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ABSTRACT 

A hybrid approach is then introduced in this paper to combine 

the DT technology with XAI to detect the anomaly in IIoT 

environment in real time. The system also integrates high-

fidelity simulation models with sensor data in order to increase 

the accuracy of detection and decrease the number of false 

positives. It leverages SHAP-based explanations, 

counterfactual deliberation, and natural language normalization 

to render the system interpretable for the engineers or operators 

in charge of decision making. Experimental results on real 

industrial datasets achieve a detection accuracy of 95.3% and 

78% of reduction in false positives with respect to the state of 

the art. The promising performance of XAI-DT integration 

with a decision-supported mechanism demonstrates its 

application value for reliable and transparent predictive 

maintenance in industrial domain. 
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1. INTRODUCTION 
On the other hand, industry 4.0 has introduced a paradigm 

change in manufacturing by infusing cyber physical systems, 

IOT devices and sophisticated analytics [1]. Industrial IoT 

(IIoT) plants produce large volumes of diverse data collecting 

from sensors, actuators and control systems, which leads to 

predictive maintenance and efficient operations. Digital twin is 

a software based representation of a physical object, capable of 

being updated and synchronized in real-time, and meeting the 

end-goal of monitoring, modeling and analysing [2]. 

Explainable AI (XAI) increases AI transparency by offering 

human-readable explanations for model decisions [3], crucial 

to operator trust and compliance with regulation. 

The complexity and scale of today’s industrial systems make 

traditional methods for anomaly detection difficult to apply, as 

they may lead to relatively high rates of false positives and/or 

interpretabilty issues. Digital twins close the physical-digital 

gap, providing visibility and the ability to predict in real time. 

Together with XAI, they lead to interpretable anomaly 

detection that leads to trust and actionable decision-making in 

Industry 4.0 and 5.0. 

1.1. Problem Statement 
Current anomaly detection systems in industrial settings face 

critical limitations: 

• High false positive rates: High numbers of false 

alarms cause maintenance fatigue, such as operators’ 

ignoring alerts for a CNC machine after receiving 

several non-critical alerts. 

• Lack of interpretability: Machine learning models are 

frequently "black boxes", causing a lack of 

understanding of why or how certain decisions are 

made, ultimately diminishing the trust of operators. 

• Narrow range for root cause analysis: The systems 

have limited ability to zero-in on the exact root cause 

of the failure, such as identifying bearing wear vs. 

misalignment in rotating machinery. 

• Limited context awareness: The models do not take 

system interdependency into account, therefore 

complex failure modes in an inter-connected system 

could be ignored. 

• Inadequate adaptation: Systems struggle to adapt to 

evolving operational conditions, such as seasonal 

variations in process parameters. 

1.2 Research Contributions 
This paper makes the following contributions: 

1. A novel digital twin-enabled anomaly detection 

framework integrating real-time sensor data with 

high-fidelity simulation models. 

2. Implementation of XAI techniques to provide 

interpretable anomaly detection results tailored to 

stakeholders. 

3. A hybrid approach combining model-based and data-

driven anomaly detection methods. 

4. Comprehensive evaluation on real-world industrial 

datasets, demonstrating superior performance. 

5. Analysis of explainability-performance trade-offs in 

industrial anomaly detection systems. 

1.3 Paper Organization 
Section 2 reviews related work, Section 3 presents the proposed 

methodology, Section 4 describes the experimental setup and 

results, Section 5 discusses implications and limitations, and 

Section 6 concludes the paper.  

2. RELATED WORK 
The rapid evolution of the Industrial Internet of Things (IIoT) 

has revolutionized industrial operations, enabling 

unprecedented levels of connectivity, data generation, and 

automation. Similar to how crawlers gather heterogeneous data 

across the web [4], IIoT systems demand robust pipelines for 

ingesting and processing high-volume, multi-source sensor 

data in real-time. This transformation, central to Industry 4.0 

and progressing towards Industry 5.0, necessitates robust 

mechanisms for ensuring operational efficiency, safety, and 

predictive maintenance [5, 6]. A critical component in 

achieving these objectives is anomaly detection, which 

identifies deviations from normal behavior in industrial 

systems [7, 8]. Nevertheless, with the growing data size and 

complexity in IIoT systems, the traditional anomaly detection 
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models face considerable challenges and tend to learn “black-

box” AI models with decisions that are not transparent and 

interpretable [9, 10]. This paper provides a literature survey on 

the complementary application of Digital Twins (DTs) and 

state-of-the-art Artificial Intelligence (AI) methodologies for 

Anomaly Detection (AD) in the context of IIoT systems, 

considering the pivotal contribution of Explainable Artificial 

Intelligence (XAI) in reinforcing reliability and fostering 

actionable insights. 

Digital Twins-are virtual replicas of real-world entities (e.g., 

equipment, processes, and systems) that are kept up-to-date 

with real-time data from IIoT sensors in order to offer a 

dynamic and holistic view of their physical representation [11, 

12]. Such real-time synchronisation enables DTs to serve as 

powerful means for online monitoring, mimic modelling and 

predictive analytics in industrial applications [13,14]. Recent 

progress exhibits the power of DTs for different aspects of 

industrial practice such as predicting maintenance and fault 

diagnosis [15, 14]. With the following example, DTs are also 

able to simulate failure causes and rare event occurrences and 

thereby synthesize data that enhances the training of AD 

models and addresses data sparsity problems [15, 16]. 

Recent works have presented architectures and models for 

Digital Twins applied to anomaly detection of different kinds 

of industrial environments. De Benedictis et al. [12] proposed 

a IIoT anomaly detection conceptual architecture inspired by 

DT and Autonomic Computing paradigm, and applied MAPE-

K (Monitor, Analyze, Plan, Execute, Knowledge) feedback 

loop for efficient system control [12]. Instructive in this regard 

is a study by Alcaraz and Lopez (2024) on the applicability of 

a DT and machine learning framework for online defense in 

industrial environments, especially for early detection of 

advanced and stealthy threats, and is also telling of DT’s 

potential to augment system robustness for Industry 5.0 [17]. 

DTs have also been integrated with other Industry 4.0 

technologies including machine learning and the IoT, for 

anomaly detection in some targeted applications such as food 

plants [18]. Although there exist some specific applications to 

IT systems, the principles of anomaly detection enabled by DT 

can be still considered for wider industrial scenarios [19]. The 

power of Dynamical Decision Engines and the capability of 

Anomaly and Consequence is a far cry from the old-fashioned 

static Digital Twins [14]. 

The high amount and complexity of data generated by IIoT 

devices require AI algorithms for accurate anomaly detection. 

Machine learning (ML) and deep learning (DL) models are 

broadly used to detect patterns and deviations and to classify 

anomalies in image processing tasks. Typical strategies consist 

of unsupervised methods like Local Outlier Factor (LOF) and 

DBSCAN for time-series data [8], as well as deep learning 

models such as autoencoders and Long Short-Term Memory 

(LSTM) networks for modeling the temporal dependencies in 

multivariate time series [20, 21]. Generative AI models, such 

as GANs and VAEs, are also becoming popular for their ability 

to model nominal system function and search for anomalies by 

detecting deviations from the learned distribution [15, 22]. 

Also, attention mechanisms in deep learning architectures are 

studied to improve interpretability by emphasizing the 

important time instances or features causing the anomaly [23]. 

Although complex AI models are highly accurate, their “black-

box” nature proves to be a formal obstacle for the penetration 

of these technologies in safety-critical industrial settings [9, 

24]. For industrial operators and engineers, it is not enough to 

know that an anomaly had been detected, but also to understand 

why an anomaly was detected to diagnose root causes of the 

anomaly, validate the system’s behavior, and take informed 

corrective actions[7,10]. This insistence on clarity and 

transparency has put Explainable AI (XAI) into the spotlight of 

the IIoT research area [15, 11, 25]. XAI strives to render AI 

decisions explicable to humans, fostering trust and enabling 

human-AI cooperation [26]. Transparency is a requirement not 

only for ethical reasons, but in many cases also a practical and 

in certain domains also a legal necessity [20]. 

The intersection of Digital Twins and Explainable AI marks a 

strong paradigm to improve anomaly detection in IIoT. This 

type of integration, referred to as XAI-DT systems, can be used 

to not just identify where anomalies exist, but also give 

explanations in natural language that are actionable based on 

that detection [11, 27]. The Digital Twin provides the correct 

contextual and complete system representation so that the 

explanations produced by XAI methods are more meaningful 

and that they can be more tightly coupled with the physical 

system state and behavior. For instance, a DT-enabled CPS can 

improve anomaly detection and at the same time offer 

interpretability in smart manufacturing [28]. 

Recent studies unpack this synergy in several ways: 

• Explanation in context: DT, being prepared for real-

time information processing, provides vast context to 

bring the explanation of detected anomaly in XAI in 

the form of how and why fall happened in terms of 

which part of component or deviation in the action of 

process occurred within virtual model [11]. 

• XAI Training Synthetic Data: The derivable synthetic 

capability of DTs may generate a great number of 

anomaly scenarios, which could serve as synthetic 

labels in training and validation of XAI models (i.e., 

ensure explanations that would be robust/correspond 

to various anomaly types) [15]. 

• Causal Inference: More advanced algorithms that treat 

with causal inferencing in that these algorithm are 

leveraging not only DTs and XAI, but also move 

beyond simply correlation, to leverage causal 

knowledge in rooting out what the true generation 

source of the anomaly to provide a more accurate 

prognosis of the true cause of anomaly for better 

understanding and response for operations in IOT 

based systems that are run in real-time industrial [29]. 

• Domain-Specific XAI: Specialized frameworks are 

emerging for specific industrial applications, such as 

an explainable DT framework for anomaly detection 

in autonomous industrial robots, tailoring 

explanations to the unique characteristics of robotic 

systems [30]. 

• Knowledge Graph Integration: Combining knowledge 

graphs with Digital Twins and XAI can provide richer, 

more context-aware explanations for anomalies in 

complex industrial equipment, leveraging domain 

expertise [31]. 

2.1 Specific XAI Techniques for IIoT 

Anomaly Detection 
Several XAI techniques are being adapted and evaluated for 

time-series anomaly detection in industrial settings: 

• SHAP (SHapley Additive exPlanations): This 

model-agnostic technique explains individual 

predictions by attributing the contribution of each 

feature, making it highly effective for identifying 

which sensor readings or parameters are most 

influential in an anomaly detection [9, 21]. Franco de 
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la Peña et al. [32] proposed ShaTS, a Shapley-based 

method specifically designed for time series models in 

IIoT, which accounts for temporal dependencies to 

provide more precise and actionable explanations. 

• LIME (Local Interpretable Model-agnostic 

Explanations): LIME provides local explanations for 

individual predictions by approximating the black-box 

model with a simpler, interpretable model in the 

vicinity of the prediction [9, 21]. It is particularly 

useful for understanding why a specific machine 

exhibited unusual behavior at a given moment [9]. 

• Counterfactual Explanations: These explanations 

describe the smallest change to the input features that 

would alter the model's prediction (e.g., from 

anomalous to normal), providing "what-if" scenarios 

crucial for understanding how to prevent future 

anomalies [33]. 

• Inherently Interpretable Models: While deep 

learning models often require post-hoc XAI, simpler 

models like decision trees can offer direct, rule-based 

explanations, which are inherently transparent [20]. 

2.2 Challenges and Future Directions 

Despite significant progress, several challenges remain in the 

full realization of Digital Twin-enabled anomaly detection with 

Explainable AI in IIoT: 

• Data Scarcity for Anomalies: Real-world anomalies 

are often rare, making it difficult to train robust 

detection models and validate XAI methods. Digital 

Twins can help by generating synthetic anomaly data, 

but its fidelity to real-world anomalies remains a 

challenge [15]. 

• Real-time Explainability: Generating explanations 

in real-time for fast-paced industrial processes 

requires computationally efficient XAI methods [20]. 

• Complexity and Heterogeneity of IIoT Data: 

Industrial systems produce heterogeneous, multi-

modal data that are highly interdependent. 

Challenging is to develop XAI techniques which can 

interpret efficiently such an heterogeneous data [7]. 

• Scalability: Robust and scalable architectures are 

needed to deploy and maintain XAI-DT systems on a 

large scale IIoT deployment [14]. 

• Human-in-the-Loop Integration: It is important to 

build effective user interfaces to visualisation systems 

to clearly communicate explanations, alongside user 

input to incorporate into automated decision-making 

processes [24]. 

• Trust and Adoption: Gaining confidence in the 

robustness of AIgenerated explanations is crucial in 

order to be widely adopted in industry [34]. 

• Standardization: Without standard metrics and 

benchmarks for comparing XAI methods in IIoT 

anomaly detection, the research is stymied in terms of 

comparison and actual deployment [20]. 

• Root Cause Analysis: Going beyond mere detection 

to pinpointing the right root cause, is still a 

challenging problem and probably necessitates 

sophisticated XAI techniques and perhaps causal 

inference techniques [7, 29]. 

In conclusion, Digital Twin-enabled anomaly detection, 

augmented by Explainable AI, represents a promising frontier 

for enhancing the reliability, efficiency, and safety of Industrial 

IoT systems. While significant advancements have been made 

in leveraging DTs for contextualized monitoring and AI for 

sophisticated anomaly pattern recognition, the integration of 

XAI is paramount for transforming "black-box" decisions into 

actionable insights. Future research should focus on developing 

more computationally efficient, robust, and human-centric 

XAI-DT frameworks that can address the inherent complexities 

and real-time demands of industrial environments, ultimately 

fostering greater trust and enabling proactive decision-making 

in Industry 5.0. 

3. METHODOLOGY 

3.1 System Architecture 
The proposed framework consists of four main components, as 

shown in Figure 1: 

1. Data Acquisition Layer: Collects real-time sensor 

data from IIoT devices, including vibration, 

temperature, and pressure sensors. 

2. Digital Twin Engine: Maintains synchronized 

digital replicas of physical assets, simulating their 

behavior. 

3. Anomaly Detection Module: Implements hybrid 

detection algorithms with XAI capabilities to identify 

and explain anomalies. 

4. Visualization and Decision Support: Provides 

interpretable results to operators via dashboards and 

alerts. 

 

Fig. 1. System architecture diagram 

3.2 Digital Twin Modeling 
3.2.1 Multi-Physics Simulation Models 
The heading for subsubsections should be in Times New 

Roman 11-point italic with initial letters capitalized and 6-

points of white space above the subsubsection head. 

Multi-physics simulation models capture complex industrial 

system behaviors, e.g., for a CNC machine: 

• Thermal dynamics: Monitors spindle temperature to 

detect overheating. 

• Mechanical stress: Analyzes bearing wear in rotating 

components. 

• Fluid dynamics: Models coolant flow in machining 

processes. 

• Electrical characteristics: Tracks motor current for 

performance anomalies. 

Models are constructed using historical sensor data and domain 

knowledge, validated against physical asset behavior. For 

instance, a CNC spindle model incorporates vibration and 

temperature dynamics to predict bearing faults. 
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3.2.2 Real-Time Synchronization 
The digital twin maintains synchronization with physical 

assets through: 

• Continuous data streaming from IIoT sensors via 

MQTT protocols. 

• State estimation algorithms (e.g., Kalman filters) for 

unmeasured variables. 

• Model parameter updates based on observed behavior, 

using adaptive learning. 

• Uncertainty quantification to account for sensor noise 

or model inaccuracies, employing Monte Carlo 

methods. 

This ensures robust handling of discrepancies between the 

digital twin and physical system. 

3.3 Hybrid Anomaly Detection Algorithm 
3.3.1 Model-Based Detection 
The model-based component leverages digital twin predictions 

to detect anomalies: 

Algorithm 1: Model-Based Anomaly Detection 

Input: Sensor data S(t), Digital twin model M, Threshold τ 

Output: Anomaly score A_model(t) 

1. Predict expected behavior: P(t) = M.predict(S(t-Δt)) 

2. Calculate residual: R(t) = |S(t) - P(t)| 

3. Normalize residual: R_norm(t) = normalize(R(t)) 

4. Compute anomaly score: A_model(t) = max(R_norm(t)) 

5. If A_model(t) > τ then flag as anomaly 

3.3.2 Data-Driven Detection 
The data-driven component employs ensemble learning 

techniques: 

• Isolation Forest: Detects outliers in high-dimensional 

sensor data. 

• Autoencoder neural networks: Identifies anomalies 

via reconstruction errors. 

• LSTM networks: Recognizes temporal patterns in 

time-series data. 

To address concept drift, the model retrains monthly on recent 

data, ensuring adaptation to evolving operational conditions. 

3.3.3 Fusion Strategy 
Anomaly scores from model-based and data-driven 

components are fused using a weighted ensemble: 

A_final(t) = α × A_model(t) + β × 

A_data(t) (1) 

Weights α and β are optimized through 5-fold cross-validation, 

minimizing the mean squared error between predicted and 

actual anomaly labels. This hybrid approach balances the 

contextual accuracy of digital twins with the flexibility of data-

driven methods. 

3.4 Explainable AI Integration 
3.4.1 Feature Importance Analysis 
SHAP (SHapley Additive exPlanations) is used to identify 

influential features contributing to anomalies: 

• Global feature importance: Reveals overall model 

drivers, e.g., vibration as a dominant factor. 

• Local explanations: Details contributions for specific 

anomalies, e.g., sensor readings for a bearing fault. 

• Temporal importance: Tracks feature influence over 

time in time-series data. Incorporating soft computing 

methods from information retrieval [35] may enhance 

adaptive explanation strategies, particularly for 

handling noisy or uncertain sensor data. 

3.4.2 Counterfactual Explanations 
Counterfactual explanations answer “what-if” questions, e.g., 

“If vibration in bearing B2 was 0.1mm/s instead of 0.5mm/s, 

the system would be classified as normal.” These guide 

operators toward corrective actions. 

3.4.3 Natural Language Explanations 
Human-readable explanations are tailored to stakeholder 

roles: 

• Operators: Simplified, e.g., “High vibration in 

bearing B2 suggests bearing degradation. Please 

inspect.” 

• Engineers: Technical, e.g., “Vibration at 500Hz in 

bearing B2 (3.2σ above normal) indicates outer race 

defect, correlated with a 5°C rise in motor M1 

temperature.” 

Explanations combine quantitative analysis with domain 

knowledge, displayed on dashboards. 

3.5 Performance Metrics 
The system is evaluated using: 

• Detection Metrics: 

o Precision, Recall, F1-score 

o Area Under the ROC Curve (AUC-ROC) 

o False Positive Rate (FPR) 

o Time to Detection (TTD) 

• Explainability Metrics: 

o Explanation Consistency: Agreement between 

explanations for similar anomalies (Cohen’s 

kappa). 

o Feature Stability: Consistency of feature 

importance rankings (Spearman rank 

correlation). 

o Human Evaluation: Operator-rated helpfulness 

and clarity via Likert scale.  

4. EXPERIMENTAL SETUP AND 

RESULTS 

4.1 Dataset Description 
The framework was tested on three real-world industrial 

datasets: 

1. CNC Machines [36]: 6 months, 10M points, 200 

anomalies 

2. Process Control [37]: 3 months, 5M points, 150 

anomalies 

3. Power Grid [38]: 4 months, 8M points, 100 faults 

Each dataset includes diverse sensor types and anomaly 

frequencies, ensuring robust evaluation. 

4.2 Experimental Configuration 
• Digital Twin Models: Developed using MATLAB 

Simulink for multi-physics simulations. 

• Machine Learning Components: Implemented in 

Python using scikit-learn (Isolation Forest) and 

TensorFlow (PyTorch for autoencoders, LSTMs). 
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• Real-Time Processing: Handled via Apache Kafka 

for data streaming and Apache Storm for SCADA 

system integration. 

• Visualization: Built with React and D3.js for 

interactive dashboards. 

• Hardware: 8-core server with 32 GB RAM, NVIDIA 

RTX 3060 GPU. 

4.3 Baseline Comparisons 
Baselines were chosen for their industrial relevance and prior 

use in anomaly detection: 

• Statistical Process Control (SPC): Standard for 

industrial monitoring, using control charts. 

• Isolation Forest: Robust for high-dimensional outlier 

detection. 

• Autoencoder: Effective for reconstruction-based 

anomaly detection. 

• LSTM: Captures temporal patterns in time-series data. 

• Ensemble (No DT): Combines Isolation Forest, 

Autoencoder, and LSTM without digital twin 

integration. 

• Cognitive Digital Twin [36]: A 2024 method using 

AI-driven cognitive models for process monitoring. 

These baselines cover statistical, data-driven, and state-of-the-

art approaches, ensuring a fair comparison. 

4.4 Results and Analysis 
The proposed hybrid framework was evaluated against six 

baselines across three real-world datasets: CNC Machines, 

Process Control, and Power Grid. Table 1 summarizes the 

detection performance across methods. 

Detection Performance Trends 

• Across all datasets, the proposed method consistently 

achieved precision above 0.95 and recall above 0.95, 

outperforming traditional methods such as SPC and 

Isolation Forest. 

• Deep learning baselines (Autoencoder, LSTM) 

achieved strong performance but still lagged behind 

the hybrid DT-XAI approach due to their lack of 

contextual awareness. 

• The integration of digital twins improved false 

positive reduction by 78%, significantly lowering 

operator fatigue. 

• ROC-AUC analysis (see Fig. 2) shows that the 

proposed framework maintains a robust detection 

curve across datasets, outperforming both 

conventional and state-of-the-art approaches. 

Statistical Significance 

Paired t-tests on F1-scores across datasets confirmed that the 

improvements of our framework over the Cognitive Digital 

Twin baseline are statistically significant at p < 0.05. This 

demonstrates that the performance gains are not due to random 

variation but stem from the robustness of the hybrid DT-XAI 

design. 

Computational Efficiency 

The hybrid framework achieved real-time operation with an 

average detection latency of 127 ms, enabling deployment in 

industrial scenarios. While high-fidelity digital twin models 

introduced additional GPU load, optimizations such as model 

compression and adaptive updates reduced computational 

overhead. Table 2 provides a comparison of computational 

efficiency across methods. 

Explainability and Human Evaluation 

A human evaluation study involving 20 domain experts (10 

engineers, 10 operators) assessed 50 explanation cases on 

clarity and usefulness. The results are summarized in Table 3. 

Key findings include: 

• Helpfulness: 89% of explanations were rated 

“helpful” or “very helpful.” 

• Root Cause Analysis: Average time for fault 

diagnosis reduced from 30 minutes (baseline) to 7 

minutes with DT-XAI explanations. 

• Operator Confidence: Confidence in anomaly 

alerts increased by 82%, underscoring the 

importance of interpretability in adoption. 

Dataset-wise Observations 

• CNC Machines: Enabled early fault detection; 

anomalies were detected 11 days before failure 

compared to 3 days in traditional methods, 

significantly reducing downtime risk. 

• Process Control: Effectively handled multivariate 

time-series anomalies, highlighting the 

interpretability of SHAP and counterfactual 

explanations for operational engineers. 

• Power Grid: Provided actionable insights into 

voltage fluctuations and load imbalance, helping 

system operators proactively mitigate cascading 

faults. 

The following table summarizes detection performance across 

datasets: 

Table 1. Detection Performance Across Datasets 

Method Precision Recall F1-

Score 

AUC-

ROC 

SPC 0.623 0.781 0.693 0.845 

Isolation Forest 0.745 0.832 0.783 0.889 

Autoencoder 0.821 0.847 0.834 0.912 

LSTM 0.856 0.861 0.859 0.863 

Ensemble (No 

DT) 

0.887 0.892 0.889 0.943 

Cognitive DT 

[36] 

0.910 0.915 0.912 0.950 

Our Method 0.953 0.957 0.955 0.978 

 

Table 2. Computational Efficiency 

Metric Propose

d 

Method 

Cognitiv

e DT 

LST

M 

Autoencod

er 

Avg. 

Detection 

Latency 

127 ms 182 ms 151 

ms 

146 ms 

Memory 

Usage 

2.3 GB 2.8 GB 2.5 

GB 

2.4 GB 

CPU 

Utilizatio

n 

45% 52% 49% 47% 

GPU 

Utilizatio

n 

62% 70% 65% 61% 
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Table 3. Human Evaluation Results 

Metric Score (Likert 1–

5) 

Improvement 

vs. Baseline 

Helpfulness 4.4 / 5 +36% 

Actionability 4.3 / 5 +42% 

Root Cause 

Identification 

4.5 / 5 +38% 

Operator 

Confidence 

4.6 / 5 +82% 

 

 

Fig. 2. Detection Performance Across Methods 

The proposed framework outperforms baselines, achieving 

95.3% precision and a 78% reduction in false positives (FPR 

from 0.156-0.234 to 0.034). The hybrid approach and digital 

twin context-awareness drive these improvements.  

4.4.1 Explainability Assessment 
A human evaluation study involved 20 domain experts (10 

engineers, 10 operators) rating 50 explanations on a 5-point 

Likert scale for clarity and actionability: 

• Helpfulness: 89% rated explanations as “helpful” or 

“very helpful.” 

• Root Cause Identification: 76% reduction in time 

(from 30 to 7 minutes on average). 

• Operator Confidence: 82% increase, per post-study 

survey. 

• Explanation Consistency: 0.92 (Cohen’s kappa, 

indicating high agreement across similar anomalies). 

• Feature Stability: 0.87 (average Spearman rank 

correlation, showing consistent feature importance). 

4.4.2 Computational Performance 
• Detection Latency: 127ms, enabling real-time 

operation. 

• Digital Twin Update Frequency: 10Hz, ensuring 

synchronization. 

• Memory Usage: 2.3GB for the complete system. 

• CPU Utilization: 45% on an 8-core server with 32GB 

RAM. 

4.5 Case Study: Bearing Fault Detection 
Scenario: Progressive bearing degradation in a CNC spindle 

motor. 

Timeline: 14 days from initial symptoms to failure. 

Data: Vibration (0.5 mm/s peak at 500Hz), temperature 

(85°C), current, and acoustic sensors. 

Results: 

• Detection: Our method identified anomalies 11 days 

before failure, compared to 3 days for traditional 

methods. 

• Explanation: “Vibration at 500Hz in bearing B2 

(3.2σ above normal) indicates an outer race defect, 

correlated with a 5°C rise in motor M1 temperature.” 

• Counterfactual: “If vibration was below 0.2 mm/s, 

the system would be normal.” 

 

Fig. 3. Bearing Fault Detection Case Study 

The case study highlights the framework’s ability to provide 

early warnings and actionable insights, reducing downtime. 

 
Fig. 4. ROC Curves Across Datasets 

5. DISCUSSION 

5.1 Key Findings 
The integration of digital twins with XAI yields significant 

benefits: 

1. Improved Accuracy: The hybrid approach achieves a 

95.5% F1-score, outperforming baselines. 

2. Reduced False Positives: Digital twin contextual 

modeling reduces FPR to 0.034, minimizing maintenance 

fatigue. 

3. Enhanced Interpretability: XAI techniques provide 

clear, stakeholder-tailored explanations, with 89% rated 

helpful. 

4. Faster Root Cause Analysis: Explanations reduce 

diagnostic time by 76%, guiding maintenance teams to 

failure modes. 

5.2 Practical Implications 
The framework integrates with SCADA systems via standard 

OPC-UA and MQTT interfaces, enhancing existing industrial 

workflows. It offers: 
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• Reduced Downtime: Early detection prevents failures, 

saving costs. 

• Optimized Maintenance: Schedules align with predicted 

failure modes. 

• Improved Operator Training: Interpretable alerts 

enhance learning. 

• Regulatory Compliance: Transparent decisions support 

ethical AI principles (e.g., fairness, accountability [7]), 

meeting industry standards. 

Adoption barriers, such as operator training, are addressed 

through user-friendly dashboards and guided tutorials. Beyond 

manufacturing, the framework applies to energy and 

automotive sectors, as evidenced by BMW’s digital twin use. 

5.3 Limitations and Mitigation Strategies 
Despite its strong performance, the proposed framework has 

several limitations that must be addressed before large-scale 

industrial deployment. 

• Computational Requirements: 

High-fidelity digital twin models demand substantial 

CPU/GPU resources, which may not be available in all 

industrial settings. 

Mitigation: Lightweight digital twin models, model 

compression, and edge computing can reduce 

computational overhead while maintaining acceptable 

accuracy. 

• Model Accuracy and Drift: 

Digital twin models may diverge from real-world system 

behavior due to evolving conditions or incomplete 

calibration. 

Mitigation: Continuous synchronization using adaptive 

learning and online parameter tuning ensures closer 

alignment between the digital and physical systems. 

• Scalability Across Large Facilities: 

Scaling to factories with thousands of assets can stress real-

time data pipelines and anomaly detection models. 

Mitigation: Cloud-edge hybrid architectures and 

distributed processing can balance workload and maintain 

low-latency detection. 

• Data Quality and Noise: 

Sensor failures or noisy measurements may reduce 

detection accuracy and distort explanations. 

Mitigation: Robust preprocessing pipelines, uncertainty 

quantification, and fault-tolerant sensor fusion strategies 

improve resilience. 

• Human Interpretability Limits: 

While XAI methods increase interpretability, operators 

may still misinterpret complex explanations under stressful 

conditions. 

Mitigation: Designing role-specific explanation 

dashboards (operators vs. engineers) and training programs 

can enhance usability. 

• Security Risks in IIoT: 

Digital twin infrastructures are themselves vulnerable to 

cyberattacks such as data poisoning and adversarial 

perturbations. 

Mitigation: Integration with secure communication 

protocols, adversarial training, and blockchain-based 

verification can safeguard system integrity. 

By acknowledging these challenges and offering mitigation 

strategies, the framework can be adapted into a more resilient, 

scalable, and secure anomaly detection solution for Industry 5.0 

environments. 

5.4 Future Research Directions 
Building on the current results, several promising research 

directions can extend the effectiveness and applicability of the 

proposed framework: 

1. Automated Digital Twin Generation: 

Current digital twin construction requires significant 

domain expertise and manual modeling. Future work 

should explore generative AI and agent-based 

systems to automate model creation, enabling 

scalable twin deployment across diverse industrial 

assets. 

2. Federated and Collaborative Learning: 

To address privacy concerns and enable knowledge 

transfer across multiple factories, federated learning 

can be integrated with digital twins. This would 

allow distributed training of anomaly detection 

models while safeguarding sensitive operational 

data. 

3. Augmented and Virtual Reality (AR/VR) 

Integration: 

Visualization of anomalies and explanations through 

immersive AR/VR interfaces could enhance operator 

training and situational awareness, making decision-

making more intuitive and interactive. 

4. Causal Inference and Knowledge Graphs: 

Combining XAI with causal reasoning frameworks 

and knowledge graphs can improve root cause 

analysis by identifying not only correlations but also 

underlying causal drivers of anomalies in complex 

industrial systems. 

5. Standardized Explainability Benchmarks: 

The absence of common evaluation criteria for 

industrial XAI is a barrier to adoption. Developing 

standardized explainability metrics and benchmarks 

will improve comparability and accelerate industrial 

trust in such systems. 

6. Cybersecurity-Integrated Digital Twins: 

As digital twins expand in scale, they become 

potential attack surfaces for adversarial threats. 

Future studies should investigate secure-by-design 

architectures and blockchain-enhanced auditability 

for anomaly detection pipelines. 

7. Edge-Cloud Hybrid Deployments: 

Deploying DT-XAI frameworks at the edge for low-

latency inference while relying on the cloud for 

large-scale training and updates can provide the 

scalability needed for Industry 5.0 environments. 
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By pursuing these directions, the framework can evolve from a 

laboratory-tested solution to an industry-standard platform, 

enabling resilient, secure, and human-centered anomaly 

detection for next-generation IIoT ecosystems. 

6. CONCLUSION 
This paper introduced a Digital Twin-enabled anomaly 

detection framework enhanced with explainable AI (XAI) 

techniques for Industrial IoT. By integrating model-based and 

data-driven anomaly detection methods with SHAP and 

counterfactual explanations, the framework achieved a 

detection accuracy of 95.3%, reduced false positives by 78%, 

and provided interpretable, stakeholder-specific insights 

validated through a human evaluation study. 

The results highlight three main contributions: 

1. Improved Accuracy and Reliability: The hybrid 

DT-XAI approach consistently outperformed 

baseline methods across diverse industrial datasets. 

2. Enhanced Explainability and Trust: Explanations 

were rated highly by operators and engineers, 

improving confidence and reducing diagnostic time 

by 76%. 

3. Practical Deployability: The framework 

demonstrated low-latency performance suitable for 

real-time IIoT applications. 

At the same time, limitations such as computational overhead, 

scalability, and cybersecurity challenges remain. Addressing 

these issues through lightweight twin modeling, edge-cloud 

hybrid deployment, and secure-by-design architectures will be 

key for adoption in large-scale industrial environments. 

Looking ahead, future work will build upon this foundation by 

exploring: 

• Federated learning for privacy-preserving 

collaboration across factories, 

• AR/VR integration for immersive anomaly 

visualization and operator training, 

• Knowledge graphs and causal inference for deeper 

root cause analysis, 

• Standardized benchmarks for evaluating 

explainability in industrial AI, and 

• Cybersecurity-enhanced digital twins to safeguard 

against adversarial threats. 

By combining these directions, the proposed framework can 

evolve into a resilient, secure, and industry-standard solution 

for anomaly detection in Industry 5.0, advancing predictive 

maintenance and human-centered decision support. 
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