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ABSTRACT
Turbulence is a persistent and often unpredictable hazard in
aviation, frequently occurring without visual or radar cues. This
study presents a machine learning framework for identifying
severe and extreme turbulence risk across U.S. airspace using
only publicly available flight and weather data. The framework
combines over 550,000 pilot reports with ERA5 reanalysis data
to construct a large labeled dataset. It integrates anomaly-aware
downsampling, synthetic oversampling, dimensionality reduction,
and both unsupervised (K-Means) and supervised (XGBoost)
modeling. In 10-fold cross-validation, the model achieved strong
performance (recall = 0.91, F1 = 0.88) in detecting high-risk events.
A real-world case study from February 2025 further illustrates
the system’s predictive capability. This work demonstrates
the feasibility of operational turbulence identification using
open-source data and interpretable learning techniques.
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1. INTRODUCTION
Turbulence is one of the leading causes of in-flight injuries and
discomfort in commercial aviation. According to the National
Transportation Safety Board (NTSB), turbulence accounted for
over 70% of all serious nonfatal injuries in U.S. airline operations
between 2009 and 2018, often impacting flight attendants
during cruise phases without warning [14]. Turbulence can
arise unexpectedly, especially in clear-air conditions where radar
detection is limited, posing risks to passengers, crew, and aircraft
integrity [7, 17]. Despite ongoing improvements in Numerical
Weather Prediction (NWP) models and operational turbulence
indices, such as those based on eddy dissipation rate (EDR)
or wind shear, these systems continue to face limitations in
detecting localized or transient atmospheric events [15, 13].
In particular, clear-air turbulence (CAT), which occurs without
visible weather phenomena, remains difficult to forecast [16,
17]. In recent years, the increased availability of open-source
atmospheric and flight data has opened new avenues for machine
learning (ML) applications in aviation safety. These data-driven
models complement forecasting tools by learning complex patterns
from historical observations, especially for rare but high-impact

events like severe turbulence [6]. This study builds on prior
research, particularly the work by Mizuno et al. [12], who
applied a combination of Principal Component Analysis (PCA),
K-Means clustering, and Support Vector Machines (SVM) to detect
turbulence risks near Matsumoto Airport in Japan using proprietary
Quick Access Recorder (QAR) data.

This research relies on Pilot Reports (PIREPs) from the Iowa
Environmental Mesonet1 and ERA5 atmospheric reanalysis data
from the European Centre for Medium-Range Weather Forecasts
(ECMWF)2.

This paper makes the following key contributions:

—A large-scale, labeled dataset is curated by matching over
550,000 PIREPs with corresponding ERA5 weather data2.

—A multi-stage ML pipeline is developed to address class
imbalance, dimensionality reduction, and risk pattern discovery
using anomaly filtering [11], synthetic oversampling [3], PCA
[1] and K-Means clustering [8].

—Multiple supervised models are evaluated and compared, with
XGBoost [4] identified as the most effective in predicting
high-risk turbulence [10].

—A real-world case study on a high-severity day in 2025 is
presented, demonstrating the practical utility of the proposed
system.

Together, these contributions advance the use of open data and
machine learning for operational turbulence forecasting.

2. RELATED WORK
Forecasting atmospheric turbulence remains a central challenge in
aviation safety due to its high variability, nonlinear causes, and
often limited observability. Traditional forecasting approaches rely
on NWP models that estimate turbulence using features such as
wind shear, eddy dissipation rate (EDR), and temperature gradients
[15, 13]. While these methods are useful for large-scale trends,
they often fail to capture localized or transient turbulence events,
particularly in the case of CAT [17, 16].

1https://mesonet.agron.iastate.edu/request/gis/pireps.

php
2https://cds.climate.copernicus.eu/datasets/

reanalysis-era5-pressure-levels
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As a result, there has been growing interest in data-driven models
that can uncover hidden atmospheric patterns correlated with
turbulence risk. However, much of the early machine learning
(ML) work in this area has relied on proprietary datasets.
For example, Mizuno et al. [12] proposed a turbulence-risk
prediction pipeline combining PCA, K-Means clustering, and
SVM, trained on QAR sensor data from commercial aircraft.
Their unsupervised-to-supervised structure improved classification
accuracy by identifying latent risk clusters in the meteorological
feature space. However, the lack of public access to QAR data
makes this approach difficult to replicate or scale beyond regional
studies.

To overcome such data limitations, several researchers have turned
to open-source alternatives. PIREPs are a widely available source
of subjective, but in-situ, observations made by pilots during flight.
Although reporting varies by aircraft type, turbulence sensitivity,
and pilot judgment, studies have shown that PIREPs remain a
viable proxy for turbulence events when carefully preprocessed
[14]. Moreover, ERA5, a high-resolution reanalysis dataset, has
become a standard for retrieving consistent atmospheric data across
multiple variables and pressure levels [9].

Using these open datasets, de Mello et al. [6] applied Random
Forest and Gradient Boosting models to predict clear-air turbulence
using ERA5 and GFS features. Their results emphasized the
importance of class imbalance handling and seasonal variability
in improving model generalization. Similarly, Khattak et al. [10]
used XGBoost in combination with SMOTE to detect wind shear
events based on PIREPs at Hong Kong International Airport,
demonstrating that ML pipelines can generalize to a range of flight
hazards beyond turbulence.

Other studies have begun incorporating spatiotemporal learning
techniques into operational aviation tools. For example, Chrit and
Majdi [5] proposed a real-time turbulence nowcasting model for
advanced air mobility that combines neural networks with regional
weather features, demonstrating the importance of temporal
dynamics in turbulence forecasting. While the current model
operates on snapshot-level inputs, future extensions could integrate
similar time-aware methods to enhance predictive accuracy,
especially for rapidly evolving conditions.

Across these studies, several themes emerge. First, unsupervised
methods such as PCA and clustering can help identify underlying
structure in noisy atmospheric data [12]. Second, addressing class
imbalance is critical for detecting rare but dangerous turbulence
cases [3]. Third, most studies are limited in spatial or temporal
scope and lack integration of both pilot observations and reanalysis
data at scale.

The present study synthesizes these threads by building a
turbulence identification pipeline that uses only open-access
data sources, with PIREPs for labeling and ERA5 for weather
features across the full U.S. airspace. The framework retains
the unsupervised-to-supervised structure of Mizuno et al. but
replaces proprietary QAR data with scalable alternatives. A
class-balancing strategy is introduced that combines Isolation
Forest–based anomaly-aware downsampling [11] with SMOTE
[3], and incorporates risk clustering into supervised learning.
Finally, the model is evaluated on both cross-validation metrics
and a real-world high-risk case, illustrating its applicability for
operational forecasting.

3. DATA AND PREPROCESSING
This study integrates two open-access datasets, PIREPs and ERA5
reanalysis data, to construct a large-scale, labeled dataset for
turbulence-risk identification in U.S. airspace.

3.1 PIREPs: Turbulence Labeling
PIREPs are short in-flight observations voluntarily submitted by
pilots, often describing turbulence, icing, or weather anomalies.
Over 1.1 million PIREPs for the year 2024 were retrieved from
the Iowa Environmental Mesonet (IEM) in shapefile format. Each
report includes spatial coordinates, timestamp, altitude (reported
as flight level), and textual annotations describing the observed
turbulence. Figure 1 presents a geographic distribution of the
PIREP reports.

To construct usable turbulence labels, the following preprocessing
steps were applied:

—Extracted only records containing valid turbulence descriptors
and altitude information.

—Converted flight levels to pressure altitude using MetPy’s
standard atmosphere function3, which internally applies
the barometric formula under ICAO Standard Atmosphere
assumptions.

—Standardized turbulence descriptions into five categories: NEG
(no turbulence), LGT (light), MOD (moderate), SEV (severe), and
EXTRM (extreme).

—Removed duplicate or malformed entries.

This process yielded approximately 550,000 labeled turbulence
reports across the continental U.S., Alaska, and Oceanic regions.
To account for seasonal variability, each record was tagged with
a Season feature derived from its timestamp (Winter, Spring,
Summer, Fall).

Fig. 1: Geographic distribution of over 1.1 million raw PIREPs collected
during 2024. Each point corresponds to a pilot-submitted report within U.S.
airspace, highlighting nationwide coverage.

3.2 ERA5: Meteorological Features
For each turbulence report, corresponding atmospheric conditions
were retrieved from ERA5, a global reanalysis dataset produced
by the European Centre for Medium-Range Weather Forecasts
(ECMWF) [9]. ERA5 provides hourly gridded estimates of

3https://unidata.github.io/MetPy/latest/api/generated/

metpy.calc.height_to_pressure_std.html
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meteorological variables across 37 pressure levels at 0.25° geodetic
spatial resolution.

Monthly GRIB files for 2024 were queried using the Copernicus
Climate Data Store API, and each PIREP was matched to the
nearest timestamp, location, and pressure level. To minimize spatial
interpolation errors, only reports falling within ERA5’s defined
geographic bounds over U.S. airspace were retained.

The selected ERA5 variables were chosen based on prior studies
that linked them to turbulence generation mechanisms [12, 6]. The
full list of weather features used in modeling is shown in Table 1,
including wind components (u, v), vertical velocity, temperature,
humidity, geopotential height, cloud cover, and potential vorticity.
Derived features such as wind speed and wind direction were
computed using vector transformations. All weather variables were
standardized using z-score normalization prior to modeling.

3.3 Labeling Strategy and Class Distribution
To frame the task as binary classification, only reports labeled as
NEG (non-turbulent) or belonging to the high-risk classes SEV and
EXTRM were selected. Light and moderate turbulence reports were
excluded due to their subjectivity and inconsistency across pilot
experience and aircraft type. The final class distribution was:

—Class 0 (non-turbulent): ∼27,100 samples
—Class 1 (turbulent): ∼12,800 samples

To reduce geographic and temporal bias in training, non-turbulent
reports were filtered to ensure they occurred within a ±1 hour
window, within ±2 flight levels (approximately 2000 feet), and
within a 2° latitude/longitude radius of nearby severe or extreme

events. This constraint ensured that Class 0 samples reflected
similar meteorological conditions and operational regions as Class
1 cases, minimizing confounding due to time, location, or aircraft
routing. Each row in the final dataset includes normalized ERA5
weather features, categorical metadata (season, aircraft type,
ARTCC region), and a binary turbulence label.

3.4 Feature Engineering and Metadata Encoding
Additional categorical features were incorporated to capture
aircraft sensitivity and regional weather patterns:

—Aircraft Type: Numerically encoded from 3,225 unique
aircraft identifiers that reported turbulence.

—ARTCC Region: Encoded from 21 Air Route Traffic Control
Centers managing U.S. sectors.

The complete list of meteorological and metadata features used
for training and evaluation is shown in Table 1. The final feature
set included 24 meteorological variables, 2 encoded metadata
fields, and 1 binary target label. These records served as inputs to
subsequent preprocessing and modeling steps, described in Section
4.

4. METHODOLOGY
A modular machine learning pipeline was designed to process
open aviation and weather data and generate interpretable
turbulence-risk identifications. The pipeline consists of five stages:
class imbalance handling, dimensionality reduction, unsupervised
risk clustering, model training with cross-validation, and final
evaluation.

Table 1. : Summary of final features used for modeling turbulence risk.

Feature Name Units / Encoding Description
Meteorological Features (from ERA5)
Wind Speed m/s Magnitude of horizontal wind vector
Wind Direction m/s Wind flow direction from u and v components
U-component of Wind m/s East–west wind velocity
V-component of Wind m/s North–south wind velocity
Vertical Velocity (Omega) Pa/s Updraft or downdraft air motion
Vertical Wind Shear (m/s)/km Rate of wind change with altitude
Temperature K Air temperature at pressure level
Relative Humidity % Moisture content relative to saturation
Specific Humidity g/kg Absolute moisture content
Geopotential Height m2/s2 Height of pressure surface
Potential Vorticity K·m2/kg·s Atmospheric stability indicator
Relative Velocity 1/s Local air rotation
Divergence 1/s Horizontal airflow divergence
Cloud Fraction Unitless Proportion of cloud coverage (0–1)
Specific Cloud Liquid Water kg/kg Liquid water content in clouds
Specific Cloud Ice Water kg/kg Ice content in clouds
Metadata and Engineered Features
Season 1–4 (int) Winter (1), Spring (2), Summer (3), Fall (4)
Aircraft Type 0–3225 (int) Encoded aircraft identifier
ARTCC Region 0–20 (int) Encoded FAA regional airspace zone
Latitude, Longitude degrees Geographic coordinates
Altitude (Pressure Level) hPa Atmospheric pressure at report altitude
Risk Cluster Label 0/1 High-risk group from K-Means clustering
Binary Target 0/1 Non-turbulent (0), Severe/Extreme (1)

Feature values include ERA5 reanalysis weather variables and metadata extracted from PIREPs. These inputs were used in both
unsupervised clustering and supervised turbulence classification tasks.
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Fig. 2: Overview of the machine learning pipeline for turbulence-risk identification, including class balancing, dimensionality reduction,
unsupervised clustering, and supervised classification.

4.1 Overview
Figure 2 provides a high-level overview of the end-to-end training
pipeline. The input consists of labeled turbulence reports and ERA5
weather features. After preprocessing, the data passes through a
series of transformations and modeling steps designed to address
challenges such as class imbalance and feature redundancy.

4.2 Class Imbalance Handling
The dataset exhibited a natural skew, with non-turbulent reports
(Class 0) outnumbering severe or extreme turbulence cases (Class
1) by a ratio of more than 2:1. To prevent model bias toward the
majority class, a two-step class balancing strategy was applied:

—Downsampling: Redundant or low-diversity negative samples
were filtered using Isolation Forest anomaly scores [11]. A
blended sampling strategy retained diverse yet relevant negative
examples by favoring mid-range anomaly scores over extreme
outliers or typical samples.

—Oversampling: The SMOTE algorithm [3] was used to
synthetically generate minority class examples by interpolating
feature vectors from nearby severe/extreme samples. The
minority class size was increased to 80% of the majority class,
improving the model’s exposure to high-risk conditions.

As shown in Figure 3, the anomaly score distribution guided
downsampling to preserve diverse negative samples.

4.3 Dimensionality Reduction via PCA
To reduce feature redundancy and enable unsupervised risk
discovery, PCA was applied to the 17 normalized weather features
and altitude. The number of principal components was selected to
retain 95% of the variance. These components replaced the original
features for subsequent clustering and classification.

Fig. 3: Density plot of anomaly scores from Isolation Forest applied
to non-turbulent samples. Mid-range scores were favored during
downsampling to preserve diverse and informative negative cases.

4.4 Unsupervised Risk Clustering
Following Mizuno et al. [12], K-Means clustering was applied to
the PCA-transformed data to identify latent structures in the feature
space. The optimal number of clusters (k = 3) was selected using
the Elbow Method [2]. One cluster showed a disproportionately
high concentration of Class 1 reports and was labeled as high-risk;
the others were labeled as low-risk. This cluster assignment was
appended as a new feature to enhance model interpretability and
support spatiotemporal analysis.

Figure 4 shows a 3D visualization of K-Means clusters in
PCA-reduced space, highlighting a cluster enriched with severe
turbulence reports.
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Fig. 4: 3D visualization of K-Means clustering applied to PCA-transformed
meteorological data. Cluster 2 (in red) shows a high concentration of
severe/extreme turbulence reports and was labeled as high-risk.

4.5 Supervised Model Training
A set of supervised classifiers was evaluated on the processed
dataset using stratified 10-fold cross-validation. Models included:

—XGBoost, Random Forest, LightGBM, and CatBoost —
ensemble tree-based methods known for strong performance on
tabular data.

—TabNet — a neural network architecture tailored for tabular
inputs with built-in feature selection.

—SVM, KNN, and Naive Bayes — lightweight statistical
baselines for comparative analysis.

All models were trained using the same input feature set: PCA
components, categorical encodings (Season, Aircraft, ARTCC),
and risk cluster label. A classification threshold of 0.45 was used to
favor recall for the minority class. Hyperparameters were selected
using grid search or built-in optimization routines.

4.6 Evaluation Metrics
Model performance was evaluated using standard metrics:

—Accuracy — overall correctness across both classes.
—Precision, Recall, F1-score — with emphasis on Class 1

(severe/extreme).
—ROC-AUC — area under the receiver operating characteristic

curve.

Confusion matrices and ROC curves were analyzed to assess trends
in false positives and false negatives. The top-performing model
(XGBoost) was selected for downstream case study evaluation in
Section 5.

5. RESULTS AND DISCUSSION
The results of turbulence classification experiments were evaluated
across multiple models and preprocessing settings using stratified
10-fold cross-validation, with special emphasis on detecting severe
and extreme turbulence events (Class 1).

5.1 Model Performance Comparison
Figure 5 compares precision, recall, F1-score, and ROC-AUC
across all classifiers. Among them, XGBoost consistently
outperformed other models in all metrics, achieving:

—Recall: 0.91

—F1-score: 0.88

—ROC-AUC: 0.97

Fig. 5: Comparison of accuracy, precision, recall, and F1-score across
all classifiers using 10-fold cross-validation. XGBoost achieved the best
overall balance of sensitivity and precision.

Tree-based models (LightGBM, CatBoost, Random Forest) also
performed strongly, particularly in recall and AUC, confirming
their ability to capture nonlinear relationships in meteorological
features. TabNet matched ensemble models in recall but showed
higher fold-to-fold variability.

In contrast, baseline classifiers such as Naive Bayes and KNN
achieved moderate accuracy but lagged in precision. While
they managed decent recall, especially KNN, their tendency to
overpredict turbulence led to more false positives, reducing their
F1 scores. This suggests that while they captured some patterns,
they lacked the specificity of the stronger ensemble models. On
the other hand, SVM achieved moderate recall, but precision
was significantly lower. Given the high-dimensional nature of the
feature space and the size of the dataset, SVM’s structure likely
limited its ability to scale and adapt effectively in this context.
While Mizuno et al. [12] previously applied SVM to smaller
localized turbulence data, it did not generalize well here.

As shown in Figure 6, XGBoost, Random Forest, and LightGBM
achieved the highest AUC scores, indicating strong class
separability between turbulent and non-turbulent conditions.
TabNet also reached competitive AUC values, though with greater
variance across folds.
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Fig. 6: ROC curves for all models. XGBoost, Random Forest, and
LightGBM achieved the highest AUC values, indicating strong class
separability.

5.2 Effect of Preprocessing Techniques
To isolate the contribution of each preprocessing component, an
ablation study was conducted using XGBoost. Table 2 summarizes
model performance under different combinations of class balancing
and clustering. Several key findings emerged:

—Training on the raw dataset yielded high overall accuracy but
poor recall (0.47), confirming that imbalance suppression is
essential for detecting rare turbulence cases.

—Downsampling alone improved both precision (0.81) and recall
(0.76), demonstrating that anomaly-aware selection of negative
samples helps mitigate dataset skew.

—SMOTE alone raised recall (0.85) by generating synthetic
high-risk samples, but this came at the cost of increased false
positives and reduced precision.

—The right balance was achieved by combining SMOTE with
anomaly-aware downsampling, which produced the highest
F1-score (0.88) and balanced sensitivity with specificity.

—Incorporating PCA and K-Means clustering improved
interpretability and enabled visualization of latent risk structures
in the meteorological feature space. Although this step caused a
minor decrease in precision, it enhanced the ability to conduct
spatiotemporal analysis of high-risk clusters.

—The full pipeline, integrating all preprocessing steps, consistently
achieved robust performance across folds, with a recall of

0.91 and an F1-score of 0.88, illustrating both reliability and
generalization.

These findings validate the multi-stage pipeline design and
highlight that combining both data-level balancing (SMOTE,
downsampling) and model-level enhancements (PCA, K-Means
clustering) provides strong predictive accuracy while preserving
interpretability for operational use.

5.3 Comparison with Prior Work
While this study builds upon the methodology introduced
by Mizuno et al. [12], the datasets and evaluation settings
differ significantly. Mizuno et al. evaluated their approach on
Quick Access Recorder (QAR) reports collected near Matsumoto
Airport during early 2019, whereas this study applied the same
methodology to more than 550,000 PIREPs combined with ERA5
data across the entire U.S. airspace from 2024.

Both studies employed a similar structure involving PCA for
dimensionality reduction, K-Means clustering for turbulence-risk
labeling, followed by Support Vector Machine (SVM)
classification. Mizuno et al. [12] reported high accuracy on
their localized dataset, with 87.5% recall for turbulent cases and
only 0.7% false positives. However, when the same structure was
applied in this study, the SVM model achieved 77.1% recall but
misclassified nearly half of the negative cases, yielding just 51.9%
accuracy on the negative class. This indicates sensitivity to dataset
scale and diversity, with a high false alarm rate when applied across
broader U.S. conditions. Figure 7 shows the contrast between
Mizuno et al.’s [12] results and this study’s SVM implementation.

Fig. 7: Confusion matrix comparison between Mizuno et al.’s SVM model
(left) and the SVM implementation in this study (right). The U.S.-scale
dataset resulted in weaker separation between turbulent and non-turbulent
cases, leading to a higher false alarm rate.

Table 2. : Ablation study of preprocessing steps on turbulence classification using XGBoost.

Preprocessing Method Accuracy Precision Recall F1-score
Raw data (no balancing) 0.9663 0.66 0.47 0.55
Downsampling only 0.8302 0.81 0.76 0.79
SMOTE only 0.9533 0.66 0.85 0.74
SMOTE + Downsampling 0.9218 0.86 0.90 0.88
PCA + KMeans 0.9275 0.53 0.88 0.66
Full Pipeline (CV) 0.9197 0.85 0.91 0.88

Note: Precision, recall, and F1-score are reported for the severe-extreme (positive) class, while accuracy reflects
overall classification performance.
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In contrast, the XGBoost model demonstrated strong classification
performance across the same setting. It reduced the false negative
rate to 9.3%, achieving 90.7% recall for severe–extreme turbulence
and 93.6% accuracy on the negative class. Figure 8 presents a
side-by-side comparison between Mizuno et al.’s SVM and the
XGBoost model used in this study. These results highlight the
scalability and robustness of the open-data-based pipeline, which
maintains strong detection performance across diverse atmospheric
conditions while avoiding the high false alarm rate of SVM.

Fig. 8: Comparison of confusion matrices between Mizuno et al.’s
SVM-based model (left) and the XGBoost model used in this study (right).
The proposed pipeline shows improved recall and fewer false negatives
across a broader and more diverse U.S. dataset.

5.4 Case Study: February 16, 2025
To assess real-world applicability, the trained XGBoost model
was tested on an unseen, high-turbulence day: February 16, 2025.
Between 13:00 and 17:00 UTC, 77 turbulent events were recorded
across the eastern U.S. The model correctly classified 85 of 90
turbulence cases (true positives) and 93 of 102 negative cases
(true negatives), with only 5 false negatives and 9 false positives.
This strong performance, particularly under high-risk conditions,
supports the model’s utility in operational forecasting.

February 16 was selected because it concentrated one of the
highest numbers of SEV–EXTRM reports between January and
March 2025, providing a challenging yet representative test case.
In addition to classification accuracy, the model demonstrated
geographic consistency by showing that clusters of high-risk
predictions overlapped with actual pilot reports, illustrating
alignment between modeled outcomes and observed atmospheric
instability.

Two high-risk identifications were analyzed in detail, one over
the Ohio region and the other over North Carolina. Both showed
consistent deviations in wind speed, vertical velocity, and humidity
from 2024 seasonal baselines, reinforcing that the model captured
meaningful atmospheric shifts. Table 3 summarizes the deviations
for these two high-risk predictions during the event.

Figure 9 shows the spatial distribution of model predictions over
the eastern U.S. during a high-risk window on February 16, 2025,
where predicted turbulence clusters aligned closely with observed
pilot reports.

Fig. 9: Classified turbulence risk on February 16, 2025 (13:00–17:00 UTC),
using the trained XGBoost model. Clusters of high-risk identifications
align with observed pilot reports across the eastern U.S. Map data ©
OpenStreetMap contributors, available under the Open Database License
(ODbL).

5.5 Interpretability and Deployment Potential
The use of PCA and K-Means clustering enables both
interpretability and geographic visualization of turbulence-prone
zones. The resulting model can be embedded into early-warning
tools or route optimization software using only open-source inputs.

6. CONCLUSION AND FUTURE WORK
This study presents a scalable and interpretable machine learning
pipeline for turbulence-risk identification using open flight and
weather data. By combining over 550,000 PIREP reports with
ERA5 reanalysis weather variables, a large, labeled dataset
spanning the full U.S. airspace was constructed. The pipeline
integrates anomaly-aware downsampling, SMOTE-based class
balancing, PCA for dimensionality reduction, and K-Means
clustering for latent risk discovery. Among all models evaluated,
XGBoost achieved the best balance of precision and recall,
with a recall of 0.91 and an F1-score of 0.88 across 10-fold
cross-validation.

A case study on a real high-turbulence day in 2025 demonstrated
the model’s ability to detect severe turbulence conditions in
operational settings with minimal false alarms. Compared to earlier
approaches that relied on proprietary QAR data or localized
models, the proposed method uses fully open data sources and
generalizes across altitudes, aircraft types, and geographic sectors.

Several directions remain for further exploration:

—Spatiotemporal modeling: Incorporating time-aware models
(e.g., LSTM, ConvLSTM) may improve detection of evolving
turbulence patterns [5].
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Table 3. : Meteorological deviations for two high-risk identifications on February 16, 2025, compared to 2024 seasonal averages. Wind speed
and vertical velocity showed consistent elevation near severe turbulence events.

Date and Time (UTC) Region (location) Altitude (hPa) Feature Deviations Inferred Cause
Feb 16, 2025, 14:55 Ohio region (41.01N, -82.31W) 366.5 (27,500 feet approx.) Wind speed increased

by 6.5 m/s; vertical
velocity +0.02
Pa/s; temperature
0.45°C lower; relative
humidity 8.7% lower;
wind direction shifted
by -12°

Moderate vertical
motion observed with
stronger northward
winds (v-component
+14 m/s). Temperature
was slightly lower
than average SEV
cases. Wind shear was
slightly weaker.

Feb 16, 2025, 19:00 North Carolina region (35.54N, -79.67W) 548.9 (16,000 feet approx.) Wind speed increased
by 12.2 m/s; vertical
velocity +0.50 Pa/s;
temperature 3.1°C
higher; relative
humidity 29.6%
lower; u-component
of wind +14.6 m/s

Higher wind shear and
warmer temperatures
than the seasonal
average. Low
humidity and strong
west–east winds
likely contributed to
localized turbulence
formation.

Altitude values in parentheses are approximate conversions from pressure levels in hectopascals (hPa) to feet. All deviations are measured relative to 2024 seasonal baseline values.

—Integration of trajectory data: Combining turbulence reports
with ADS-B or flight path data could enable predictive routing
and real-time risk estimation.

—Cross-dataset evaluation: Extending evaluation across multiple
years and additional atmospheric datasets (e.g., comparing
ERA5 with GFS) would further strengthen confidence in model
generalization and operational reliability.

—Expert collaboration: Involving meteorologists and aviation
professionals could improve label reliability and validate feature
importances.

—Interactive visualization: Coupling the model with map-based
tools would help forecast users explore and explain high-risk
zones using interpretable clusters.

By demonstrating that turbulence identification is feasible using
only open data and reproducible methods, this work lays the
foundation for future integration into safety tools, forecasting
systems, or decision-support software for both pilots and air traffic
controllers.
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