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ABSTRACT 

Neural rendering is arising as a leading tool at the intersection 

of computer vision, computer graphics, and artificial 

intelligence, and allows for generating high-quality, 

photorealistic images from 2D models, low-resolution images, 

or sparse data. The review offers a comprehensive outline of 

the state-of-the-art techniques in neural rendering, including 

neural radiance fields (NeRF), view synthesis and implicit 

surface representation models. However, the success of these 

models is strongly tied to the availability and quality of medical 

datasets, which often face challenges related to data scarcity, 

patient privacy, and modality diversity. The article also 

explores key application in areas such as virtual reality, 

autonomous systems, and medical imaging, where neural 

rendering has shown significant promise. This survey reviews 

state-of-the-art neural rendering methods in healthcare, 

discusses benchmark datasets, identifies open challenges, and 

outlines future research directions. 

Keywords 
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1. INTRODUCTION 
The rapid growth of deep learning in medical imaging has 

enabled novel possibilities for rendering and interpreting 

complex anatomical structures. Neural rendering, which uses 

neural networks to synthesize novel views and modalities, has 

emerged as a promising technique for improving visualization, 

diagnosis, and simulation in clinical practice. This survey 

explores the current landscape of neural rendering in 

healthcare, offering a structured outline of state-of-the-art 

methods, their limitations, applications and potential future 

impact 

Neural radiation fields, or NeRFs, greatly improved on 

conventional 3D reconstruction techniques in a number of 

crucial areas. NeRFs leverages deep learning techniques to 

generate photorealistic images from abstract or incomplete 

input data. Medical imaging plays an essential task in modern 

healthcare industry, providing non-invasive insights into the 

anatomy and physiology of the human body. Common imaging 

modalities include X-ray imaging, Ultrasound, Computed 

Tomography (CT), Magnetic Resonance Imaging (MRI) and 

Positron Emission Tomography (PET). 

Despite their clinical importance, medical images often present 

significant visualization and come across challenges such as 

medical scans typically consist of 3D or even 4D data making 

visualization and manipulation computationally intensive. 

Conventional imaging offers only standard anatomical planes 

which may not capture the full spatial context required for 

accurate interpretation or surgical planning. As no single 

modality captures all relevant biological information, thereby 

MRI offers excellent soft-tissue contrast, while CT excels in 

imaging bone structures. Integrating and visualizing this multi-

source data remains a key challenge. 

 

Fig 2: Overview of working Nerf model 

These limitations have created a growing demand for more 

intelligent, adaptive visualization tools that go beyond 

traditional rendering pipelines. In healthcare, neural rendering 

holds significant promise due to its ability to enhance 

visualization of complex anatomical structures through novel 

view synthesis and high-resolution rendering. It has capability 

of generating realistic synthetic medical data for data 

augmentation, addressing challenges associated to limited 

labeled datasets. By improving both utility and quality images, 

neural rendering has potential to assist clinicians, reduce 

patient burden, and open up new possibilities in personalized 

medicine and AI-assisted diagnosis. 

The survey article aims to emphasize motivation, challenges, 

various applications in health care industry and limitations 

associated in implementing NeRFs for medical images. The 

main objective of the survey it offers better visualization of 

medical images, integration of Neural Rendering with AI-

driven diagnosis and treatment planning, evaluation and 

validation of neural rendering in clinical and research settings 

and to assess the potential benefits of 3D rendering of medical 

images to improve healthcare.  

The contribution of the work is outline as: 

• The survey highlights the key objective and challenges related 

with applying NeRFs to medical images, finding out the 

important complication that has to overcome. 

• The review emphasis on classifying and revising existing Nerf 

methodologies, highlighting their evaluation metrics. 

• Additionally, the upcoming future work highlighting how 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.36, September 2025 

17 

NeRFs when adopted in medical field can modernize 

diagnostic methods, pre-surgical planning and improvements 

in healthcare industry.   

The remaining section of the article is structured as follows. 

Section 2 comprises of background and fundamentals of 

NeRFs. The methods adopted in NeRF are described in Section 

3. The publically available datasets for NeRFs in medical 

images are summarized in Sections 4. We talk about the future 

direction in Section 5 and conclusion of the paper in Section 6.  

2. BACKGROUND  
Xin Wang et al[1] have emphasized on through the creation of 

3D representations from 2D pictures. Neural Radiance Fields 

(NeRF) hold the prospective to transform medical images. Four 

primary issues are identified in the paper: color density 

significance, inner structure needs, object boundary definitions, 

and imaging principles.  

Mingyuan Yao et al [2] focused on providing a comprehensive 

review of Neural Radiance Fields (NeRF), highlighting its 

advancements in computer vision and graphics. The key points 

include NeRF's role in human body reconstruction, 3D scene 

understanding and perspective synthesis.  

Khadija Iddris et al [3] focused that in order to improve medical 

diagnosis and treatment planning; the study addresses 

developments in 3D MRI imaging. It emphasizes how precise 

3D reconstructions from 2D MRI slices can be developed using 

neural radiance fields (NeRF), which eliminates necessitates 

for lengthy scan acquisitions. With the potential to reduce 

motion artifacts and scan delays, this technique seeks to 

enhance the visualization and study of anatomical structures. 

The author Faisal Mahmood et al [4] suggests that the article 

discusses the challenges in applying deep learning to medical 

images due to limited annotated data, particularly for rare 

conditions. The authors present a technique which utilizes 

cinematically rendered data to improve the generalization of a 

synthetic data-driven model for exact depth estimation in real 

tissue.  

Focusing on drawbacks of conventional methods, the 

motivation of adopting neural approaches in healthcare 

industry is improved data visualization, having insights into 

diagnosis and improved pre-surgical plan. 

3. METHODOLOGY 
The neural rendering approach has found increasing 

application in medical imaging, where rendering high-quality, 

informative visualizations from limited data are clinically 

valuable. The most basic neural rendering techniques are 

explained in figure 1 as shown below. 

 

 

 

 

 

 

Fig 2: Steps for creating Nerf model 

3.1 Data Preparation:  
Collect the data CT, MRI or X-ray in (DICOM format). 

Perform the preprocessing such as normalize intensity values, 

resize or crop to consistent dimensions and augmentation of 

data. 

3.2 View Point and Geometry modeling: 
The pose estimation becomes essential when working with 

multiple views, such as stacks of CT or MRI slices. This step 

involves determining the spatial relationships between different 

image acquisitions. Define intrinsic/extrinsic parameters for 

neural radiance fields (NeRF-like models) to accurately model 

how each 2D image maps into 3D space. 

3.3 Model Architecture Selection: 
Choose an appropriate neural rendering framework suitable for 

implementation. The various neural rendering frameworks are 

explained below: 

3.3.1 Implicit Neural Representations 

The Implicit Neural Representation (INR) models encode 3D 

information (such as geometry, color, or density) adopts neural 

network, classically a Multi-Layer Perceptron (MLP). They 

adopt the concept of storing data as voxel grids or meshes, the 

MLP learn a continuous mapping from spatial coordinates to 

physical properties like color or density. This approach is 

memory-efficient and provides high-resolution reconstruction 

[9]. 

3.3.2 Neural Radiance Fields (NeRF) 
The NeRF can be defined as a neural volume rendering method 

that synthesizes photorealistic novel views of a 3D scene using 

only 2D input images. It learns a function that maps a 3D point 

and viewing direction to volume density and emitted radiance. 

In medical applications, NeRF variants like MedNeRF and 

Neural AD are being explored for 3D organ reconstruction, 

volumetric visualization, and view synthesis from limited-

angle scans [10]. 

3.3.3 Generative Adversarial Networks (GANs) 

GANs consist of a generator and a discriminator competing in 

a mini-max game to produce realistic images. The task of 

generator is creation of fake images and a discriminator that 

distinguishes real from fake ones. The concept of CycleGAN is 

adopted for cross modality image synthesis i.e. converting MRI 

to CT and vice versa. It is applicable for obtaining super 

resolution and performing data augmentation. GANs are 

widely used in medical image synthesis, where paired data are 

scarce. [11]. 

3.3.4 Diffusion Models 
Diffusion-based rendering leverages diffusion models to 

generate images or volumes through a gradual denoising 

process. In the context of rendering, diffusion models are 

adapted to synthesize novel views, modalities, or enhanced 

versions of images from learned distributions. The working of 

diffusion model is described in two step model forward and 

reverse process. One common example of diffusion in medical 

rendering is Medfusion and Conditional 3D Diffusion [12]. 

3.3.5 Transformer-Based Rendering 
Transformer-based models are being explored for applications 

like view synthesis, modality translation, and volume 

reconstruction—especially when working with complex or 

sparse data. Transformers can be used to integrate information  

 

from different views and generate novel views by modeling the 

spatial relationships between them. Example: A transformer 
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model learns to generate synthetic PET images from paired 

MRI scans [13]. 

3.4 Evaluation and Validation 
Adopt quantitative metrics such as PSNR, SSIM and 

qualitative analysis. In order to ensure generalization across 

patients makes use of cross validation techniques and finally 

real time rendered image is obtained.  

The table 1 mentioned below comprises of existing methods 

of NeRF, the dataset utilized and the results obtained. 

Table 1: Existing methods of NerF 

Sl.no Author Organ Methodology Imaging  

Principle 

Dataset Results 

1. Khadija Iddris 

et al [3] 

Brain Convolution 

Neural Networks 

(CNN) for feature 

extraction and 

cubic interpolation 

for slice 

interpolation. 

MRI BRATS dataset PSNR-25.01 ± 1.17 

SSIM-0.879 ± 0.07 

2. Faisal 

Mahmood  

et al  [4] 

Stomach 

(colon) 

 

Cinematic 

rendering and 

Graphical 

rendering 

CT Synthetic image 

dataset 

Relative error – 0.364 

Average log10 Error 

(log10) – 0.221 

Root mean square error 

– 2.153 

3. Nicholas Bien 

et al [5] 

Knee CNN and Logistic 

regression 

MRI Real time data 

collected from 

Stanford 

University 

Medical Centre 

Accuracy – 0.920 

Specificity - 0.933 

Sensitivity – 0.906 

4. Yuanhao Cai 

et al [6] 

Chest Line Segment-

based Transformer 

method. 

X-ray X3D dataset Average PSNR – 12dB 

Average SSIM - 0.9535 

5. Yukun Zhou 

et al) [7] 

Retina of 

Eye 

Vision 

Transformer as an 

encoder and CNN. 

CT  Moorfields 

Diabetic image 

dataset. 

Sensitivity – 0.7 

Specificity – 0.67 

AUROC – 0.794 

 

4. DATASETS AND EVALUATION 

METRICS 
Datasets are absolutely crucial in neural rendering. They act as 

a fuel for neural engine. The creation of NeRFs in medical 

imaging is greatly aided by public datasets, which provide a 

richness of unique and annotated data that is crucial for 

algorithm developing and validating.  

4.1 Digitally Reconstructed 

Radiographs(DRR): 

DRRs serve as bridge among 3D CT data and 2D X-ray 

imaging, enabling the development of AI models for diagnosis, 

treatment planning, and disease classification. The main aim of 

DRRs is to simulate 2D X-ray images from 3D CT scans. The 

DRRs provide good assistance in creating reference projections 

to match with real-time 2D X-rays, enabling better accuracy 

and real-time updates. The synthetic data produced by DRR 

provide a benchmark to the researcher as they are implementing 

on ground truth data. The primary advantage of using DRR 

technology is it facilitates the reduction in additional diagnostic 

X-ray examination, thereby minimizing exposure of patient to 

ionizing radiation [14]. The figure 2 shows the procedure of 

generating synthetic data. 
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Fig 2: The conversion of 3D image to DRR is performed 

by neural network. Left: original CT scan image, Mid: 

neural network processing 3D data, Right: generated DRR 

image 

4.2 Public Dataset 

4.2.1 MedNeRF dataset: 

The dataset is publically available in GitHub repository which 

comprises of 20 chest CT scans and in addition 5 knees CT 

scans. The concept of DRR is adopted, in order to create 

synthetic images with a resolution of 128 × 128 at five-degree 

intervals; the DRR production procedure simulates the rotation 

of an imaging panel and radiation source around the vertical 

axis. As a result, 72 unique DRRs were generated by each item 

[15, 16, 17, 18]. 

 

4.2.2 LIDC-IDRI dataset: 
The LIDC-IDRI [19] is publically available dataset contains 

1018 helical thoracic CT scans gathered from seven 

institutions, ensuring a diverse range of scanner models and 

technical parameters.  These scans were anonymized to 

eliminate protected health information (PHI) in compliance 

with HIPAA guidelines. The dataset includes a variety of 

lesions, with 7371 lesions identified, but only 1940 lesions had 

complete agreement among four radiologists on their 

categorization. 

4.3 Evaluation Metrics 
Variety of techniques has been implemented to estimate the 

effectiveness of NeRFs in medical imaging such as Peak to 

Signal Noise Ratio (PSNR), Structural Similarity Index 

(SSIM), Reprojection error[20], Learned perceptual image 

patch similarity (LPIPS) and Gradient magnitude similarity 

deviation (GMSD)[25]. 

  

4.3.1 The Peak to Signal Noise Ratio (PSNR): 

It is primarily adapted to measure quality of an image. If the 

obtained PSNR value is higher, it conveys that generated image 

is more similar to original image. The major goal of PSNR is 

to quantify the variance between the actual and model-

generated images [21]. 

4.3.2 The Structural Similarity Index Measure 

(SSIM): 

The SSIM provides an inclusive evaluation technique that 

measures perceived quality by comparing structures in images. 

The SSIM considers factors such as luminance, structural 

integrity and contrast. The range of SSIM lies between SSIM € 

[0, 1]. The value ‘1’ defines a perfect match and ‘0’ defines as 

completely different [22]. 

4.3.3 The Reprojection error:  

It is called as evaluation metric adopted in 3D reconstruction, 

camera pose estimation, view synthesis and neural rendering. 

The potential benefit of reprojection error [23] is to measure 

how far 3D point, when projected back onto the image, deviates 

from where it should appear. The value obtained in reprojection 

error should be lower which conveys that proper alignment 

between 2D to 3D representation. The higher value in the 

reprojection error suggests that misalignment between 3D and 

2D representations. It is defined by a formula 

Reprojection Error = ∥xobserved − xprojected ∥ 

4.3.4 Learned perceptual image patch similarity 

(LPIPS): 

The LPIPS [25] compares deep features taken from neural 

networks to determine how original and rebuilt images are 

perceptually similar. Because it captures subtleties that pixel-

wise measurements like PSNR or SSIM could miss, LPIPS is 

especially helpful in assessing how closely the reconstructed 

volume resembles the human perception of similarity. 

4.3.5 Gradient magnitude similarity deviation 

(GMSD): 
The GMSD [25] assesses how much the original and 

reconstructed images differ in gradient magnitude. Especially 

in areas with significant spatial variability, GMSD is useful for 

assessing how well edges and small features are preserved in 

the reconstructed volume, offering further information about 

the reconstruction's quality.  

5. CONCLUSION 
The conclusion conveys that, research into Neural Radiance 

Fields (NeRF) for medical imaging shows promise for 

improving early disease diagnosis, treatment planning, and 

diagnostic accuracy. In this article, the author has observed 

several challenges that are critical for medical analysis. The 

survey highlights the need for creative ideas that can overcome 

these challenges by carefully analyzing existing approaches 

and having a thoughtful conversation about the promise and 

constraints of NeRFs. The combination of NeRFs along with 

cutting-edge technologies and methodologies has  potential to 

greatly advance medical imaging as we move forward, 

focusing the urgent need for ongoing research, teamwork, and 

creation of innovative strategies to fully realize NeRFs' 

potential to transform medical imaging. A comprehensive 

analysis of existing NeRF-based approaches reveals that while 

there is significant progress, many techniques are still in their 

early stages and require further refinement for clinical 

adoption. 

6. FUTURE DIRECTION 
In addition to addressing the constraints outlined above, we 

also notice a few significant future avenues for NeRFs in 

medical imaging that will get increased interest. 

Real-Time Rendering for Surgery and Robotics: Future 

developments should emphasize on improving the speed of 

neural rendering models. Advanced algorithms could be 

designed to obtain more efficiency in real time rendering and 

adopt techniques such as FastNeRF, Instant-NGP (NVIDIA) 

and TensorRF. When real time rendering is incorporated with 

robotics, provides potential benefits in image-guided surgery, 

robotic interventions and AR/VR-assisted diagnostics. 

Integration with new Advanced Techniques: Sometimes 

neural rendering models fail when applied to rare or unusual 
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diseases such as cancer. The future NeRFs should lay more 

emphasis on significant advancements, especially with new 

techniques that deals with uncommon diseases. More data-

efficient models has to be developed that can handle low-data 

regimes and out-of-distribution scenarios. 

Data Scarcity and Better Synthetic Data: Diverse and 

authentic data is basic necessity in development of a research 

work. Medical data is often termed to be private, rare and 

expensive to label. Improvements have to be adopted in 

creating high quality synthetic datasets using DRR, GANs and 

diffusion models that reflect real world diversity. 

Integrating with Explainable AI (XAI) Techniques: To 

enhance the trustworthiness of neural rendering in medical 

applications, Explainable AI (XAI) techniques are becoming 

essential. Provenance maps and feature attribution techniques, 

Grad-CAM and Integrated Gradients, can highlight which part 

of input data contribute to specific output regions. 
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