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ABSTRACT 

Open-channel plasmonic sensors utilize surface plasmon 

resonance (SPR) to detect minute changes in the refractive 

index (RI). This study presents a deep learning-based approach 

for predicting the analyte RI in plasmonic sensors. The work 

utilizing simulation data from a plasmonic sensor across a RI 

varies of 1.33 to 1.40. There are four deep learning methods 

such as artificial neural networks (ANNs), long short-term 

memory (LSTM) networks, gated recurrent units (GRUs), and 

convolutional neural networks (CNNs), is analyzed for their 

predictive capabilities. Among these methods, the ANN model 

demonstrates high performance, reaching an accuracy of 

78.18%, with precision, recall, and F1-scores of 0.78, alongside 

minimal misclassification errors. On the other hand, the CNN 

and LSTM models exhibited moderate performance, each 

achieving 72.72% accuracy, while the GRU model lagged 

significantly with an accuracy of 41.81%. Analysis of training 

and test accuracies revealed stable ANN training accuracy at 

90%, although test accuracy variations near 70% indicated 

potential overfitting. This work underscores the transformative 

potential of deep learning in advancing the design of plasmonic 

sensors and opening new avenues for biomedical sensing 

applications.  
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1. INTRODUCTION 
Plasmonic sensors based on the SPR phenomenon and have 

attracted substantial attention in arenas such as biosensing [1], 

environmental monitoring [2], and chemical sensing [3]. Their 

acceptance stems from their highest sensitivity and rapid 

detection capabilities. The working process of these sensors is 

based on the interaction between light and free electrons on the 

metal surface. This interaction outcomes in a shift in the when 

analytes bind to the sensor surface [4]. The accurate prediction 

of the RI changes is crucial for refining the precision of these 

sensors. However, traditional models often face limitations. 

They struggle to handle complex, nonlinear relationships 

between sensor parameters and variations in RI. However, deep 

learning has emerged as an influential tool capable of capturing 

intricate patterns in large datasets. This makes it a promising 

approach for enhancing the predictive accuracy of plasmonic 

sensors [5]. By integrating deep neural networks (DNNs) and 

other advanced ML techniques, researchers aim to enhance 

prediction models. They also seek to optimize sensor 

performance. 

Recent research [6], [7] have explored cutting-edge progresses 

in sensor design and the incorporation of ML. These efforts 

focus on optimizing sensor configurations for specific 

applications. The ML techniques are used to streamline and 

accelerate simulation workflows. It produces a feedforward 

multilayer perceptron-based ANN optimized with three hidden 

layers to prediction 12 optical parameters of silica based PCFs 

with maximum accuracy [8]. Moreover, the study utilizes 

ANNs to predict the output pulse shape parameters of a 

dissipative soliton resonance (DSR) fiber ring cavity laser. The 

ANN model precisely captures the complex nonlinear 

dynamics of fiber lasers, that is facilitating advanced system 

modeling [9]. Furthermore, the paper introduces an ultra-

sensitive PCF-SPR sensor capable of detecting analyte RI with 

maximum sensitivity of 123,000 nm/RIU and highest 

prediction accuracy of 0.9987 [10]. Additionally, feedforward 

utilizes ANNs to accurately and efficiently compute the optical 

properties of solid-core PCF sensor [11]. 

Despite significant progresses in plasmonic sensing 

technologies and integration of deep learning methods for data 

analysis., Yet, there are few limitations predicting the analyte 

RI in open-channel plasmonic sensors using deep learning. 

Present models often goal conventional sensor designs or 

broader optical properties, leaving a gap in highly specialized, 

accurate, and real-time predictive tools tailored for open-

channel outlines. This presents an opportunity to develop and 

evaluate deep learning integration and data profiles related with 

open-channel plasmonic sensors. 

This work introduces a deep learning techniques for predicting 

the analyte RI of plasmonic sensor. This method enhances the 

accuracy of predicting RI variations. Deep learning is utilized 

to address challenges stemming from data scarcity and to 

expand the training dataset. This approach offers a capable 

solution for progressing the resent area of plasmonic sensing.  

2. LITERATURE REVIEW 
The study [12] introduces a dual-core gold-coated PCF-SPR 

biosensor optimized for analyte RI between 1.31 and 1.40. This 

is covered within wavelengths from 0.40 µm to 0.90 µm. By 

incorporating ML methods, particularly the random forest 

regressor, the sensor demonstrated high predictive accuracy. It 

also achieved a wavelength sensitivity of up to 9000 nm/RIU. 

It also achieving a maximum resolution of 1.11 × 10−5 RIU. 

Correspondingly, the paper [13] traveled various ML 

algorithms, including XGBoost, random forest, and PyTorch 

neural networks, to predict and optimize the sensitivity of a D-

shaped PCF-SPR sensor. The XGBoost model achieved a high 
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prediction accuracy with an R2 value of 99.64%. This is 

collective with the optimization algorithm, the sensor’s high 

sensitivity rise from 4529.75 nm/RIU to 4814.14 nm/RIU.  

According to [14], a gold-coated plasmonic sensor is 

accessible, tailored for the near-infrared detection of metabolic 

disorder biomarkers such as glucose and cholesterol. 

Leveraging a quasi-honeycomb structure and a deep neural 

network, the sensor achieved over 92% sensitivity and reduced 

computation time by 99.99%, enabling real-time, non-invasive 

monitoring. In paper [15] analyzes the use of ML method, 

particularly the gaussian process regressor (GPR), to optimize 

the figure of merit (FOM) for PCF-SPR sensors based on 

differences in wavelength and metal layer thickness. The GPR 

model demonstrated strong trend consistency and predictive 

accuracy, achieving FOM values of 6526.23 and 6356.98 at 

specific wavelengths across different datasets. These findings 

highlight the model’s effectiveness in purifying sensor design 

before real time implementation. 

The study [16] presents a PCF-SPR sensor enhanced with four 

nanowires with gold. This is achieved wavelength sensitivities 

ranging from 2000 to 18000 nm/RIU within the wavelength 

range 720–1280 nm. The authors accurately predicted 

confinement loss and sensitivity using ANN. This is achieved 

the mean squared errors as low as 0.002. It also shows the 

integration of ML in enhancing sensor performance. Moreover, 

in the paper [17] offerings a visible core PCF sensor enhanced 

with gold-based SPR. It is achieved a high wavelength 

sensitivity of 23,000 nm/RIU. It is also achieved FOM value of 

287.50 RIU−1 for enhanced sensor performance. The RI range 

is between 1.33 and 1.41. Within this range, the sensor is 

effective at detecting a diverse range of substances.  It covers 

cancer cells. Enhanced prediction accuracy is achieved through 

support vector regression. 

The work presented in [18] highlighted the use of k-nearest 

neighbor regression (KNNR). This method was applied to 

predict loss features in a bent PCF-SPR sensor. The KNNR 

shows high performance across 1,180 samples. It is including 

straight and bent fibers in both x and y orders. It shows that 

KNNR not only outstrips ANN and linear least squares 

regression. It also suggests the advantage of instant usability 

without lengthy training. This highlights KNNR’s potential. It 

serves as an effective alternative for optical sensor simulations. 

It also shows potential for real-time sensor investigation. 

3. DEEP LEARNING MODEL 

IMPLEMENTATION 

3.1 Dataset Details 

In this research, the dataset was collected using a plasmonic 

sensor, as full information in [19]. It holds 1,902 data.  The 

inputs are RI, wavelength (λ), confinement loss (α), and the real 

and imaginary components of the material. Moreover, the 

dataset includes the real (Reeff) and imaginary (Imeff) parts of 

the effective RI. The datasets are arranged into eight separate 

analyte RI intervals. The RI change between 1.33 and 1.40. 

This wide-ranging dataset provides a solid foundation for 

investigating the RI. It is a vital parameter in plasmonic sensor 

research. 

3.2 System Configuration 
The experiments were conducted using a deep neural network 

implemented using Python. This is leveraging the PyTorch 

framework. The system is used a high-performance 

workstation. It is configured with a quad-core Intel Core i7 

processor at 2.6 GHz. This is also supported by 16 GB of 2400 

MHz DDR4 RAM. The workstation is equipped with an 

NVIDIA GTX 960M GPU. It is featuring 4 GB of dedicated 

video memory for enhanced graphical processing. It is running 

on the Windows 10 operating system, the PyTorch framework. 

It also optimized to fully harness the GPU’s computational 

power fully and effective algorithm implementation.  

3.3 Evaluation Metric in Plasmonic Sensor 
The feedforward neural network is used to predict the RI based 

on input parameters derived from plasmonic sensor data as 

shown Figure 1. The input layer consists of six features: 

Wavelength, Real, Imaginary, y-real, y-img, and confinement 

loss. The network incorporates four hidden layers with 

decreasing numbers of nodes: hidden layer 1 includes 128 

nodes, hidden layer 2 has 64 nodes, hidden layer 3 contains 32 

nodes, and hidden layer 4 comprises 16 nodes. Each hidden 

layer is densely connected to the previous layer, allowing for 

efficient processing and transformation of input features 

through nonlinear activation functions.  

The output layer consists of eight nodes corresponding to 

discrete RI values varies between 1.33 and 1.40. This is 

enabling the network to predict the most probable RI value 

based on the provided input. ML evaluation metrics play a vital 

role in considering the function of plasmonic sensors. This is 

relied on SPR for high-sensitivity detection applications. 

Performance evaluation metrics such as accuracy, precision, 

F1-score, and recall enable researchers to quantitatively 

evaluate the performance of predictive models applied to 

plasmonic data. These metrics ensure robust validation. They 

also provide insights into the reliability and efficacy of ML 

algorithms in identifying subtle changes in sensor responses.
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Fig. 1. Workflow of the Proposed Work 

 

Fig. 2. (a) Training and Test accuracy of ANN (b) Train and Test Loss of ANN 
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Fig. 3. Confusion matrix of (a) ANN, (b) CNN, (c) GRU, (d) LSTM 
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Fig. 4. Performance metrics with (a) accuracy, (b) precision, (c) recall, (d) F1-Score 

 

Fig. 5. Spider chart for normalized performance for different ML algorithms
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4. RESULTS AND ANALYSIS 
The deep learning model is analyzed during its training process 

by examining both training loss and test loss over 1000 epochs. 

It also provides insight into how well the model performs on 

both seen and unseen data. In Figure 2(a), the training loss is 

shown to decline steadily. It also indicates that the model is 

enlightening its performance on the data it was trained on. As 

the model learns from the training dataset, it becomes more 

adept at diminishing errors. Moreover, the training accuracy 

progresses and stabilizes at about 90%. This proposes that the 

model is successfully learning the training data. However, in 

Figure 2(b), the test loss remains higher and varies 

significantly, mainly after the first 400 epochs. This behavior 

points to the model stressed with the test data. It has not seen 

before, and shows a lack of reliability in its performance on this 

data. 

The difference between the training accuracy and test accuracy 

proposes that the model is overfitting. Overfitting occurs when 

a model becomes too particular to the training data. The 

learning patterns that are detailed to the training set rather than 

generalizable patterns that would apply to new, unseen data. In 

this case, the model attains high accuracy on the training data 

in around 90%. Moreover, the test accuracy emphasized at only 

70%. It indicates that the model's ability to simplify to new data 

is limited. This issue is additional recognized by the behavior 

of the test loss. It fails to drop in the same way the training loss 

does. Instead, the test loss remains classy. It also shows 

substantial variations beyond the 400th epoch. This is a typical 

sign of overfitting. Furthermore, the model has learned the 

training data too well. It is failing to apply its learning 

effectively to the test data. These trends indicates that the 

model, while effective in learning from the training data. It does 

not exhibit reliable performance when applied to new data. It 

also indicates room for enhancement in its ability to generalize. 

The confusion matrices for ANN are shown in Figure 3(a). It 

provides an in-depth view of their performance on the training 

dataset for analyte detection across the RI coverage of 1.33–

1.40. The ANN model demonstrates high predictive accuracy. 

I also aligning most predictions closely with the actual RI 

values. For instance, the ANN correctly classifies RI = 1.41 in 

31 cases, with only one misclassification. It also achieves 24 

correct classifications for RI = 1.34, with minimal false 

positives or negatives. The low number of off-diagonal 

elements in the ANN confusion matrix underscores its 

robustness. This indicates strong performance across all RI 

classes. 

Figure 3(b) illustrates the CNN model, which performs well but 

exhibits slightly higher misclassification rates compared to the 

ANN. For example, the CNN correctly predicts RI = 1.33 in 27 

cases, though it struggles slightly with RI = 1.35 and RI = 1.39. 

These predictions are distributed across neighboring RI classes. 

This highlights a weaker generalization ability in the CNN 

compared to the ANN, especially for mid-range refractive 

indices such as 1.36–1.38. Overall, the outcomes indicates that 

the ANN outperforms the CNN in terms of predictive accuracy 

and consistency. The ANN model demonstrates clearer 

separability between actual and predicted classes. Moreover, 

the CNN exhibits a slightly higher prediction overlap.  

Figure 3(c) illustrates the GRU model’s performance in 

classifying RI values ranging from 1.33 to 1.40 during training. 

The model achieves an overall accuracy of approximately 

75.57%. The highest classification accuracy observed for RI = 

1.40 and RI = 1.37 that is indicating strong model confidence 

in these classes. However, significant misclassifications occur 

between neighboring RI values. This is particularly for RI = 

1.34, which is frequently predicted as RI = 1.33 or RI = 1.35. 

This pattern highlights the model’s difficulty in distinguishing 

between closely spaced RI values. This is a common challenge 

in fine-grained classification tasks. The results indicates that 

the GRU captures general trends. However, refinement or 

regression may better handle the continuous nature of RI data. 

The Figure 3(d) for the LSTM model on the training data 

reveals a high overall classification accuracy in predicting RI 

values. This is most predictions concentrated along the 

diagonal and demonstrating correct classifications. The model 

exhibits influential performance for RI values of 1.33, 1.34, 

1.35, 1.36, and 1.37. In these cases, misclassifications are 

minimal or non-existent.  The confusion is more 

noticeable in the higher RI ranges (1.38 to 1.40), especially for 

RI = 1.39. It is sometimes misclassified as RI = 1.36, 1.37, or 

1.40. Despite these minor confusions, the model demonstrates 

a clear ability to differentiate between closely spaced RI values. 

It outperforms the GRU model in terms of precision and 

consistency across all classes. This indicates that the LSTM 

model captures the sequential or temporal patterns in the data 

more effectively. This makes it well-suited for this 

classification task, which involves subtle numerical 

distinctions. 

Figure 4(a-d) compares the function of four ML method using 

evaluation metrics: accuracy, recall, precision, and F1-score. 

Among the models, ANN consistently outstripped the others all 

metrics, achieving the highest accuracy of 78.18%, precision of 

0.78, F1-score of 0.78, and recall of 0.78. The techniques CNN 

and LSTM showed comparable performance, with accuracy, 

recall, and F1-scores of 72.72% and approximately 0.73, 

respectively. However, GRU demonstrated significantly lower 

performance, achieving an accuracy of only 41.81%, with 

precision, F-1 score and recall values dropping to 0.44 or 

below. These results highlight ANN’s superior ability to 

capture patterns in the dataset and generalize effectively. While 

CNN and LSTM performed reasonably well, they did not reach 

the same level of precision and recall as ANN. As reflected in 

its low metrics, GRU, being the least effective, struggled to 

provide consistent predictions. These findings align with the 

earlier confusion matrix analysis, confirming ANN as the most 

suitable algorithm for this SPR-PCF biosensor applications.  

The radar chart shows in see Figure. 5, compares the 

performance of four neural network methods, such as ANN, 

CNN, LSTM, and GRU, across all evaluation metrics such as 

accuracy, recall, precision, and f-1 score. Comapre all the 

models, ANN consistently demonstrates the highest 

performance across all parameters, closely followed by CNN 

and LSTM, which show similar results. GRU, on the other 

hand, lags significantly behind the others in every category, 

indicating a comparatively weaker performance. This 

visualization effectively highlights the superior overall 

efficiency of ANN in this particular evaluation. 

5. CONCLUSIONS 
This study has highlighted the effectiveness of deep learning-

based approaches for predicting the analyte RI in open-channel 

plasmonic sensor. The range of the RI is 1.33 to 1.40. Among 

the four ML method evaluated, the ANN model demonstrated 

superior performance. This is achieved the highest accuracy of 

78.18% with precision, F1-scores, and recall of 0.78 each. In 

comparison, the CNN and LSTM models have shown moderate 

accuracies of 72.72%, while the GRU model has 

underperformed significantly, with an accuracy of 41.81%. The 

ANN model has consistently achieved a training accuracy of 
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90%. However, the test accuracy fluctuations near 70% have 

indicates potential overfitting. This study has established the 

ANN model as the most robust and reliable architecture for 

predicting RI. It also provides valuable numerical perceptions 

to guide future work. These outcomes highlight the 

transformative possible of deep learning techniques in 

plasmonic sensor design. They also offer hands-on insights for 

forward-moving biomedical sensing applications. 

Future work will be expanding the RI range outside 1.33 to 

1.40. This also include more numerous analyte features could 

be positive. It would also allow the plasmonic sensors to be 

functional in more wide-ranging analytical atmospheres. 
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