑎𝑗
𝐺  is it the value of the objective function? 

Return the best solution found by the coatis as the optimal solution to the optimization 

problem. 

end 

  

The algorithm starts by initializing a population of coatis with 

random solutions to the optimization problem (Table 3). The 

fitness of each coati in the population is evaluated based on the 

objective function of the optimization problem. Parameters 𝑁 

and 𝑇 are set, and two variables 𝑖 and 𝑡 are initialized to 1. The 

algorithm then updates the position of each coati in a subgroup 

using a combination of exploration and exploitation strategies. 

The fitness of each coati in the subgroup is evaluated using 𝑋𝑖
𝑝1

. 

The algorithm then replaces the worst coatis in the population 

with the best coatis from the subgroup. The fitness of each coati 

in the population is evaluated using the objective function  

𝐼𝑔𝑢𝑎𝑛𝑎𝑗
𝐺 . Overall, this algorithm uses a population of coatis to 

explore and exploit solutions to an optimization problem, 

gradually improving the solutions over iterations. 

Overall, the LSTM-GNN model combined with the Coati 

Optimization Algorithm offers a promising approach for early 

diagnosis of small-cell lung cancer and pneumonia risk. By 

leveraging the strengths of both models and algorithms, 

healthcare providers can improve diagnostic accuracy and 

facilitate timely interventions for better patient outcomes. 

4. EXPERIMENTATION RESULT AND 

DISCUSSION  
The objective is to evaluate the effectiveness of the optimized 

deep learning approach in accurately predicting small-cell lung 

cancer and pneumonia risk levels. The Python-based model, 

trained on a dataset of lung cancer and pneumonia images, 

demonstrates promising results in accurately predicting the risk 

levels of these conditions. The model's ability to detect small 

cell lung cancer and pneumonia early on can significantly 

impact patient outcomes and treatment decisions. The 

discussion delves into the potential applications of this 

approach in clinical settings, highlighting its potential to 
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improve patient care and contribute to advancements in medical 

imaging analysis. 

Table 4: Simulation system configuration 

Python Version 3.8.0 

Operation System Ubuntu 

Memory Capacity 4GB DDR3 

Processor Intel Core i5 @ 3.5GHz 

  
Table 4 provides details about the simulation system 

configuration used for the study. The system was equipped with 

Python version 3.8.0, running on an Ubuntu operating system. 

The system's hardware included a 4GB DDR3 memory 

capacity and an Intel Core i5 processor clocked at 3.5GHz. This 

configuration ensured that the system had sufficient resources 

to run the simulations efficiently and accurately. The use of 

Python as the programming language allowed for flexibility 

and ease of implementation, while the Ubuntu operating system 

provided a stable and reliable environment for conducting the 

experiments. 

 

 
Fig 2: Input images for cancer, pneumonia, and normal classes 

Figure 2 depicts the input images for cancer, pneumonia, and 

normal classes. Each image represents a sample from the 

respective class, with the colour of each pixel corresponding to 

the intensity of the image. The images provide a visual 

representation of the features and characteristics of the samples 

in each class, which can help understand the differences 

between the classes and inform the development of 

classification models. 

4.1 Pre-processed results for lung cancer  
In the collected dataset, the image undergoes pre-processing 

using Principal Component Analysis (PCA), a transformation 

technique that reduces the size of the p-dimensional dataset 

containing associated variables to a lower-dimensional space 

with uncorrelated variables. PCA is particularly useful in 

medical imaging analysis as it can help to reduce the 

dimensionality of the input data while retaining the most 

important information. This pre-processing step aids in 

simplifying the dataset, making it more manageable for 

subsequent analysis and improving the performance of 

predictive models by reducing noise and enhancing the 

visibility of critical features.

 

 
Fig 3: PCA of testing data for cancer, normal, and pneumonia cases 

  
Figure 3 illustrates the PCA of the testing data for cancer, 

normal, and pneumonia cases. PCA is a dimensionality 

reduction technique that transforms data into a lower-

dimensional space, highlighting the most significant 

components. To illustrate the novelty of the study, the PCA plot 

shows the distribution of cancer, normal, and pneumonia cases 

in a reduced-dimensional space, allowing for visual inspection 

of the data's structure and potential separation between the 

different classes. This analysis can help identify patterns and 

relationships within the data and provide insights into the 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.38, September 2025 

25 

effectiveness of the classification model in distinguishing 

between the different classes. 

 
Fig 4: PCA visualization of training data for cancer, normal, and pneumonia classes 

Figure 4 illustrates the PCA of the training data for cancer, 

normal, and pneumonia classes. PCA is a dimensionality 

reduction technique that transforms the original dataset into a 

lower-dimensional space while preserving as much of the 

variance as possible. In this context, PCA is applied to the 

training data to visualize the distribution of the data points in 

the reduced space. Each point in the plot represents a sample 

from the training dataset. The colour of each point corresponds 

to the class label (cancer, normal, or pneumonia). To illustrate 

the novelty of the study, provides insights into the separability 

of the classes in the reduced space, which can aid in 

understanding the underlying structure of the data and inform 

the development of classification models. 

 

 
Fig 5: t-SNE visualization of training, testing, and validation sets 

Figure 5 illustrates the t-distributed Stochastic Neighbour 

Embedding (t-SNE) visualization of the training, testing, and 

validation sets. t-SNE is a dimensionality reduction technique 

that is particularly useful for visualizing high-dimensional data 

in a lower-dimensional space. The colour of each point 

corresponds to the class label (cancer, normal, or pneumonia). 

To illustrate the novelty of the study, insights into the 

distribution and reparability of the samples in the reduced space 

can help understand the underlying structure of the data and 

inform the development of classification models. 

4.2 Classified and feature-extracted results 
In a sophisticated approach, t-SNE and an ALBAE technique 

are combined. T-SNE is used to reduce high-dimensional 

image data into a lower-dimensional representation while 

preserving essential data relationships. This combination 

leverages the strengths of both methods, allowing for more 

effective and efficient data analysis and interpretation. In the 

classification stage, the lung CT images are classified into three 

different categories such as normal lung, cancer-affected lung, 

and pneumonia-affected lung using the DenseNet121 technique

. 
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Fig 6: t-SNE visualisation of training, testing, and validation sets for lung cancer classification 

Figure 6 illustrates the t-distributed Stochastic Neighbour 

Embedding (t-SNE) visualization of the training, testing, and 

validation sets. t-SNE is a dimensionality reduction technique 

that is particularly useful for visualizing high-dimensional data 

in a lower-dimensional space. Each point in the plot represents 

a sample from the respective dataset, with the x-axis and y-axis 

representing the first two principal components. The colour of 

each point corresponds to the class label (cancer, normal, or 

pneumonia). To illustrate the novelty of the study, insight into 

the distribution and separability of the samples in the reduced 

space can help understand the underlying structure of the data 

and inform the development of classification models. 

 

 
Fig 7:  Albae performance on training, test, and validation datasets 

Figure 7 illustrates the performance of the ALBAE model on 

the training, test, and validation datasets. In the training dataset, 

the ALBAE model achieved an MSE of 0.0438 and an RMSE 

of 1.1719. On the test dataset, the model demonstrated a 

stratified MSE of 0.0641 and an end-to-end RMSE of 1.1804. 

These results indicate that the ALBAE model performed well 

on both the training and test datasets, with relatively low errors 

and high accuracy. To illustrate the novelty of the study, 

validation dataset, which was not used during model training or 

testing, will provide further insight into the model's 

generalization and robustness in real-world scenarios. 

 

  
(a) accuracy (b) loss 

 

Fig 8: Accuracy and loss performance of the dense net 121 model over epochs 

Figure 8 illustrates the performance of the dense net 121 model 

in terms of accuracy and loss over epochs. The accuracy of the 

model steadily increases over epochs, reaching a high of 

0.9758, indicating that the model is effective in correctly 

classifying images. The loss of the model decreases over 

epochs, reaching a low of 0.2364, which suggests that the 

model is learning to minimize errors and make more accurate 

predictions. To illustrate the novelty of the study, results 

indicate that the DenseNet 121 model is performing well and is 

capable of accurately classifying images, making it a valuable 

tool for various applications in computer vision and image 

recognition. 
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(a) Precision (b) Recall 

 

Fig 9: Precision and recall values for dense net 121 model 

Figure 9 illustrates the precision and recall values for the dense 

net 121 model. The precision value of 0.9739 indicates that 

97.39% of the positive predictions made by the model were 

correct, while the recall value of 0.9703 indicates that 97.03% 

of the actual positive cases were correctly identified by the 

model. To illustrate the novelty of the study, high precision and 

recall values suggest that the DenseNet 121 model is effective 

in accurately identifying positive cases, making it a reliable tool 

for diagnosing lung cancer and pneumonia. 

 
Fig 10: ROC curve for dense net 121 model with AUC values for each class  

Figure 10 presents the ROC curve for the dense net 121 model, 

with the AUC values for each class. For Class 0, the AUC is 

0.97, indicating a high level of accuracy in distinguishing 

between Class 0 and other classes. Similarly, for Class 1 and 

Class 2, the AUC values are also 0.97, suggesting that the 

model performs well in classifying these classes. To illustrate 

the novelty of the study, results demonstrate the robustness and 

effectiveness of the dense net 121 models in accurately 

predicting the target variable across different classes. 

4.3 Prediction of Risk Level Severity  

The LSTM-GNN model is a powerful tool that can help predict 

pneumonia severity in lung cancer patients, a critical factor that 

significantly impacts their overall health and treatment 

decisions. By accurately assessing the severity of pneumonia, 

healthcare professionals can better tailor treatment plans and 

interventions, leading to improved patient outcomes and quality 

of life. The LSTM-GNN model's ability to predict pneumonia 

severity can also help identify high-risk patients who may 

require more intensive monitoring or intervention, ultimately 

contributing to more effective and personalized patient care. 

 
Fig 11: Predicted image for small cell lung cancer 

Figure 11 showcases the predicted image for small-cell lung 

cancer. This image is generated by a predictive model that has 

been trained on a dataset of lung cancer images. The model has 

learned to identify features indicative of small-cell lung cancer 

and has applied this knowledge to predict the input image. To 

illustrate the novelty of the study, the predicted image provides 
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a visual representation of the model's output, which can be 

useful for understanding the model's performance and for 

further analysis of the features that contribute to the prediction

 

Fig 12: Consistent and robust performance of the model across five-fold cross-validation

Figure 12 shows the fold cross-validation results demonstrating 

the model’s consistent and robust performance across five 

folds. Accuracy remains very high, averaging 99.0%, while 

precision (98.58%), recall (98.76%), and F1-score (98.66%) all 

show strong balance, indicating the model reliably identifies 

true positives with minimal false positives or false negatives. 

The small variation across folds highlights the stability and 

generalization capability of the model. 

 
Fig 13: Confusion matrix analysis of cancer, pneumonia, and healthy classification

Figure 13 displays the confusion matrix shows the 

classification performance of a medical diagnosis model across 

three classes: Cancer, Pneumonia, and Healthy. Out of 500 

cancer cases, the model correctly identified 495 and 

misclassified 5 as pneumonia, with none labelled healthy. For 

pneumonia cases, it correctly detected 492 out of 500, 

misclassifying 6 as cancer and 2 as healthy. For healthy cases, 

it achieved very high accuracy, correctly predicting 497 out of 

500, with only 3 mislabeled as pneumonia and none as cancer. 

Overall, the model demonstrates excellent accuracy across all 

categories, with minimal misclassifications, indicating strong 

reliability in distinguishing between the three conditions. 

\ 

4.4 Comparison analysis 
The comparison analysis aims to evaluate the diagnostic 

accuracy among various techniques for lung cancer and 

pneumonia detection. This involves examining the 

performance of different models, such as deep learning-based 

models like Densenet-121 and CNN, along with other 

techniques like feature-based methods or traditional machine 

learning algorithms. By comparing the accuracy, sensitivity, 

specificity, and other metrics of these techniques, the study can 

identify the most effective approach for accurately detecting 

lung cancer and pneumonia. This analysis is critical for 

improving early diagnosis and treatment outcomes for these 

conditions.  
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Fig 14: Comparison of diagnostic accuracy among various techniques for lung cancer and pneumonia detection 

Figure 14 compares the accuracy of different techniques for 

diagnosing lung cancer and pneumonia. Densenet-121 

achieved an accuracy of 96.9676%, while the CNN model 

achieved 97.9897%. When Densenet-121 was combined with 

CLAHE, the accuracy dropped to 95.1107%. To illustrate the 

novelty of the study, the proposed technique achieved the 

highest accuracy of 99.4718%. These results suggest that the 

proposed technique outperforms the other techniques in 

accurately diagnosing lung cancer and pneumonia. 

5. RESEARCH CONCLUSION  
This study demonstrates the effectiveness of an optimized deep 

learning approach for the early diagnosis of small cell lung 

cancer and pneumonia risk prediction using medical imaging 

data, including chest X-rays and CT scans. By integrating 

advanced machine learning techniques such as convolutional 

neural networks (CNNs), Cox regression models, and the 

LSTM-GNN architecture, the proposed framework achieved a 

maximum accuracy of 99%, with the LSTM-GNN model 

reporting a loss of 0.2349 and an accuracy of 0.9711. These 

results indicate that the model can reliably differentiate 

between small cell lung cancer and pneumonia, with 

predictions closely aligned with ground truth, thereby 

enhancing the precision and reliability of clinical decision-

making. The findings have significant implications for patient 

care, as early and accurate diagnosis can lead to timely 

treatment interventions, improved prognosis, and better 

healthcare outcomes. Furthermore, the proposed framework 

provides a scalable and adaptable platform for automated 

medical image analysis, potentially reducing the workload of 

healthcare professionals while maintaining high diagnostic 

accuracy. For future work, the study can be extended by 

incorporating larger and more diverse datasets across multiple 

hospitals and imaging modalities to improve generalizability. 

Integration of explainable AI techniques, real-time prediction 

capabilities, and hybrid models combining imaging data with 

clinical and genomic information can further enhance the 

model’s accuracy and clinical applicability. Additionally, 

deployment in real-world clinical settings and continuous 

performance monitoring will be crucial for validating the 

model’s effectiveness and ensuring its practical utility in 

routine healthcare workflows. Analysis and lays the 

groundwork for future research in this field. 
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