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ABSTRACT 
Prototypical Networks operate by embedding both support and 

query samples into a common feature space and then 

representing each class with the mean vector of its support 

embeddings. Yet, the inherent complexity of medical imagery 

poses significant challenges for isolating features that are both 

precise and dependable. Consequently, constructing effective 

prototypes in this domain demands not only sophisticated 

preprocessing and more powerful embedding architectures, but 

also deliberate refinement of feature representations. In this 

context, most important and representative feature map selection 

is critical. We introduce Selective Feature Representation in 

Prototypical Networks, a lightweight yet effective enhancement 

to prototype-based few-shot learning. Proposed approach 

explicitly refines support embeddings by ranking and selecting 

the top feature maps for each class, leveraging an ensemble of 

channel-wise statistics—Global Average Pooling, Max Pooling, 

and Variance. Built on a compact CONV4 backbone, proposed 

method outperforms much larger state-of-the-art models on two 

medical benchmarks: achieving 67.18% (1-shot) and 78.20% (5-

shot) on Derm7pt skin-lesion classification, and 63.39% (1-shot), 

77.17% (5-shot), and 83.06% (10-shot) on BloodMNIST 

pathology classification. These gains demonstrate that targeted 

feature-map selection significantly improves prototype quality 

and generalization with minimal complexity, offering a practical 

solution for resource-constrained clinical applications. 

General Terms 
Meta Learning, Few Shot Learning, Prototypical Networks 

Keywords 
Meta Learning, Few Shot Learning, Prototypical Networks, 

Feature Map Selection 

1. INTRODUCTION 
Since the past few years, deep learning has brought a revolution 

in diverse fields of mankind through its astonishing features and 

extremely powerful prediction capabilities throughout various 

disciplines [12, 13]. It has brought great prosperity in many 

industries like finance, automotive, manufacturing including 

healthcare [15] e.g., computer-aided diagnosis [5], medical 

image retrieval [17], medical image mining [2], medical image 

sorting [23], etc. Deep learning and its applications have had a 

huge impact on the healthcare industry and have uplifted 

diagnostic capability by their outstanding features, flexibility, 

and robustness. But the main drawback with these models lies in 

their hunger for huge, annotated samples to achieve efficient 

performance. Researchers have explored various techniques to 

address this challenge, including transfer learning [26] and 

domain adaptation [8], which leverage large source domains to 

provide models with rich feature representations and favourable 

initialization for generalization. However, these approaches often 

struggle in extreme scenarios, such as severely tail distributed 

data or significant domain shift. 

The necessity for large numbers of labelled samples poses a huge 

challenge in data-scarce domains such as medicine. Even though 

many approaches have been proposed, learning from very few 

annotated samples remains an open challenge. This contrasts 

with human intelligence, which adapts quickly in a new 

environment using prior knowledge. This is where meta-learning 

comes in—it leverages exactly this human-like ability to learn 

and react from very few examples [10]. This is the crux of meta-

learning, which replicates learning from very few samples. 

Recently, meta-learning has gained popularity as an alternative 

in low-data regimes, especially in medicine. For instance, in 

predicting extremely rare disease classes with almost no samples, 

meta-learning can be highly significant. This few-sample 

prediction scenario is termed Few-Shot Learning [25]. Various 

meta-learning techniques have been applied to Few-Shot 

problems: metric-based approaches like Matching Networks [24] 

and Prototypical Networks [22], gradient-based methods such as 

MAML [7] and Optimization-Based Few-Shot [20]. 

Prototypical Networks [22] have become popular owing to their 

simple and intuitive design where they form class prototypes by 

averaging support-set embeddings and then classify queries 

according to the nearest-prototype distance. However, this 

vanilla formulation treats every support embedding equally, 

which may not reflect their true relevance or importance in class 

prototype formation. Several studies [9, 21] have introduced 

support-sample reweighting schemes to improve prototype 

construction, including the previously proposed work IPNET 

[18] that employed  

 
Fig. 1: Overview of the proposed refinement of prototypes 

in Prototypical Networks, where feature maps from each 

support embedding are selected using an ensemble strategy 

that combines global average pooling, max pooling, and 

variance-based selection 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.36, September 2025 

56 

Maximum Mean Discrepancy to identify and emphasize the most 

influential examples during prototype formation. In parallel, 

methods such as COMET [3] have explored in extracting 

semantically meaningful “Concepts” from each class sample to 

build” Concept-Based Class Prototypes”. 

Feature selection plays a critical role in enhancing the 

discriminative power and robustness of deep representations, 

particularly in high-dimensional settings like few-shot learning. 

Recent studies have highlighted that not all features contribute 

equally to the final prediction, and the presence of redundant or 

noisy dimensions can adversely affect the learning process [14, 

27]. Works such as [4] and [11] have shown that adaptive filtering 

or attention-based weighting of features can significantly 

improve generalization and reduce overfitting, especially in low-

data regimes. In the context of prototype-based few-shot 

methods, this becomes even more pertinent since prototype 

computation depends heavily on the aggregated feature 

embeddings. 

Despite these advances, none of the existing approaches 

explicitly emphasize filtering out noisy or less informative 

feature maps within each embedding; they still aggregate all 

feature maps when computing prototypes, potentially diluting the 

representation with irrelevant information. In this work, we 

propose Selective Feature Representation in Prototypical 

Networks which is a novel feature selection strategy that retains 

only the most salient feature maps in support sample 

embeddings, thereby reducing noise and enhancing class 

prototype quality. Proposed method determines important feature 

maps through an ensemble of three techniques—Global Average 

Pooling, Max Pooling, and Variance ensuring both diversity and 

robustness in the resulting class prototypes. The major 

contributions of this paper are as follows: 

• This work proposes refining prototypes in prototypical 

networks through selective feature maps, where only 

the most influential support embedding feature maps 

are retained for class prototype formation. 

• The feature maps are selected using an ensemble of 

three techniques—Global Average Pooling, Max 

Pooling, and Variance—ensuring a diverse and 

informative representation by capturing 

complementary aspects of the feature space. 

• The effectiveness of the proposed method is 

demonstrated on two medical imaging domains: 

dermatoscopic imaging using the Derm7pt [6] dataset 

and pathology using the BloodMNIST [1] dataset. 

• t-SNE visualizations on the BloodMNIST dataset show 

that Selective Feature Representation in Prototypical 

Networks yields more compact intra-class clusters and 

clearer inter-class separations than vanilla Prototypical 

Networks. 

The paper begins by introducing the preliminaries in Section 2, 

then describes the proposed methodology in Section 3. Section 4 

details the experimental setup and analysis, followed by the 

presentation of results in Section 5. Finally, Section 6 concludes 

the paper and outlines directions for future work. 

2. PRELIMINARIES 

2.1 Meta Learning 
Meta-learning, or “learning to learn” [7], aims to train models 

that can swiftly master new tasks from only a few examples by 

optimizing for adaptability rather than a single fixed objective. 

Given a labelled dataset D with C classes, we first partition it into 

two non-overlapping subsets, DMeta-Train and DMeta-Test, ensuring 

that classes seen during meta-training do not appear in meta 

testing. During the meta-training phase, over Etrain episodes we 

sample a task Ti from DMeta-Train and split it into a small support 

set Si (used to update the meta-learner fθ via gradient descent on 

the loss L(fθ(Si),ySi)) and a query set Qi (used to evaluate 

L(fθ(Qi),yQi)), thereby refining the model’s few-shot learning 

strategy through episodic training. In the meta-testing phase, we 

assess generalization over Etest episodes by sampling tasks Tj 

from DMeta-Test, fine-tuning fθ on each support set, and measuring 

performance on the corresponding query set; the aggregate query 

loss across these episodes quantifies the model’s ability to adapt 

to entirely new tasks with minimal data. 

2.2 Few Shot Learning 
Conventional deep learning approaches typically depend on large 

volumes of labelled data, which becomes a significant limitation 

in domains such as medical imaging, where data imbalance and 

scarcity especially for rare classes are common. Few-Shot 

Learning (FSL) [20] offers an effective alternative by enabling 

models to perform classification tasks using only a small number 

of labelled instances. 

In Few-Shot Learning, tasks are framed as N-way K-shot 

classification problems, where N indicates the number of distinct 

classes involved in each task and K specifies the number of 

available support samples per class. This episodic setting is 

designed to simulate the conditions under which the model will 

be evaluated. As described in Algorithm 1, the meta-training 

phase involves generating ETrain such tasks Ti, each structured 

according to the N-way K-shot format. An analogous process is 

followed during meta-testing, where the model is assessed on 

ETest previously unseen tasks drawn from a separate test 

distribution. 

2.3 Prototypical Networks 
Meta-learning approaches have become key to addressing Few-

Shot Learning (FSL) challenges especially in data scarce fields 

like medical imaging by enabling rapid adaptation from limited 

examples. Among these, metric-based strategies [16] excel in 

both simplicity and accuracy; notably, Prototypical Networks 

[22] perform N-way K-shot classification by embedding support 

set examples, computing each class prototype as the mean of its 

feature vectors, and assigning queries to the nearest prototype in 

embedding space. 

Formally, given a labelled dataset   drawn 

from class set C, we split C into disjoint training and testing 

subsets Ctr and Cts (so that Ctr ∩ Cts = ∅), thereby ensuring that 

during evaluation the model must generalize to entirely unseen 

classes using only the few support examples provided. The 

training procedure follows a meta-learning framework consisting 

of repeated episodes. During each meta-training episode, a task 

Ti is created by randomly sampling N classes from Ctr. For each 

class c within the task, K samples from the support set Si
c, and Q 

samples from the query set Qci, both drawn from DMeta-Train. A 

class prototype pc
i for each class c is computed by averaging the 

feature representations of its support set: 

  (1) 

For each query sample (xq,yq) ∈ Qc
i, the distance to each 

prototype is calculated. The probability that the query belongs to 

class c is obtained by applying a SoftMax over the negative 

distances: 
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 (2) 

Here, d(fθ(xq),pc
i) denotes the distance between the query 

embedding fθ(xq) and the prototype pc
i. The model is optimized 

by minimizing the negative log-likelihood of the true class label 

over all query samples, thereby updating the parameters θ of the 

embedding function fθ. 

In the meta-testing phase, the trained model is evaluated on new 

tasks sampled from Cts, which contain previously unseen classes. 

This phase serves to assess how well the model generalizes 

beyond the training distribution. 

3. PROPOSED METHODOLOGY 
The core objective of this study is to eliminate redundant or noisy 

feature maps and preserve only those that are most informative, 

thereby enabling the construction of more robust class 

prototypes. We posit that not all extracted feature maps 

contribute positively to prototype formation some may introduce 

extraneous information that could impair predictive 

performance. Consider an input image x ∈ RA×A×B, where A × A 

denotes the spatial resolution and B the number of input channels. 

When processed by the encoder fθ : RA×A×B → Ra×a×b, a pre-final 

feature tensor z = fθ(x) ∈ Ra×a×b is extracted where a×a is the 

reduced spatial resolution and b is the number of feature 

channels. From this tensor, we select the top M feature maps by 

integrating three complementary selection strategies: Global 

Average Pooling, Max Pooling, and Variance analysis. Global 

Average Pooling, Max Pooling, and Variance each capture 

complementary aspects of feature maps, and their integration 

leads to richer prototype representations. Global Average Pooling 

summarizes the overall activation strength across spatial 

locations, offering a sense of the dominant trends or global 

context within each channel. Max Pooling emphasizes the most 

strongly activated regions, often corresponding to highly 

discriminative or distinctive visual cues that are critical for class 

separation. Variance, in contrast, quantifies the degree of 

fluctuation within a channel, highlighting feature maps where 

activations exhibit strong diversity and thus capturing localized 

complexity or structural variation. When combined, these three 

statistical perspectives provide a holistic characterization of the 

support samples: the average conveys representativeness, the 

maximum emphasizes saliency, and the variance reflects 

diversity and richness of visual patterns. This multi-faceted view 

ensures that prototypes are not only broadly representative but 

also sensitive to fine-grained details and discriminative features 

qualities that are particularly essential for image-based tasks 

where subtle local variations often determine class identity. Let 

suppose, each support sample embedding from a class c is 

represented as a feature map of dimension a × a × b, where b 

denotes the number of channels and a × a is the spatial resolution. 

For each class c ∈ {1,...,N} in an N-way classification setting, we 

extract feature maps for K support samples using the encoder fθ. 

Each support sample of cth class is represented as zc,j ∈ Ra×a×b, 

where j = 1,...,K. These samples collectively form the support set 

Si
c, corresponding to class c in task Ti. For each support sample 

zc,j, we identify the most informative feature maps by using three 

different channel-wise statistics: the average pooled vector ac,j = 

GlobalAvgPool(zc,j), the max pooled vector mc,j = MaxPool(zc,j), 

and the per-channel variance vector vc,j = Var(zc,j), all of which 

lie in Rb. These methods are chosen because they each highlight 

unique aspects of the feature activations. A detailed picture of 

proposed feature selection strategy is depicted in Figure 1. The 

calculated vectors from these channels are then ranked based on 

descending values of ac,j, mc,j, and vc,j. A fixed number of top M 

unique channels (denoted as Ic,j, where |Ic,j| = M) are selected by 

interleaving the sorted indices from the three metrics. After 

constructing the selected index set Ic,j for a support embedding 

zc,j 
∈ 

Ra×a×b, we apply a binary channel-wise mask that preserves 

the chosen channels and suppresses the rest. Formally, let Mc,j ∈ 

0, 1}b 

be the binary mask such that Mc,j(k) = 1 if k ∈ Ic,j and 0 otherwise. 

The masked tensor retains the original shape Ra×a×b, which 

simplifies batching and downstream processing. In our 

experiments, this zeroing operation (retaining selected channels 

and suppressing others) proved effective for preserving tensor 

shapes and enabling efficient batching. The resulting masked 

embedding is denoted as zˆc,j. The prototype for class c in task Ti 

is then obtained by averaging the corresponding masked support 

features: 

.                                                  (3) 

Each class prototype pc
i captures the most informative channel 

activations from its support samples based on average, 

maximum, and variance-based criteria. For a given query sample 

(xk,yk) ∈ Qc
i, we first extract feature embedding zˆ for each query 

sample using the proposed feature selection strategy, and its 

distance to each class prototype is obtained by computing the 

corresponding Euclidean distance. The probability pθ(y = c | zˆ) 

that the query sample is classified into class c is then expressed 

using a SoftMax function applied over the negative distances: 

. (4) 
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Algorithm 1: Meta-learning with Selective Feature Representation in Prototypical Networks 

 

1: Input: 

with yk ∈ {1,...,C} 2: * Dataset                                                   

3: * Ctr,Cts: disjoint train/test class splits (|Ctr| + |Cts| = C) 

4: * DMeta-Train, DMeta-Test: subsets of D for train/test classes  

5: * ETrain, ETest: number of meta-training/testing episodes 

6: * N: classes per episode 

7: * K, NQ: support/query samples per class 

8: * M: number of top feature-map channels per support sample to be chosen by Global Average Pooling, Max Pooling and Variance    

9:   Randomly initialize parameters θ of Meta-Learner f 

10: Meta-Training Phase: (for i = 1,...,ETrain): 

11: Sample N classes Ci ⊂ Ctr 

12:          Construct support set Si and query set Qi:  

13:          for c ∈ Ci do 

14:            Dic ← {(x,y) ∈ DMeta-Train | y = c} 

34: Meta-Testing Phase: repeat from step 10 for ETest episodes on DMeta-Test to evaluate the performance of fθ 

 

15:     Si
c ← random K samples from Di

c ▷ Form support set pf class c 

16:    Qc
i ← random NQ samples from Di

c \ Si
c ▷ Form query set pf class c 

17:    Si ← Si ∪ Sic, Qi ← Qi ∪ Qci ▷ Feature-map selection for each support sample 
18:    for zc,j = fθ(xc,j) in Sic do  

19: ac,j ← GlobalAvgPool(zc,j) ∈ RA ▷ Calculate Global Average Pooling across all channels 

20: mc,j ← MaxPool(zc,j) ∈ RA ▷ Calculate Max Pooling across all channels 
21: vc,j ← Var(zc,j) ∈ RA ▷ Calculate Variance across all channels 

22: Sort channels by descending ac,j, mc,j, vc,j  

23: Interleave top indices to form Ic,j with |Ic,j| = M  

24: zˆc,j ← Mask(zc,j, Ic,j)  

25:    end for ▷ Class Prototype with masked feature map 

 

 

 

29: for (xk,yk) ∈ Qi do 

30: Extract fθ(xk) and compute distances d(fθ(xk),pc
i) 

31:             Accumulate cross entropy loss into L  

32: end for 

 

33: Update θ ← θ − α∇θL ▷ Update parameter θ of model f 

where the SoftMax function is applied to the negative distances 

between the query embedding zˆk and the class prototypes pc
i. 

Here, as mentioned in Section 2.3 also, d(zˆk,pc
i) denotes the 

distance between the feature representation of the query sample 

zˆk and the corresponding class prototype pc
i. The prototypical 

network is trained by minimizing the negative log-likelihood of 

the true class for each query sample, thereby learning the 

parameters θ of the feature extractor fθ. A step-by-step overview 

of proposed approach is outlined in Algorithm 1. 

4. EXPERIMENTATION DETAILS 

4.1 Datasets 
To ensure broad applicability, the proposed method was 

evaluated on two diverse medical imaging benchmarks, covering 

dermatology and pathology, thereby offering a comprehensive 

evaluation of its performance. The details of dataset used and its 

configuration are provided in Table 1. Some sample images from 

random classes of each dataset are shown in Figures 2 and 3 as a 

reference. 

 

Table 1: Configuration details of datasets used in this study 

 Dataset Summary   

Dataset #Images Resolution 

#Train 
Classes 

#Test 
Classes 

Derm7pt [6] 2,000 224×224 13 7 

BloodMNIST [1] 17092 84×84 4 4 
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Fig. 2: Sample images from random classes of BloodMNIST 

dataset 

Fig. 3: Sample images from random classes of Derm7pt 

dataset 

4.2 Implementation Details 
The experiments utilize a CONV4 backbone consisting of four 

sequential blocks, each containing 64 filters of size 2 × 2, 

followed by ReLU activations, batch normalization, and 2 × 2 

max-pooling with stride 2. We train the network with Stochastic 

Gradient Descent (SGD), setting the learning rate to 0.1 and the 

momentum to 0.9, under a standard few-shot learning 

framework. All experiments were carried out on an NVIDIA 

A100-SXM4 GPU with 40 GB of memory. The implementation 

was done in Python 3.10.4 using the PyTorch framework. 

4.3 Evaluation 
Few-shot learning (FSL) performance is evaluated using 

classification accuracy. Meta-training consists of 2000 episodes, 

repeated for ETrain epochs. Meta-testing includes 600 tasks or 

randomly sampled episodes per dataset, with average accuracy 

reported for Derm7pt [6] and BloodMNIST [1] dataset. 

5. RESULTS AND ANALYSIS 

5.1 Comparison with SOTA Methods 
We performed a comparative evaluation of proposed model’s 

performance against multiple state-of-the-art (SOTA) methods. 

The values in bold are the highest and values in underline are the 

second highest) 

5.1.1 Derm7pt. Figure 4 presents a comparative analysis of 

proposed method against various state-of-the-art approaches on 

the Derm7pt dataset. The bar charts depict 1-shot and 5-shot 

accuracies across multiple methods, where each bar corresponds 

to a reported SOTA model, and the error bars represent 

performance variance. As shown in the 1-shot chart, most 

methods cluster between 56–62%, with WRN-28-10 and 

DenseNet121 variants reaching around 61%, and Conv6 

approaches plateauing below 63%. In contrast, proposed 

method’s Conv4-based model (red bar) clearly rises above the 

group, achieving 67.18%, which is an approximate gain of 5% 

over the strongest WRN-28-10 baseline and more than 6% over 

Conv6. The 5-shot chart illustrates an overall upward shift in 

performance, with WRN-28-10 methods peaking at 79.83% and 

DenseNet121 around 79.18%, while Conv6 approaches remain 

below 77%. Proposed method’s model maintains strong 

competitive performance at 78.20%, comparable to the heavy 

WRN-28-10 and DenseNet121 backbones. 

Despite employing a lightweight Conv4 backbone with only 

50,688 parameters, the proposed method consistently 

outperforms much larger models in the more challenging 1-shot 

setting while sustaining competitive results in the 5-shot 

scenario. Moreover, as highlighted in the Baseline [19] work, 

such compact architectures are advantageous for feature 

extraction offering faster inference, lower memory requirements, 

and improved generalization making them particularly well-

suited for resource-constrained clinical deployment. 

5.1.2 BloodMNIST. Figure 5 presents a comparative analysis of 

the proposed method against various state-of-the-art approaches 

on the BloodMNIST dataset. The bar charts show 1-shot, 5-shot, 

and 10-shot accuracies, with each bar representing a reported 

SOTA model and the error bars indicating variance. In the 1-shot 

setting, most approaches fall between 55–63%, with ResNet-50 

methods performing strongly Multi-ProtoNets achieves 63.10% 

and GDSL with ResNet-25 reaches 63.47%. The proposed 

Conv4based model (red bar) delivers 63.39%, nearly matching 

the best heavy ResNet-50 baselines despite using only 50k 

parameters. In the 5-shot chart, overall performance rises, with 

LDP-Net (ResNet50) achieving 73.31% and Latent 

Augmentation reaching 70.22%. Yet, the proposed Conv4-based 

method clearly surpasses all, attaining 77.17% and 

outperforming both ResNet-50 and ResNet25 models.  
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Fig. 4: Performance comparison of few-shot learning methods on Derm7pt dataset for 2-way classification under 1-shot and 5-

shot settings. Accuracy (%) is reported along with model backbones and parameter sizes 

 

Fig. 5: Performance comparison of few-shot learning methods on the BloodMNIST dataset for 3-way classification under 1-

shot, 5-shot, and 10-shot settings. Accuracy (%) is reported along with model backbones and parameter sizes 

The 10-shot results highlight a similar trend: ResNet50 methods 

plateau around 79–80% (e.g., Multi-ProtoNets at 80.01%), while 

some ResNet-25 approaches such as R2D2 reach 82.66%. In 

contrast, the proposed Conv4 model continues to improve and 

achieves the best overall accuracy of 83.06%, exceeding both 

heavy and mid-weight backbones. 

Overall, while deep models like ResNet-50 (23.9M parameters) 

and ResNet-25 (15–17M parameters) perform competitively, 

their gains diminish at higher shots. Lightweight Conv4 methods 

like GDSL suffer sharp drops in accuracy (53.41% at 1-shot and 

only 63.81% at 10-shot). The proposed Conv4-based approach 

not only closes this gap but also establishes new performance 

highs, demonstrating that extremely compact models can exploit 

scarce support examples more effectively than heavier 

architectures, making them highly practical for resource-

constrained clinical deployment. 

t-SNE Visualization 

To qualitatively assess the discriminative power of learned 

prototypes, we visualize the embedded representations of support 
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and query samples for a representative 3-way 10-shot task on 

BloodMNIST using t-SNE. As shown in Figure 6 (a) 

conventional Prototypical Network produces clusters that are 

both dispersed and partially overlapping indicating prototype 

ambiguity and weaker inter-class separation. In contrast, 6 (b) 

Selective Feature Representation in Prototypical Networks 

approach yields markedly more compact and well-separated 

clusters with each class forming a distinct, tightly grouped 

manifold. This clear improvement stems from proposed 

method’s channel-wise filtering, which suppresses noisy or 

redundant activations and retains only the most informative 

feature maps for prototype construction. Consequently, the 

resulting embeddings exhibit sharper decision boundaries and 

reduced intra-class variance, providing compelling gains in few-

shot accuracy achieved by proposed method. 

 

Fig. 6: t-SNE Visualization of (a) ProtoNet vs (b) Proposed 

approach on 3-way 10-shot classification in BloodMNIST 

dataset 

6. CONCLUSION AND FUTURE 

DIRECTIONS 
In this work, we introduced a lightweight yet effective refinement 

to prototypes of prototypical few-shot learning by Selective 

Feature Representation, which explicitly filters support 

embeddings by selecting only the top-M feature maps per class 

using an ensemble of Global Average Pooling, Max Pooling, and 

Variance criteria. Built upon a compact CONV4 backbone, 

proposed approach achieves state-of-the-art performance on two 

challenging medical imaging benchmarks, yielding 67.18% (1-

shot) on Derm7pt and up to 77.17% (5-shot) and 83.06% (10-

shot) on BloodMNIST, outperforming much larger architectures. 

Looking ahead in future, although proposed selective feature 

refinement strategy shows strong potential, there are several 

directions to further improve and broaden its impact. First, to 

select more varied and discriminative feature maps, future work 

will focus on employing additional statistical measures or 

alternative techniques alongside the current ensemble of Global 

Average Pooling, Max Pooling, and Variance. This would allow 

the identification of the most descriptive and representative 

feature maps that not only form stronger class prototypes but also 

highlight the most salient regions of medical images, thereby 

improving interpretability and classification accuracy. Second, 

we plan to extend this framework to a wider range of medical 

imaging datasets, particularly those that face resource 

constraints, limited annotations, and severe class imbalance. 

Validating proposed method’s under such challenging conditions 

will help demonstrate its robustness and practical usefulness in 

real-world clinical scenarios where high-quality labelled data is 

scarce. Together, these directions aim to make selective feature 

refinement a more general, adaptive, and clinically valuable 

solution for few-shot medical image analysis. Overall, selective 

feature refinement represents a promising direction for 

enhancing prototype quality in few-shot medical imaging while 

maintaining efficiency and scalability. 
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