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ABSTRACT 

High-dimensional data often leads to increased computational 

complexity and reduced model performance due to the curse of 

dimensionality. This study introduces an effective feature 

selection and classification framework that integrates the 

Earthworm Optimization Algorithm (EWA), Principal 

Component Analysis (PCA), and supervised classifiers, K 

Nearest Neighbors (KNN) and Support Vector Machine 

(SVM). EWA, a bio-inspired metaheuristic based on the 

foraging behavior of earthworms, efficiently identifies optimal 

feature subsets. PCA is then applied to further minimize 

dimensionality while preserving essential variance. The 

proposed EWA-PCA was evaluated on 19 benchmark datasets 

using stratified 10-fold cross-validation and standard 

classification metrics. In the KNN average accuracy of 19 

datasets, using the original feature set achieved 77.65% of 

accuracy, while the EWA-PCA achieved better 86.56%; 

similarly, in SVM, 84.43% of accuracy was achieved in the 

original feature, while the EWA-PCA achieved 88.10%.   

Results show that EWA-PCA consistently outperforms 

conventional and modern feature selection techniques, 

including Chi2, ReliefF, SIFS, mRMR, ATFS, and EmPo. 

EWA-PCA achieved better classification accuracies with KNN 

and SVM, demonstrating high stability and substantial feature 

reduction. The findings validate EWA-PCA as a scalable, 

accurate, and efficient solution for high-dimensional data 

classification. 

Keywords 

Feature selection, Earthworm Optimization Algorithm, 

Principal Component Analysis, Dimensionality reduction. 

1. INTRODUCTION 
The vast amount of input features in high-dimensional data [1] 

has made machine learning [2] difficult owing to its rapid 

increase. To increase algorithm efficiency and forecast 

accuracy, feature selection (FS) [3,4] is a critical pre-

processing step that eliminates redundant, noisy, or 

unnecessary input. It enhances model simplicity, 

generalization, and learning speed. FS techniques involve 

trade-offs between subset size and performance, satisfying 

evaluation necessities, and enhancing an evaluation measure. 

While Subset Evaluation selects feature subsets using a search 

approach, Individual Evaluation ranks features according to 

their significance. Selecting appropriate features is essential to 

prevent issues in models, particularly when managing noisy or 

irrelevant data and when the feature count surpasses the sample 

size. 

Dimensionality reduction [5] uses feature extraction [6] or FS 

to eliminate duplicate and noisy features. Through the use of 

methods like Principal Component Analysis (PCA) [7], Linear 

Discriminant Analysis (LDA), and Canonical Correlation 

Analysis (CCA), feature extraction combines original features 

and converts data into a lower-dimensional space. Distinguish 

between FS techniques that are independent of classifiers and 

those that are dependent on classifiers. Filter methods [8] assess 

the significance of features by analyzing their inherent 

properties, like statistical correlations with the output variable, 

independently of any learning algorithm, like Laplacian score 

[9], variance, chi-squared, Cosine similarity [10], and mutual 

information [11], etc.  Wrapper methods [12] utilize a 

predictive model to assess feature subsets by training and 

testing the model across various combinations. While they can 

be computationally intensive, they have the potential to identify 

optimized subsets effectively. Embedded methods [13] 

integrate FS directly into the model training process. Examples 

include decision trees or regularization techniques like Lasso. 

They achieve a balance between computational efficiency and 

predictive power, although their applicability may be limited in 
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some contexts [14]. 

This paper presents a supervised model that integrates machine 

learning, dimensionality reduction, and optimization for 

effective FS and classification. The Earthworm Optimization 

Algorithm (EWA) [15] is employed to identify the most 

relevant features that enhance model performance. Principal 

Component Analysis (PCA) is applied to further reduce 

dimensionality while preserving essential variance. 

Classification is conducted using Support Vector Machine 

(SVM) and K Nearest Neighbors (KNN) with stratified k-fold 

cross-validation. Performance is evaluated through accuracy, 

confusion matrices, and classification reports. Comparative 

analysis using bar charts and PCA projections demonstrates 

improved classification accuracy (CA) and reduced 

computational complexity for high-dimensional data. The 

contributions of this work are as follows: 

• Introduce a hybrid feature selection method that 

combines Earthworm Optimization Algorithm 

(EWA) and Principal Component Analysis (PCA) to 

optimally select the most relevant features and 

reduce dimensionality while preserving 

classification performance  

• The proposed EWA-PCA method employs cross-

validation with KNN/SVM classifiers to evaluate 

each candidate feature subset, ensuring that only 

high-quality feature sets are retained, ultimately 

boosting predictive accuracy. 

• By evaluating performance on a broad mix of 19 

datasets, some binary and others multi-class, that 

demonstrate the method’s stability and adaptability. 

Robustness is evidenced through consistently high 

accuracy metrics across varied data types and 

complexities. 

• We benchmarked the proposed EWA–PCA against 

eight well-known feature-selection techniques. 

Across 19 datasets, the proposed framework 

consistently outperformed all competitors in 

classification accuracy, showcasing its superior 

efficacy. 

The paper is structured in the following manner. Section 2 

provides a concise overview of various ensemble FS 

techniques. Section 3 presents the EWA-PCA. Section 4 

illustrates the effectiveness and efficiency of the method 

through comprehensive experiments, in Section 5 describes the 

Results and Discussion. The last section contains the 

Conclusion and Future Work. 

2. Literature Review  
The objective of FS is to remove a significant number of 

irrelevant and redundant features. Methods for FS that utilize 

filtering techniques demonstrate remarkable efficiency and are 

adept at managing high-dimensional datasets with speed. In 

supervised learning, these techniques evaluate features 

according to their significance in relation to class labels. 

Common techniques for ranking features encompass the 

Pearson correlation coefficient and present a framework based 

on consensus groups aimed at enhancing the stability of FS in 

high-dimensional, small-sample datasets. 

ReliefF [16]. To obtain stable and reliable FS in high-

dimensional data, this research suggests an ensemble FS 

method that evaluates the dependability of individual feature 

pickers. 

The mRMR [17] has established itself as a fundamental method 

in the domain of FS. By skillfully integrating the principles of 

maximum relevance and minimum redundancy through mutual 

information, it addresses critical challenges related to the 

analysis of high-dimensional datasets. 

The SIFS [18] technique offers a robust method for supervised 

feature ranking in high-dimensional datasets. Through the 

integration of label information within a graph-based 

framework and the application of infinite path analysis to 

evaluate feature significance, SIFS enhances the detection of 

informative and non-redundant features for classification tasks. 

ATFS [19] is specially designed for complex high-dimensional 

settings. Their method improves the selection process by 

integrating rapid, non-dominated sorting with ensemble 

learning techniques, resulting in greater robustness and 

flexibility. 

The proposed approach, EmPo [20], presents a compelling and 

resilient strategy for feature reduction. This method effectively 

tackles several frequently opposing goals at once while 

utilizing a variety of different FS techniques, offering a 

thorough resolution to the challenges posed by high-

dimensional data. As a result, it constitutes an important 

advancement in the evolution of optimization-focused FS 

techniques within the realm of machine learning. 

Wu et al. employed five established filter FS algorithms, 

including Chi-square [21] and the F test, for FS. 

The FSM [22] method improves classification by integrating 

various feature subsets to obtain complementary information. 

This fusion-based method enhances robustness, minimizes 

redundancy, and guarantees improved generalization, 

representing a significant advancement in ensemble FS for 

high-dimensional data classification challenges. 

3. Proposed Method 
In this section present the structure of the proposed FS and 

classification approach based on the Earthworm Optimization 

Algorithm (EWA). To enhance prediction performance, the 

technique combines FS, classification, class imbalance 

management, and data preparation. The EWA-PCA for FS and 

performance measurement is shown in Figure 1. The input 

dataset is first gathered and normalized to make sure all 

features are on the same scale, which is necessary for accurate 

classifier performance. To identify the most relevant features 

after normalization, the Earthworm Optimization Algorithm 

(EWA), a metaheuristic algorithm inspired by natural 

phenomena, is employed. SVM and KNN are two classifiers 

used to guide this optimization process and assess the efficacy 

of specific feature subsets. The objective is to select the best 

features in order to enhance CA. Principal Component Analysis 

(PCA) is used to further reduce dimensionality by combining 

related features into a smaller collection of uncorrelated 

components after EWA has completed the initial selection. 

This two-step reduction procedure improves the model's 

performance and computing efficiency. Finally, use the refined 

set of features to evaluate classifier performance using standard 

metrics, thereby validating the effectiveness of the proposed 

approach. 
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Fig 1: Flow chart of EWA-PCA 

3.1 Earthworm Optimization Algorithm 

(EWA) 
The EWA is a metaheuristic optimization method inspired by 

nature that imitates how earthworms travel through soil. It is 

intended to solve intricate optimization issues by mimicking 

the coordinated movements, expansions, contractions, and 

food-seeking behaviors of earthworms. This algorithm's 

exploration and exploitation capabilities make it especially 

useful for solving high-dimensional and nonlinear optimization 

problems. In EWA, earthworms are shown as possible 

solutions in a search space. Mathematical formulae that balance 

exploration (finding new answers) and exploitation (building 

upon current best solutions) govern each earthworm's position 

and movement. The random walk and the guided movement are 

the two movements that the algorithm mainly simulates. While 

controlled movement helps earthworms to converge towards 

favorable locations based on prior results, the random walk 

gives them more freedom to explore the search space, thus 

increasing the optimization process's efficiency. 

Expansion-Contraction: To investigate new areas, earthworms 

travel at random within a predetermined range: 

 Xi
t+1 = Xi

t  + α ⋅ ( rand − 0.5)         (1) 

where Xit+1 is the earthworm's updated location, Xit is its 

current position, 𝛼 is the step size, and 𝑟𝑎𝑛𝑑 is a random value 

between 0 and 1. 

Peristaltic Movement: Earthworms move about according to 

the most effective solutions they discover: 

Xi
t+1 = Xi

t + β ⋅ (Xt
best

 – Xi
t)      (2) 

where   Xt
best is the best solution found so far, and β\betaβ is a 

contraction coefficient that controls convergence. By 

dynamically modifying search agents, avoiding local optima, 

and providing global convergence, EWA efficiently resolves 

optimization issues. It is appropriate for FS, machine learning, 

and engineering applications because of its simplicity and 

reliability. EWA performs better in high-dimensional 

optimization challenges by using mathematical modeling and 

population-based search methodologies. All things considered, 

it offers a successful, naturally inspired method for accurately 

and computationally efficiently resolving challenging 

optimization problems.  

      Experimented with several EWA settings, including step 

sizes of 0.1, 0.01, and 0.001 and population sizes ranging from 

10 to 100 (in increments of 10) in order to improve the 

parameter selections. For the majority of datasets, the best 

results were consistently obtained with a population size of 60 

and a step size of 0.1. 

 

Table1. EWA Parameter 

Description Value 

Population size 60 

Maximum 

iteration 
50 

Step size 0.1 

Patience 10 

Early Stopping 10 

Classifier 
SVM (Kernel = ‘rbf’) and KNN 

(k = 3) 

 

Adaptive step size:  Decreases over iterations using: 

Adaptive step size:  Decreases over iterations using: 

𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞𝐬𝐭𝐞𝐩 = 𝐬𝐭𝐞𝐩𝐬𝐢𝐳𝐞×   (𝟏− 
𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧

𝐦𝐚𝐱𝐢𝐭𝐞𝐫
)  

            (3)              

Probability transformation with a sigmoid function: 

𝑷 =  
𝟏

𝟏+𝒆𝒏𝒆𝒘 _ 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏
             (4) 

Termination Condition: Either max_iter is reached or early 

stopping is triggered. 

These parameters control the exploration-exploitation balance 

in the Earthworm Optimization process for FS. 

3.2 Principal Component Analysis (PCA) 
A popular method for resolving these problems is Principal 

Component Analysis (PCA), which converts the information 

into a lower-dimensional space while maintaining the majority 

of the variation. To maximize model performance and 

minimize feature dimensionality while maintaining crucial 

information, the provided method applies PCA to a chosen 

subset of features. Only the chosen features are designated as 

𝑋selected. 𝑋selected are extracted from the dataset at the start 

of the operation. The PCA transformation uses these features 

as its input, selecting them based on their significance in the 

classification task. PCA is used with a variance retention 

criterion of 95% to ensure substantial data representation. This 

means that the bare minimum of Principal components needed 

to account for 95% of the total variance is automatically 

chosen. The transformed feature set 𝑋PCA is produced 

mathematically as follows: 

𝑋𝑃𝐶𝐴 =  𝑋𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 . 𝑊   (5) 

where W represents the eigenvectors corresponding to the 

largest eigenvalues of the covariance matrix of 𝑋selected, the 

number of principal components retained, ncomponent, is 

dynamically determined by PCA. The classifier reduces the 

number of features while maintaining good accuracy by 

retaining 95% variance. The PCA-based transformation is a 

useful method for FS and classification tasks since it also 

increases interpretability and computational efficiency. 

4. EXPERIMENTS 

4.1 Experiment design 
Experiments were conducted utilizing 19 commonly employed 

benchmark datasets. A greater value signifies that a larger 

number of features have been effectively eliminated. Prior to 

executing the experiments, it is essential to establish the 

optimal value for comparison in the tests. Jupyter version 7.2.2 
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is used to conduct the tests on a desktop computer running 

Windows 10 Pro and equipped with an Intel(R) Core(TM) i5-

4590 CPU @ 3.30GHz, 3292 MHz, 2 Cores, 2 Logical 

Processors, and 8.00 GB of installed physical memory (RAM). 

4.2 Machine Learning Classifiers 
K-Nearest Neighbors (KNN): KNN [23] is a non-

parametric, instance-based learning algorithm used for both 

classification and regression. It classifies a data point by 

identifying the majority class among its k nearest neighbors, 

determined using distance metrics such as Euclidean, 

Manhattan, or Minkowski. As a lazy learner, KNN does not 

train an explicit model but instead retains the entire dataset and 

performs computations during prediction. The choice of k 

significantly impacts the model’s performance by controlling 

the trade-off between sensitivity to noise and the smoothness 

of the decision boundary [24]. 

Support Vector Machines (SVM): SVM) are robust 

supervised learning algorithms applied to both classification 

and regression problems. They operate by constructing an 

optimal hyperplane that maximizes the margin between 

different classes in the training data. SVMs can handle non-

linearly separable data through the use of kernel functions, such 

as polynomial and radial basis function (RBF) kernels. These 

kernels project the input data into higher-dimensional spaces, 

enabling the creation of flexible and non-linear decision 

boundaries, making SVMs particularly effective for complex 

classification tasks[25]. 

4.3 Experimental datasets 
The 19 datasets utilized from the machine learning repository 

(https://archive.ics.uci.edu/datasets) in the studies are briefly 

described in Table 2. In these datasets, there are between 34 

and 10000 features, 60 and 7797 samples, and 2 to 26 

categories. 

Table 2. Dataset Details 

Datasets Features Instances Categories 

ALLAML 7129 72 2 

Arcene 10000 200 2 

BASEHOCK 4862 1993 2 

COIL20 1024 1440 20 

COLON 2000 62 2 

GLI_85 22283 85 2 

Ionosphere 34 351 2 

ISOLET 617 7797 26 

Lung 3312 203 5 

Nci9 9712 60 9 

ORL 1024 400 40 

Orlraws10P 10304 100 10 

PCMAC 3289 1943 2 

Prostate_GE 5966 102 2 

RELATHE 4322 1427 2 

sonar 60 208 2 

WarpAR10P 2400 130 10 

WarpPIE10P 2420 210 10 

Yale 1024 165 15 

 

5. RESULTS AND DISCUSSION 
Table 3 presents a comparison of CA between the original 

feature set and the selected feature set of EWA and proposed 

EWA-PCA using KNN and SVM classifiers. For the KNN 

classifier, an average CA of 77.65% was achieved using all 

features, and in the selected feature of the EWA method, a CA 

of 85.16%, while the selected features of the proposed EWA-

PCA method yielded a significantly higher average CA of 

86.56%. Similarly, with the SVM classifier, the average CA 

using all features was 84.43%, and selected features using 

EWA was 87.46% while selected features of the proposed 

EWA-PCA method improved to 88.10%.  

In the comparison of original features and selected features by 

EWA-PCA in KNN, all datasets showed improved CA when 

using the selected features. For SVM, sixteen out of the total 

datasets demonstrated better CA with the selected features. 

However, in the ALLAML dataset, the CA slightly decreased 

from 92.86% with all features to 90.8% using the selected 

features. The CA of the selected features from EWA alone is 

lower than that of the proposed EWA-PCA method. This 

highlights the importance of applying PCA, indicating that the 

EWA-PCA approach achieves better performance compared to 

EWA alone. 

The improvements are particularly noticeable at the dataset 

level in complex and high-dimensional datasets. For instance, 

using both EWA and EWA-PCA increased the KNN accuracy 

in the Arcene dataset from 56% (original) to 89.50%. EWA-

PCA scored 73.33% in the Nci9 dataset, which is much better 

than 46.67% using original features. In a same similar manner, 

EWA-PCA improved KNN accuracy in ALLAML from 

77.86% (original) to 86.11%. The proposed method 

outperformed the initial 98.10% accuracy for SVM on 

WarpPIE10P, achieving 100% accuracy. 

As shown in Colon, PCMAC, RELATHE, and several 

others, EWA-PCA often beat EWA alone, even if EWA alone 

frequently enhanced performance. This shows how the 

Earthworm Optimization Algorithm and PCA work together to 

effectively remove redundant data while maintaining 

discriminative information. The standard EWA performed 

slightly better than EWA-PCA in a few datasets (such as 

GLI_85 and Prostate_GE), indicating that PCA may sometimes 

eliminate weakly relevant variance. However, in most datasets, 

the proposed EWA-PCA approach consistently produced the 

best or nearly best results. Overall, the results indicate that the 

EWA-PCA algorithm effectively selects important features and 

removes redundant ones, leading to enhanced classification 

performance in most cases. 

The comparison of the performance metrics of the original 

features and the proposed EWA-PCA approach using both 

KNN and SVM classifiers across various datasets is shown in 

Tables 4 and 5. The proposed method produces significant 

improvements in accuracy, precision, recall, and F1-score for 

both classifiers compared to the original feature set. For 

instance, in the KNN classifier on the ALLAML dataset, the 

F1-score improved from 82.22% to 88.89%, recall improved 

from 78.72% to 85.11%, and precision from 86.05% to 93.02% 

using EWA-PCA. Across all datasets, similar patterns are seen, 

with EWA-PCA continuously preserving or improving the 

balance between recall and precision, which eventually results 

in higher F1-scores.  

 

 

https://archive.ics.uci.edu/datasets
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Table 3: Comparison of the CA between the original datasets and the Selected Features using KNN and SVM classifiers 

Datasets 

CA of 

Original 

Features 

using KNN 

CA of Selected 

Features using 

KNN with 

EWA 

CA of Selected 

Features using 

KNN with EWA-

PCA 

CA of 

Original 

Features 

using SVM 

CA of Selected 

Features using 

SVM with 

EWA 

CA of Selected 

Features using 

SVM with EWA-

PCA 

ALLAML 77.86% 79.17% 86.11% 92.86% 87.50% 90.28% 

Arcene 56% 89.50% 89.50% 56% 84.00% 83.00% 

BASEHOCK 71.30% 83.29% 82.29% 95.74% 95.89% 95.53% 

COIL20 99.17% 100% 99.79% 94.79% 100% 99.93% 

COLON 78.57% 85.48% 87.10% 83.81% 88.71% 90.32% 

GLI_85 85.83% 84.71% 90.59% 90.56% 85.88% 88.24% 

Ionosphere 84.90% 91.43% 91.14% 91.17% 94.30% 95.16% 

ISOLET 82.88% 87.18% 87.24% 95% 96.60% 96.35% 

Lung 95.60% 98.03% 98.03% 87.69% 95.07% 95.07% 

Nci9 46.67% 68.33% 73.33% 8.33% 30.00% 25% 

ORL 89.75% 92.50% 92.75% 95.50% 96.75% 96.75% 

Orlraws10P 93% 94% 96% 99% 99% 99% 

PCMAC 70.72% 81.68% 82.30% 87.49% 87.50% 90.28% 

Prostate_GE 83.18% 87.25% 89.22% 93.09% 91.18% 93.14% 

RELATHE 79.33% 82.83% 82.83% 87.69% 90.28% 91.10% 

sonar 80.79% 88.94% 90.38% 82.69% 85.10% 87.02% 

WarpAR10P 46.92% 57.69% 60% 90.19% 77.69% 80.77% 

WarpPIE10P 94.29% 98.71% 98.10% 98.10% 100% 100% 

Yale 58.60% 67.27% 67.88% 74.38% 76.36% 76.97% 

Average 77.65% 85.16% 86.56% 84.43% 87.46% 88.10% 

 

Table 4: Comparison of the Performance metrics between the original datasets and the Selected Features using KNN classifiers 

Datasets 
Performance metrics of Original Features 

Performance metrics of Selected Features with 

EWA-PCA 

CA Precision Recall F1-Score CA Precision Recall F1-Score 

ALLAML 77.86% 86.05% 78.72% 82.22% 86.11% 93.02% 85.11% 88.89% 

Arcene 56% 61.76% 56.25% 58.89% 89.50% 91.74% 89.29% 90.49% 

BASEHOCK 71.30% 71.41% 71.27% 71.34% 82.29% 82.36% 82.28% 82.32% 

COIL20 99.17% 99.58% 99.60% 99.56% 99.79% 99.72% 98.91% 99.65% 

COLON 78.57% 86.49% 80.00% 83.12% 87.10% 92.11% 87.50% 89.74% 

GLI_85 85.83% 92.73% 86.44% 89.47% 90.59% 96.36% 89.83% 92.98% 

Ionosphere 84.90% 90.95% 84.89% 87.82% 91.14% 94.91% 91.11% 92.97% 

ISOLET 82.88% 87.38% 85.96% 85.94% 87.24% 86.52% 87.55% 87.01% 

Lung 95.60% 95.76% 94.87% 95.96% 98.03% 98.25% 97.03% 98.93% 

Nci9 46.67% 47.00% 46.44% 48.50% 73.33% 75.14% 73.40% 74.20% 

ORL 89.75% 89.80% 88.99% 88.73% 92.75% 93.40% 92.10% 94.00% 

Orlraws10P 93% 93% 93% 93% 96% 96% 96% 96% 

PCMAC 70.72% 80.80% 68.30% 74.10% 82.30% 95.10% 79.00% 86.30% 

Prostate_GE 83.18% 84.31% 82.69% 83.50% 89.22% 90.20% 88.46% 89.32% 

RELATHE 79.33% 82.18% 79.33% 80.73% 82.83% 85.32% 82.80% 84.04% 

sonar 80.79% 82.57% 81.08% 81.82% 90.38% 91.74% 90.09% 90.91% 

WarpAR10P 46.92% 46.80% 46.94% 46.70% 60% 61.12% 60.15% 59.42% 

WarpPIE10P 94.29% 93.29% 94.48% 93.81% 98.10% 98.50% 98.17% 98.91% 

YALE 58.60% 58.67% 56.76% 57.67% 67.88% 67.48% 69.08% 66.47% 

Average  77.65% 80.55% 77.68% 79.10% 86.56% 88.89% 86.20% 87.50% 
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Table 5: Comparison of the Performance metrics between the original datasets and the Selected Features using SVM classifiers 

Datasets 
Performance metrics of Original Features 

Performance metrics of Selected Features with EWA-

PCA 

CA Precision Recall F1-Score CA Precision Recall F1-Score 

ALLAML 92.86% 95.65% 93.62% 94.62% 90.28% 95.45% 89.36% 92.31% 

Arcene 56% 61.76% 56.25% 58.89% 83.00% 86.11% 83.04% 84.55% 

BASEHOCK 95.74% 95.79% 95.70% 95.74% 96.14% 96.19% 96.10% 96.14% 

COIL20 94.79% 94.20% 94.39% 95.00% 99.93% 99.90% 98.98% 99.82% 

COLON 83.81% 89.47% 85.00% 87.18% 90.32% 94.74% 90.00% 92.31% 

GLI_85 90.56% 96.36% 89.83% 92.98% 88.24% 94.55% 88.14% 91.23% 

Ionosphere 91.17% 94.91% 91.11% 92.97% 95.16% 97.27% 95.11% 96.18% 

ISOLET 95% 95.80% 95.20% 94.29% 96.35% 94.80% 96.15% 96.00% 

Lung 87.69% 84.49% 87.19% 85.86% 95.07% 95.15% 95.76% 96.03% 

Nci9 8.33% 8.02% 7.56% 8.01% 25% 24.62% 25.50% 24.52% 

ORL 95.50% 94.50% 95.16% 94..87% 96.75% 96.55% 95.89% 96.71% 

Orlraws10P 99% 99.10% 99.24% 98.54% 99% 99.21% 99.07% 99.23% 

PCMAC 87.49% 96.90% 88.10% 92.30% 90.28% 99.10% 91.60% 95.20% 

Prostate_GE 93.09% 94.12% 92.31% 93.20% 93.14% 94.12% 92.31% 93.20% 

RELATHE 87.69% 89.52% 87.68% 88.59% 91.10% 92.45% 91.14% 91.79% 

sonar 82.69% 84.40% 82.88% 83.64% 87.02% 88.18% 87.39% 87.78% 

WarpAR10P 90.19% 90.69% 98.52% 89..83% 80.77% 80.15% 82.77% 81.38% 

WarpPIE10P 98.10% 98.19% 99.10% 98.57% 100% 99.57% 99.91% 99.81% 

YALE 74.38% 74.48% 75.08% 74..23% 76.97% 76.91% 75.55% 75.97% 

Average  84.43 86.23 84.94 71.60 88.13 89.74 88.09 88.96 

 

Table 6: Comparison of CA (In %) Between Proposed EWA-PCA with Eight Other FS Method using KNN classifier 

Datasets PCA ReliefF mRMR Chi2 SIFS ATFS EmPo FSM EWA-PCA 

ALLAML 70.89 88.75 98.57 97.14 76.43 95.89 90.18 82.14 86.11 

Arcene 83.5 88 78 85 85.5 56 69.5 86 89.5 

BASEHOCK 76.92 73.11 93.88 91.92 66.63 88.81 84.4 89.21 82.29 

COIL20 99.58 99.65 99.65 98.96 99.65 - 97.36 99.65 99.79 

COLON 73.57 90.48 86.9 86.9 78.81 86.9 88.81 85.24 87.1 

GLI_85 84.58 90.56 95.28 92.92 83.61 91.94 81.53 89.31 90.59 

Ionosphere 85.21 87.18 85.48 87.47 83.18 85.47 84.63 90.33 91.14 

ISOLET 82.76 72.44 77.5 83.33 67.63 - 29.04 85.58 87.12 

Lung 95.12 96.07 95.71 95.6 92.14 - 89.74 96.57 98.03 

Nci9 30 50 56.67 56.67 50 - 38.33 53.33 73.33 

ORL 89.75 92.75 91.25 90.25 88.75 - 76.75 91 92.75 

Orlraws10P 92 96 95 99 90 - 91 94 96 

PCMAC 69.38 64.08 89.01 84.61 61.97 75.91 70.2 82.24 82.3 

Prostate_GE 84.18 93.09 92.09 92.03 76.45 91.09 91.09 89.18 89.22 

RELATHE 81.36 74 86.01 85.22 75.4 80.24 80.25 87.39 82.53 

sonar 79.86 80.26 72.64 75.5 67.31 78.31 78.88 83.64 90.38 

WarpAR10P 48.46 74.62 73.85 67.69 49.23 - 73.85 60.77 60 

WarpPIE10P 93.33 95.71 95.71 95.71 95.24 - 94.76 95.24 98.1 

Yale 57.46 62.9 57.46 61.1 55.07 - 40.07 62.32 67.88 

Average 77.78 82.61 85.29 85.63 75.94 83.05 76.34 84.37 88 
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Fig 2: Comparison of CA of KNN Classifier Between Proposed EWA-PCA with Other Method on ALLAML, Arcene, 

BASEHOCK, COIL20, and COLON Datasets. 

 

Fig 3:  Comparison of CA of KNN Classifier Between Proposed EWA-PCA with Other Method on GLI_85, Ionosphere, 

ISOLET, Lung, and Nci9 Datasets. 
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Fig 4: Comparison of CA of KNN Classifier Between Proposed EWA-PCA with Other Method on ORL, Orlraws10P, 

PCMAC, Prostate_GE, and RELATHE Datasets. 

 

Fig 5: Comparison of CA of KNN Classifier Between Proposed EWA-PCA with Other Method on Sonar, WarpAR10P, 

WarpPIE10P, and Yale Datasets. 

Table 7: Comparison of CA (In %) Between Proposed EWA-PCA with Eight Other FS Method using SVM classifier. 

Datasets PCA ReliefF mRMR Chi2 SIFS ATFS EmPo FSM EWA-PCA 

ALLAML 65.36 95.71 98.57 98.57 76.25 95.89 85.89 90.18 90.28 

Arcene 82 87.5 83 84 86 56 68.5 87.5 83 

BASEHOCK 95.38 83.4 93.98 92.68 66.03 86.15 95.99 97.54 96.14 

COIL20 95.76 94.44 94.31 94.51 94.79 - 89.1 98.89 99.93 

COLON 64.52 87.14 87.14 85.48 82.14 86.9 87.14 85.48 90.32 

GLI_85 69.72 93.06 94.16 91.67 87.22 89.44 74.44 91.81 88.24 

Ionosphere 91.73 93.17 89.45 90.89 85.18 92.31 85.75 93.73 95.16 

ISOLET 95 94.74 94.55 95.38 95.06 - 40.32 94.81 96.35 

Lung 93.62 68.5 68.5 76.86 68.5 - 69 88.67 95.05 

Nci9 8.33 23.33 13.33 31.67 13.33 - 20 10 25 
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ORL 96 95 95.25 95.25 94.5 - 80.5 96.25 96.75 

Orlraws10P 84 99 99 99 99 - 85 99 99 

PCMAC 86.72 76.52 85.44 88.01 56.92 78.49 79.36 92.69 91.2 

Prostate_GE 91.18 94.09 93.09 92.09 91.09 91.09 93.18 93.09 93.14 

RELATHE 90.05 75.41 91.31 85.07 78.27 80.1 84.58 89.07 91.17 

sonar 78.86 76.88 69.24 74.55 55.31 63.47 77.81 78.81 87.02 

WarpAR10P 45.38 93.08 95.38 95.38 96.92 - 71.54 100 80.77 

WarpPIE10P 99.52 99.05 98.57 98.1 98.57 - 92.86 100 100 

Yale 72.61 76.25 78.71 73.27 70.18 - 47.79 81.73 76.97 

Average 79.25 84.54 85.42 86.44 78.7 81.98 75.2 87.86 88.16 

 

 

Fig 6: Comparison of CA of SVM Classifier Between Proposed EWA-PCA with Other Method on ALLAML, Arcene, 

BASEHOCK, COIL20, and COLON Datasets. 

 

Fig 7: Comparison of CA of SVM classifier Between Proposed EWA-PCA with Other Method on GLI_85, Ionosphere, 

ISOLET, Lung, and Nci9 Datasets 
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Fig 8: Comparison of CA of SVM Classifier Between Proposed EWA-PCA with Other Method on ORL, Orlraws10P, 

PCMAC, Prostate_GE, and RELATHE Datasets 

 

Fig 9: Comparison of CA of SVM Classifier Between Proposed EWA-PCA with Other Method on Sonar, WarpAR10P, 

WarpPIE10P, and Yale Datasets 

Furthermore, compare the proposed EWA-PCA with eight 

other FS methods, namely: PCA, ReliefF, mRMR, Chi2, SIFS, 

ATFS, EmPo, and FSM. The ATFS method applied only binary 

dataset. Tables 6 and 7 provide a comparative analysis of the 

EWA-PCA against these algorithms using the KNN and SVM 

classifiers, respectively. 

In Table 6, the findings clearly show that the proposed EWA-

PCA provides higher CA on average (CA of 88%) across all 

datasets when compared to the other eight algorithms. This 

improvement in performance shows how well the features 

selected enhance KNN's ability for classification. Additionally, 

while the overall trend is positive, there are a few datasets 

where the KNN classifier experienced a slight drop in accuracy 

after FS. These slight decreases could be attributed to KNN's 

sensitivity to the local structure of the data, where 

neighborhood-based classification would have been impacted 

by the removal of certain features. However, despite these few 

cases, the proposed algorithm consistently outperforms or 

matches traditional methods in most scenarios, making it a 

reliable choice for enhancing KNN performance through 

effective feature reduction and selection. Similar to the KNN 

results, in Table 7, the selected feature sets generally yield a 

higher average CA (88.16%) when compared to the other eight 

FS algorithms using SVM, confirming the robustness of the 

proposed FS method. The average CA across all datasets shows 

noticeable improvement, indicating that SVM, with its margin-

maximizing decision boundary, benefits significantly from the 

removal of irrelevant or redundant features. However, there are 

a few datasets where the SVM classifier exhibits a slight 

decrease in accuracy after FS using the proposed EWA-PCA. 

These cases may be due to the fact that some features, although 

redundant, contributed marginally to defining the optimal 

separating hyperplane. Nevertheless, the overall consistency in 

performance gains across the majority of datasets reaffirms the 

capability of the EWA-PCA to enhance SVM classification by 

focusing on the most informative features, leading to a more 
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generalizable and efficient learning model. 

Figures 2 through 5 graphically compare the CA of the KNN 

classifier across 19 datasets, using the proposed EWA‑PCA 

method versus eight alternative feature selection approaches. In 

Figure 2, which likely shows individual dataset performance 

(e.g., ALLAML, Arcene, BASEHOCK, COIL20, and 

COLON), EWA‑PCA achieves the highest CA on the 

maximum datasets. Similarly, Figures 3, 4, and 5, which 

aggregate performance across the remaining datasets or show 

average CA, reveal that EWA‑PCA maintains superior 

performance more consistently than any other method. 

Altogether, these visuals clearly demonstrate that the proposed 

EWA‑PCA method delivers the highest classification accuracy 

with KNN on the majority of datasets, showcasing its 

robustness and effectiveness relative to existing 

feature‑selection strategies. 

Figures 6 to 9 present a graphical comparison of the CA of an 

SVM classifier across 19 datasets, contrasting the proposed 

EWA‑PCA method with eight alternative feature‑selection 

techniques. In Figure 6, which focuses on datasets such as 

ALLAML, Arcene, BASEHOCK, COIL20, and COLON, 

EWA‑PCA achieves the highest CA in the majority of cases. 

The trend continues throughout Figures 7, 8, and 9, whether 

showing aggregated results across the remaining datasets or 

average CA EWA‑PCA consistently outperforms all other 

methods. Collectively, these figures demonstrate that the 

proposed EWA‑PCA method delivers the best SVM 

classification accuracy on most datasets, highlighting its 

robustness and superiority over existing feature‑selection 

strategies. 

Table 8: Comparison of the size of feature subsets 

Datasets Original 
FSM   Selected 

Feature for KNN 

Proposed EWA-PCA   

Selected feature for 

KNN 

FSM   Selected 

Feature for SVM 

Proposed EWA-PCA   

Selected feature for 

SVM 

ALLAML 7129 375 59(3464) 387 59(3549) 

Arcene 10000 477 135(5019) 551 135(5044) 

BASEHOCK 4862 147 836(2407) 206 1032(4862) 

COIL20 1024 120(512) 79(472) 170(922) 79(516) 

COLON 2000 174 44(1003) 150 44(1015) 

GLI_85 22283 1120 71(11202) 997 71(11082) 

Ionosphere 34 14 10(12) 17 10(12) 

ISOLET 617 132 115(308) 239(555) 157(617) 

Lung 3312 662 134(1660) 632 140(1647) 

Nci9 9712 50(4842) 50(4842) 50(4856) 50(4823) 

ORL 1024 163(768) 100(520) 175(922) 98(496) 

Orlraws10P 10304 3864 58(5168) 70(7213) 58(5795) 

PCMAC 3289 171 162(1621) 174 481(3289) 

Prostate_GE 5966 305 61(3005) 312 55(2934) 

RELATHE 4322 231 632(2167) 289 736(3727) 

sonar 60 9 18(29) 9 18(27) 

WarpAR10P 2400 900 44(1148) 64(1800) 44(1194) 

WarpPIE10P 2420 42(2178) 21(1200) 38(1815) 22(1167) 

Yale 1024 84(512) 67(494) 78(512) 67(506) 

 

NOTE: - It is important to note that the feature size following EWA-PCA dimensionality reduction is presented before the parentheses, 

whereas the feature size after EWA reduction to a single subset is specified within the parentheses. 

Table 8 presents a comparison between the average size of 

feature subsets selected by EWA-PCA, FSM, and the original 

features. The findings indicate that EWA-PCA significantly 

decreases feature dimensionality by one to two orders of 

magnitude. In the arcene dataset, initially comprising 10000 

features, EWA-PCA effectively minimized the subset size to 

135 for KNN and 135 for SVM. Even when EWA simplifies 

selecting a single feature subset, it still achieves a reduction in 

the number of features by about 50%. 

Based on the comparative analyses presented in Tables 4 and 5 

using KNN and SVM classifiers, it is evident that the proposed 

EWA-PCA FS method consistently delivers superior or 

competitive performance across a wide range of datasets when 

compared to eight well-established FS techniques. While minor 

drops in accuracy were observed in a few individual datasets, 

the overall trend clearly favors the EWA-PCA, with notable 

improvements in average CA. The EWA method effectively 

balances the trade-off between removing redundant features 

and preserving the most informative ones, thereby enhancing 

the predictive power of both distance-based and margin-based 

classifiers. 

6. CONCLUSION AND FUTURE WORK 
In the proposed EWA-PCA approach, feature selection is 

performed in two stages to effectively reduce dimensionality 

while maintaining high classification performance. First, the 

Earthworm Optimization Algorithm (EWA) is applied to select 
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the most relevant features from the high-dimensional dataset. 

EWA identifies a subset of informative features that contribute 

significantly to classification accuracy while minimizing the 

overall feature count. In the second stage, Principal Component 

Analysis (PCA) is applied to the EWA-selected features to 

further reduce dimensionality by transforming the data into a 

lower-dimensional space. This step helps eliminate redundancy 

and enhance computational efficiency. The combination of 

EWA and PCA leads to a compact, high-quality feature 

representation that improves classification performance using 

models such as SVM and KNN. 

For future research, the framework may be extended in several 

directions. One promising line of work is its integration with 

deep learning architectures to enhance feature representation in 

complex data domains. Another avenue is the application of the 

framework to real-time data streams and multi-class problems, 

where adaptability and speed are critical. Furthermore, the 

scalability, generalizability, and domain-specific performance 

of EWA-PCA can be further improved through the design of 

adaptive mechanisms and hybrid models. 
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