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ABSTRACT 

Food wastage is a pervasive issue in day-to-day life, 

contributing significantly to environmental and economic 

challenges. This research introduces a novel Internet of Things 

(IoT) and Machine Learning (ML)-driven framework aimed at 

addressing food loss in supply chains and everyday settings 

through automated fruit quality monitoring and spoilage 

detection. Utilizing IoT sensors and an ESP32 microcontroller, 

the system collects real-time environmental data such as 

temperature, humidity, and gas emissions to classify fruit 

ripeness stages. By providing timely and accurate predictions, 

this framework enables individuals, retailers, and supply chain 

operators to take proactive measures to reduce wastage. 

Advanced ML models, including Random Forest and 

CatBoost, ensure exceptional accuracy in identifying ripeness 

and spoilage. This system not only minimizes human error but 

also enhances supply chain efficiency and promotes sustainable 

practices. By automating the monitoring process, this research 

offers a scalable and practical solution to prevent food waste, 

ensuring better resource utilization and contributing to global 

food security. Furthermore, it outlines future applications, 

including blockchain integration for end-to-end transparency in 

the food industry. 
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1. INTRODUCTION 

Food waste and loss represent critical global challenges, 

significantly affecting environmental sustainability, economic 

efficiency, and food security, particularly in developing nations 

such as India. Reports indicate that approximately 40% of fruits 

and vegetables are wasted annually due to inefficiencies in 

storage, transportation, and ripeness monitoring [1, 3]. This 

substantial wastage not only contributes to resource scarcity but 

also results in extensive greenhouse gas emissions, particularly 

from perishable agricultural produce like fruits and vegetables 

[2].  

Traditional approaches to assessing fruit ripeness and spoilage, 

such as manual visual inspection, are labor intensive, 

subjective, and error-prone. These methods lead to increased 

spoilage rates, inefficiencies in supply chain operations, and 

diminished consumer satisfaction. Bananas, as an example, are 

particularly susceptible due to their rapid ripening process, 

necessitating timely interventions to minimize waste [4, 8]. 

The integration of Internet of Things (IoT) and Machine 

Learning (ML) technologies provides new opportunities to 

address these challenges. IoT enables real-time data collection, 

such as temperature, humidity, and gas emissions, while ML 

models facilitate automated and accurate quality monitoring [6, 

9]. Studies have demonstrated the effectiveness of ML-based 

image classification techniques for detecting fruit ripeness and 

freshness [5, 7]. Despite these advancements, existing solutions 

often face barriers, including high implementation costs and 

limited scalability, particularly in small-scale and resource-

constrained settings [1, 3]. 

This research aims to overcome these challenges by proposing 

a novel IoT-enabled, ML-driven framework for real-time fruit 

quality monitoring, focusing on bananas as a case study. The 

framework integrates an ESP32 microcontroller with cost-

effective sensors, including the SHT40 (to measure 

temperature and humidity) and the SGP30 (to detect gas 

emissions), for environmental data collection. Advanced ML 

models, such as Random Forest and CatBoost, are employed to 

classify ripeness stages and detect spoilage, automating the 

entire process to reduce human error, optimize supply chain 

efficiency, and promote sustainability. 

By bridging the gap between affordability and technological 

innovation, the proposed system offers a practical and scalable 

solution to reduce post-harvest losses and ensure better 

resource utilization. Furthermore, it lays the groundwork for 

potential blockchain integration to enhance traceability and 

accountability across the food supply chain. This study 

contributes to addressing global food waste challenges by 

offering a framework applicable to diverse agricultural 

contexts, from small local markets to industrial supply chains. 

The aim of this research is to develop a cost-effective, IoT-

enabled, and machine-learning-driven framework for real-time 

fruit quality monitoring, with a focus on classifying ripeness 

stages and detecting spoilage. By leveraging affordable 

hardware and advanced ML algorithms, the proposed system 

seeks to address inefficiencies in the agricultural supply chain, 

reduce post-harvest losses, and promote sustainable practices 

in food production and distribution. 

The following are the key contributions of this work: 

1. Development of an IoT-Enabled Framework for Real-

Time Monitoring:The research introduces an innovative 

system combining the ESP32 microcontroller with SHT40 

(temperature and humidity) and SGP30 (gas emissions) sensors 

to collect critical environmental data in real time, enabling 

accurate monitoring of fruit quality. 

2. Integration of Advanced Machine Learning Models:The 

study leverages state-of-the-art machine learning models, 

including Random Forest and CatBoost, to classify fruit 

ripeness stages and detect spoilage with high accuracy, 
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minimizing the reliance on subjective and error-prone manual 

inspections. 

3. Focus on Cost-Effectiveness and Scalability:The proposed 

solution prioritizes affordability and ease of deployment, 

making it suitable for both small-scale and large-scale 

agricultural operations, particularly in resource-constrained 

settings. 

4. Targeted Application on High-Wastage Crops:Bananas 

are used as the focal crop for testing the system's capabilities, 

illustrating its potential impact on mitigating waste for highly 

perishable fruits that are integral to global agriculture. 

5. Potential for Supply Chain Optimization and 

Sustainability:By automating ripeness monitoring and 

enabling timely interventions, the framework reduces post-

harvest losses, optimizes supply chain efficiency, and supports 

sustainable agricultural practices. 

2. LITERATURE SURVEY 
The integration of Internet of Things (IoT) and Machine 

Learning (ML) technologies has revolutionized the assessment 

of fruit ripeness and quality. IoT enables real-time data 

collection, while ML provides efficient and accurate analysis 

of complex datasets. Various studies have explored different 

methodologies and approaches to enhance the monitoring of 

fruit ripeness and spoilage. The following sections summarize 

the findings, methodologies, and outcomes of significant 

investigations. 

Table 1: IoT-Based Investigations for Fruit Ripeness and 

Quality 

 

Case Study  
Objectives & Outcomes References 

IoT-Based Fruit 

Quality Inspection 

and Lifespan 

Detection System 

Proposed a system for 

monitoring fruit quality 

and estimating lifespan 

using IoT-enabled 

sensors. 

[15] 

E-nose: A Low-

Cost Fruit 

Ripeness 

Monitoring System 

Developed an electronic 

nose using low-cost 

sensors to monitor fruit 

ripeness with 97.05% 

accuracy. 

[16] 

Banana ripeness 

stage 

identification: a 

deep learning 

approach 

Develop a Deep Learning 

Model for Banana 

Ripeness Detection. 

[14] 

Developing an IoT 

and ML-Driven 

Platform for Fruit 

Ripeness 

Evaluation and 

Spoilage Detection 

Focused on bananas to 

monitor ripeness stages 

and predict spoilage 

using IoT sensors and 

ML algorithms. 

[13] 

 

Table 1 represents various IoT-based investigations focused on 

assessing fruit ripeness and quality. It outlines the technologies, 

methods, and parameters utilized for real-time monitoring and 

analysis of fruit characteristics, ensuring optimal harvest timing 

and product quality. 

Table 2 presents IoT and machine learning (ML)-based 

investigations for assessing fruit ripeness and quality. It details 

the integration of IoT devices with ML algorithms to enhance 

the accuracy and efficiency of fruit quality assessments and 

ripeness predictions. 

To address these limitations, this study proposes a 

comprehensive IoT and ML-based framework for realtime 

monitoring of fruit ripeness and spoilage, focusing on bananas 

as a case study. The framework integrates IoT sensors (e.g., 

SHT40, MQ gas sensors) with advanced ML algorithms (e.g., 

Random Forest, CatBoost) 

• Enhance Scalability: Implement solutions suitable for retail 

trays, cold storage, and supply chain logistics. 

• Improve Accuracy: Utilize advanced ML models for precise 

ripeness classification based on gas emissions, temperature, 

and humidity data. 

• Reduce Food Waste: Provide actionable insights for supply 

chain optimization and reduce spoilage losses. 

Table 2: IoT and ML-Based Investigations for Fruit 

Ripeness and Quality 

 

Case Study  Objectives & 

Outcomes 

Referen

ces 

 

Detection of 

Freshness of Fruits 

Using Machine 

Learning Techniques 

Proposed ML 

techniques for 

identifying freshness in 

fruits to improve food 

quality management. 

[7] 

Classification of 

Cape Gooseberry 

Fruit According to 

Ripeness Levels 

Employed machine 

learning and color 

spaces to classify cape 

gooseberries by ripeness 

stages. 

[6] 

Tomato 

Classification Using 

K-NN, MLP, and K-

Means Clustering 

Utilized machine 

learning to classify 

tomatoes based on 

organoleptic maturity 

using color analysis. 

[8] 

Pixel-Based Color 

Image Classification 

for Tomato Ripeness 

Developed a machine 

learning-based system 

to detect tomato 

ripeness stages using 

pixel-based image data. 

[9] 

Fruit Ripeness 

Detection Using 

Convolutional Neural 

Networks 

Employed CNN models 

for ripeness detection to 

improve accuracy and 

reduce human error in 

manual grading. 

[12] 

Fruit Ripeness 

Detection Method 

Using Deep Learning 

Adapted deep learning 

models to enhance 

ripeness stage 

classification for 

multiple fruits. 

[11] 

Ripe Fruit Detection 

and Classification 

using Machine 

Learning. 

Applied ML algorithms 

like K-NN, SVM, and 

Decision Trees for 

ripeness classification. 

[10] 

 

3. METHODOLOGY 
The proposed framework integrates IoT hardware, cloud-based 

data storage, machine learning (ML) algorithms, and supply 

chain management strategies to provide an automated solution 

for monitoring fruit quality. This scalable and modular system 

enhances storage optimization, reduces fruit wastage, and 

facilitates better decision-making across the supply chain. The 
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framework is inspired by advancements in IoT and ML 

latforms for fruit ripeness evaluation and spoilage etection, 

such as the study conducted by [14], focusing on bananas as a 

case study. 

Figure 1 demonstrates the IoT-based fruit sensing model 

designed for optimizing supply chain processes. It highlights 

the workflow, including sensor-based data collection, cloud 

integration for data storage and analysis, an machine learning-

driven predictions for fruit quality assessment. 

 

 
 

Figure 1: IoT-Based Fruit Sensing Model for Supply Chain Optimization 

 

3.1 Sensor Node Design: The sensor node is designed to 

monitor environmental parameters that influence fruit ripeness 

and spoilage .It integrates the following components for 

efficient data collection and wireless communication: 

Hardware Components: 

• ESP32 Microcontroller: Functions as the core processing 

and communication unit, offering builtin Wi-Fi capabilities for 

seamless data transmission. It serves as the foundation for 

managing and processing data collected from the connected 

sensors. 

• SHT40 Sensor: Measures temperature and humidity with 

high precision using capacitive sensing technology. The 

SHT40 is interfaced with the ESP32 microcontroller via the 

I2C protocol, enabling efficient retrieval of data. Temperature 

and humidity readings are processed using mathematical 

formulas to derive relative humidity and temperature values. 

• SGP30 Sensor: A compact and advanced gas sensor designed 

for detecting Total Volatile Organic Compounds (TVOC) and 

Carbon Dioxide Equivalent (CO2eq). These measurements are 

crucial indicators of fruit ripeness and spoilage. The SGP30 is 

also connected to the ESP32 using the I2C protocol, ensuring 

accurate and efficient gas monitoring. 

3.2 Data Collection: 

The sensor node collects real-time environmental parameters 

such as temperature, humidity, and gas concentrations emitted 

during the ripening process. Using the ESP32's built-in Wi-Fi 

capabilities, the captured data is transmitted wirelessly to the 

cloud platform for further analysis and storage. 

Connectivity and Functionality: 

The ESP32 microcontroller not only processes the data from 

the sensors but also handles wireless communication with 

cloud platforms, enabling real-time monitoring and storage. 

The firmware for the sensor node is developed and deployed 

using the Arduino IDE, providing a robust system for managing 

and transmitting the collected data. 

Experimental Setup: 

The experimental setup involved placing the sensor node 

within a controlled environment, such as a plastic container, to 

monitor the gases emitted by fruits like bananas during 

ripening. This design highlights the versatility and efficiency 

of the sensor node, making it suitable for IoT-based 

applications in fruit quality monitoring and supply chain 

optimization. 

 

Figure 2: Green Banana with Gas Sensor Setup, ESP32 

Pinout Diagram 

Figure 2 shows a schematic representation of the sensor node 

setup, highlighting the SGP30 gas sensor and the SHT40 

temperature/humidity sensor connected to the ESP32 

microcontroller. This configuration enables real-time data 

acquisition for monitoring environmental parameters critical to 

fruit ripeness detection. 

Please use a 9-point Times Roman font, or other Roman font 

with serifs, as close as possible in appearance to Times Roman 
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in which these guidelines have been set. The goal is to have a 

9-point text, as you see here. Please use sans-serif or non-

proportional fonts only for special purposes, such as 

distinguishing source code text. If Times Roman is not 

available, try the font named Computer Modern Roman. On a 

Macintosh, use the font named Times.  Right margins should 

be justified, not ragged.  

3.3 ThingSpeak Cloud Platform 

The collected data is transmitted wirelessly to a cloud-based 

platform, ensuring secure and efficient storage and real-time 

accessibility. ThingSpeak acts as the primary data storage and 

management system, enabling seamless integration and 

analysis of both real-time and historical data from the sensor 

nodes. This allows stakeholders to track trends, identify 

patterns, and make data-driven decisions regarding fruit quality 

and storage conditions. The platform provides interactive and 

user-friendly dashboards, equipped with visually appealing 

graphs and charts, to monitor key parameters such as 

temperature, humidity, and gas concentrations in real time. 

Customizable alerts and notifications can be configured to 

inform users when critical thresholds are breached, ensuring 

timely action to prevent spoilage and optimize the supply chain. 

Moreover, ThingSpeak supports API integration, enabling 

compatibility with machine learning models and other 

analytical tools for advanced insights and automation. This 

centralized approach facilitates efficient data handling and 

contributes to a scalable and robust monitoring system for 

agricultural applications. 

3.4 Data Pre-processing and Analysis 

This research employed comprehensive data pre-processing 

and analysis methods to ensure the quality and reliability of the 

dataset, enabling an in-depth exploration of the banana ripening 

process and the utility of sensor-based monitoring systems in 

agriculture. The raw sensor data was meticulously cleaned, 

standardized, and transformed into a well-structured format 

suitable for both statistical analysis and machine learning 

model development. 

• Outlier Detection and Handling: Outliers were identified 

using the Interquartile Range (IQR) method. This involved 

computing the IQR and removing data points lying outside the 

acceptable range, thus preventing skewed analysis. 

• Date Standardization: Timestamps were reformatted into a 

uniform structure, facilitating accurate time-series analysis and 

synchronization across multiple sensors. 

• Handling Missing Values: Missing entries were 

systematically identified and addressed, either through 

interpolation or removal, ensuring that the resulting dataset was 

both complete and reliable for subsequent analyses. 

• Labeling Ripeness Stages: Based on sensor readings (e.g., 

TVOC, CO2) and visual inspections (e.g., peel color, texture), 

bananas were assigned to one of three ripeness stages: 

o Not Ripe: 

▪ Visual Indicators: Greenish peel, firm texture. 

▪ Sensor Readings: Low TVOC levels and minimal CO2. 

o Ripe: 

▪ Visual Indicators: Bright yellow peel, softer yet still relatively 

firm texture. 

▪ Sensor Readings: Moderate increases in TVOC and CO2. 

o Spoiled: 

▪ Visual Indicators: Brown spots or fully brown peel, very soft 

and mushy texture. 

▪ Sensor Readings: Significantly elevated TVOC and CO2 

levels. 

3.5 Machine Learning Module: The machine learning module 

is designed to classify fruit ripeness into 

three categories—Not Ripe, Ripe, and Spoiled—using sensor 

data (e.g., temperature, humidity, gas emissions). This section 

outlines each phase of the process, from data preparation to 

final evaluation. 

3.5.1. Data Preparation and Labeling 

Relevant variables (temperature, humidity, CO₂, TVOC, etc.) 

were chosen based on their correlation with the ripening 

process. Each data instance was assigned one of three labels—

Not Ripe, Ripe, or Spoiled— using both sensor readings and 

visual inspections. 

5.3.2. Splitting the Dataset 

• Train-Test Split: The labeled dataset was divided into 

training (e.g., 80%) and testing (e.g., 20%) subsets. 

• Cross-Validation: To enhance reliability, k-fold cross-

validation was employed. This technique systematically 

partitions the training data into k subsets (folds), ensuring every 

data point is used for both training and validation at least once. 

5.3.3. Model Selection and Hyperparameter Tuning: 

To identify the most accurate and efficient approach for 

ripeness classification, multiple algorithms were explored, 

including Random Forest, Support Vector Machines (SVM), 

CatBoost, K-Nearest Neighbors, (KNN), XGBoost, Decision 

Tree, Logistic Regression, and Naive Bayes. 

• Hyperparameter Tuning: Grid search and randomized 

search methods were employed to determine the optimal 

combination of parameters for each algorithm. For instance, 

the number of trees in Random Forest, kernel type in SVM, 

and learning rate in boosting algorithms were finetuned to 

enhance performance. 

• Scoring Metrics: The models were evaluated using 

multiple metrics such as accuracy, precision, recall, and F1-

score. This multi-dimensional evaluation ensured a 

comprehensive and balanced assessment of each algorithm's 

performance, providing insights into their strengths and 

limitations 

5.3.4. Training and Evaluation Process 

Table 3: Model Performance Overview 

Case Study  
Objectives 

& 

Outcomes 

References 

Random 

Forest 
93.4 

Ensemble method that handles 

non-linear relationships well; 

good at managing diverse 

feature sets. 

SVM 90.1 

Effective for well-defined class 

boundaries; requires careful 

kernel choice and parameter 

tuning. 
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CatBoost 94.7 

Handles categorical data 

effectively; often achieves high 

accuracy with minimal tuning. 

KNN 88.6 

Easy to implement; 

performance depends heavily 

on choice of k and distance 

metric. 

XGBoost 92.8 

Robust gradient-boosting 

method; efficient for larger 

datasets; can require detailed 

hyperparameter tuning. 

Random 

Forest 
93.4 

Ensemble method that handles 

non-linear relationships well; 

good at managing diverse 

feature sets. 

SVM 90.1 

Effective for well-defined class 

boundaries; requires careful 

kernel choice and parameter 

tuning. 

During this phase, each algorithm was trained on the labeled 

dataset and validated using either a hold-out test set or cross-

validation. The overall accuracy in classifying the three 

ripeness stages, along with key observations. Simpler models 

like Logistic Regression and Naive Bayes were easier to train 

but lagged in accuracy for this dataset. 

5.3.5. Supply Chain Management: The system incorporates 

features to optimize supply chain operations: 

• Real-Time Monitoring: 

Tracks fruit quality at every stage of the supply chain, from 

storage to delivery. 

• Optimized Storage: 

Dynamic adjustments to storage parameters such as 

temperature and humidity are made to preserve fruit freshness. 

• Inventory Management: 

Fruits are categorized based on ripeness to prioritize 

distribution and avoid spoilage. 

• Logistics Optimization: 

Predictive analytics are used to determine the optimal time for 

transportation and distribution. 

5.3.6. User Interface: The user interface ensures seamless 

interaction with the system: 

• Applications: 

Both mobile and web-based apps are provided for stakeholders, 

offering insights into fruit quality and trends. 

• Notifications: 

Alerts (via SMS and email) are sent when specific thresholds, 

such as high CO2 levels indicating spoilage, are breached. 

 

This framework serves as an end-to-end solution for fruit 

quality monitoring, paving the way for enhanced decision-

making and sustainable supply chain practices. 

 

 

 

 

 

4. RESULTS 
Figure 3 presents the confusion matrix for the best-performing 

model, CatBoost. The diagonal elements represent correct 

predictions for each ripeness class (Not Ripe, Ripe, Spoiled). 

Notably, the model correctly identified a significant portion of 

“Spoiled” fruits (51 correct classifications), indicating strong 

sensitivity to higher CO₂ and TVOC levels associated with 

spoilage. 

 

Figure.3:  

 However, a smaller number of misclassifications occurred in 

the “Not Ripe” and “Ripe” classes, suggesting these categories 

may share overlapping features in certanges of gas sensor 

readings. 

As shown in Figure 4, multiple classification algorithms 

(CatBoost, Random Forest, KNN, XGBoost, Decision Tree, 

Naive Bayes, Logistic Regression, and SVM) were evaluated 

on the fruit ripeness dataset. CatBoost achieved the highest 

accuracy, surpassing 90%, while SVM had the lowest 

performance among the tested models. These findings 

demonstrate that ensemble-based methods (CatBoost and 

Random Forest) generally perform better for this particular 

dataset, likely due to their robustness against diverse feature 

distributions. 

Figure 5 depicts synthetic temperature data over 300 samples, 

illustrating random fluctuations between 20°C and 30°C. 

Although temperature was not directly used for classification 

in this synthetic scenario, real-world systems often rely on 

temperature as a key variable influencing the rate of fruit 

ripening. Monitoring temperature trends can help stakeholders 

intervene proactively to maintain optimal storage conditions. 

 

Figure 4: Comparison of Model Accuracies H2, Ethanol, 

TVOC, CO2) 
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Figure 5 provides a summary of how the best-performing 

model’s predictions can guide routing and storage choices. In 

this example, a large number of batches are classified as 

“Spoiled,” leading to a decision of “Discard/Compost.” Only a 

small portion are sent to “Short-Term Storage,” while some are 

routed to the “Nearest Market” based on the “Ripe” 

classification. Although this is a simplified illustration, it 

demonstrates how predictive analytics can be integrated into 

supply chain workflows to minimize waste and optimize 

resource allocation. 

 

Figure 4: Supply Chain Management Decisions 

5.CONCLUSION 
In conclusion, this research presents an innovative and scalable 

approach to reducing food waste through the integration of IoT 

and Machine Learning technologies. By leveraging real-time 

environmental data and advanced ML algorithms, the proposed 

framework efficiently monitors fruit quality, detects spoilage, 

and predicts ripeness, ultimately enhancing supply chain 

operations and minimizing food wastage. The system's 

automation reduces human error and ensures proactive 

decision-making, offering a practical solution for retailers, 

consumers, and supply chain operators alike. Furthermore, the 

potential for future advancements, such as blockchain 

integration, promises even greater transparency and traceability 

within the food industry. Overall, this research contributes to 

the optimization of resource utilization, promotes sustainable 

practices, and supports the broader goal of global food security. 

6. REFERENCES 

[1] Sahoo, A., Dwivedi, P., Madheshiya, U., Kumar, R.K., 

Sharma, S., Tiwari, Insights into the management of food 

waste in developing countries: with special reference to 

India, Environ. Sci. Pollut. Res., 31(12), 17887–17913 

(2024). https://doi.org/10.1007/S11356-023-27901-6. 

[2]  Guo, X., Broeze, J., Groot, J.J., Axmann, H., Vollebregt, 

M., A worldwide hotspot analysis on food loss and waste, 

associated greenhouse gas emissions, and protein losses, 

Sustainability, 12(2020), 7488. 

https://doi.org/10.3390/SU12187488. 

[3] Gustavsson, J., Cederberg, C., Sonesson, U., Global food 

losses and food waste (2011). 

[4] Onwude, D.I., Chen, G., Eke-Emezie, N., Kabutey, A., 

Khaled, A.Y., Sturm, B., Recent advances in reducing 

food losses in the supply chain of fresh agricultural 

produce, Processes, 8(11), 1431 (2020). 

https://doi.org/10.3390/PR8111431. 

[5] Kumar, V., Sharma, K., Kedam, N., Patel, A., Kate, T.R., 

Rathnayake, U., A comprehensive review on smart and 

sustainable agriculture using IoT technologies, 

https://doi.org/10.1016/j.atech.2024.100487. 

[6] Castro, W., Oblitas, J., De-La-Torre, M., Cotrina, C., 

Bazan, K., Avila-George, H., Classification of cape 

gooseberry fruit according to its level of ripeness using 

machine learning techniques and different color spaces, 

IEEE Access, 7, 27389–27400 (2019). 

https://doi.org/10.1109/ACCESS.2019.2898223. 

[7] Jayasinghe, P.K.S.C., Sammani, S., Detection of 

freshness of the fruits using machine learning techniques, 

(2022), Accessed: Aug. 07, 2024. [Online]. Available: 

http://ir.lib.seu.ac.lk/handle/123456789/6413. 

[8] Pacheco, W.D.N., López, F.R.J., Tomato classification 

according to organoleptic maturity (coloration) using 

machine learning algorithms K-NN, MLP, and K-Means 

clustering, 22nd Symposium on Image, Signal 

Processing and Artificial Vision, STSIVA 2019 - 

Conference Proceedings (Apr. 2019). 

https://doi.org/10.1109/STSIVA.2019.8730232. 

[9] Garcia, M.B., Ambat, S., Adao, R.T., "Tomayto, 

tomahto": a machine learning approach for tomato 

ripening stage identification using pixel-based color 

image classification. 

[10] Munsayac, A.D., AfricaDe, Ripe Fruit Detection and 

Classification using Machine Learning, 

https://doi.org/10.30534/ijeter/2020/60852020. 

[11] Zhang, W., A Fruit Ripeness Detection Method using 

Adapted Deep Learning-based Approach, 

https://doi.org/10.14569/IJACSA.2023.01409121. 

[12] Setiawan, F.B., Adipradana, C.B., Fruit Ripeness 

Detection Using Convolutional Neural Network, 

https://doi.org/10.33387/protk.v10i1.5549. 

[13] Rajini, M., Voola, P., Developing an IoT and ML-driven 

platform for fruit ripeness evaluation and spoilage 

detection: A case study on bananas, 

https://doi.org/10.1016/j.prime.2025.100896. 

[14] Saranya, N., Srinivasan, K., Banana ripeness stage 

identification: a deep learning approach, 

https://doi.org/10.1007/s12652-021-03267-w. 

[15] Saha, A., Ali, L., IoT Based Fruit Quality Inspection and 

Lifespan Detection System, 

https://doi.org/10.1109/ICCUBEA58933.2023.1039225

4. 

[16] Tyagi, P., Semwa, R., Tiwary, U.S., E-nose: a low-cost 

fruit ripeness monitoring system, 

https://doi.org/10.4081/jae.2022.1389. 

[17] Fernandes, D.L.A., Oliveira, J.A.B.P., Gomes, 

M.T.S.R., Detecting spoiled fruit in the house of the 

future, https://doi.org/10.1016/j.aca.2008.01.068.

 

IJCATM : www.ijcaonline.org 


