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ABSTRACT 
Prototypical Networks operate by embedding both support and 

query samples into a common feature space and then represent-ing 

each class with the mean vector of its support embeddings. Yet, the 

inherent complexity of medical imagery pose significant 

challenges for isolating features that are both precise and depend-

able. Consequently, constructing effective prototypes in this do-

main demands not only sophisticated preprocessing and more pow-

erful embedding architectures, but also deliberate refinement of 

feature representations. In this context, most important and rep-

resentative feature map selection is critical. We introduce Selec-

tive Feature Representation in Prototypical Networks, a 

lightweight yet effective enhancement to prototype-based few-shot 

learning. Proposed approach explicitly refines support embeddings 

by rank-ing and selecting the top feature maps for each class, 

leveraging an ensemble of channel-wise statistics—Global 

Average Pooling, Max Pooling, and Variance. Built on a compact 

CONV4 back-bone, proposed method outperforms much larger 

state-of-the-art models on two medical benchmarks: achieving 

67.18% (1-shot) and 78.20% (5-shot) on Derm7pt skin-lesion 

classification, and 63.39% (1-shot), 77.17% (5-shot), and 83.06% 

(10-shot) on Blood-MNIST pathology classification. These gains 

demonstrate that tar-geted feature-map selection significantly 

improves prototype qual-ity and generalization with minimal 

complexity, offering a practical solution for resource-constrained 

clinical applications. 
 
General Terms 
Meta Learning, Few Shot Learning, Prototypical Networks 
 
Keywords 
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1. INTRODUCTION 
Since the past few years, deep learning has brought a revolution in diverse 

fields of mankind through its astonishing features and extremely powerful 

prediction capabilities throughout various dis-ciplines [12, 13]. It has 

brought great prosperity in many industries 
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like finance, automotive, manufacturing including healthcare [15] e.g., 

computer-aided diagnosis [5], medical image retrieval [17], medical image 

mining [2], medical image sorting [23], etc. Deep learning and its 

applications have had a huge impact on the health-care industry and have 

uplifted diagnostic capability by their out-standing features, flexibility, and 

robustness. But the main draw-back with these models lies in their hunger 

for huge annotated samples to achieve efficient performance. Researchers 

have ex-plored various techniques to address this challenge, including 

trans-fer learning [26] and domain adaptation [8], which leverage large 

source domains to provide models with rich feature representations and 

favorable initialization for generalization. However, these ap-proaches 

often struggle in extreme scenarios, such as severely tail-distributed data or 

significant domain shift.  
The necessity for large numbers of labeled samples poses a huge challenge 

in data-scarce domains such as medicine. Even though many approaches 

have been proposed, learning from very few an-notated samples remains an 

open challenge. This contrasts with hu-man intelligence, which adapts 

quickly in a new environment using prior knowledge. This is where meta-

learning comes in—it lever-ages exactly this human-like ability to learn and 

react from very few examples [10]. This is the crux of meta-learning, which 

repli-cates learning from very few samples. Recently, meta-learning has 

gained popularity as an alternative in low-data regimes, especially in 

medicine. For instance, in predicting extremely rare disease classes with 

almost no samples, meta-learning can be highly sig-nificant. This few-

sample prediction scenario is termed Few-Shot Learning [25]. Various 

meta-learning techniques have been ap-plied to Few-Shot problems: 

metric-based approaches like Match-ing Networks [24] and Prototypical 

Networks [22], gradient-based methods such as MAML [7] and 

Optimization-Based Few-Shot [20].  
Prototypical Networks [22] have become popular owing to their simple and 

intuitive design where they form class prototypes by av-eraging support-set 

embeddings and then classify queries according to the nearest-prototype 

distance. However, this vanilla formula-tion treats every support embedding 

equally, which may not reflect their true relevance or importance in class 

prototype formation. Several studies [9, 21] have introduced support-sample 

reweight-ing schemes to improve prototype construction, including the pre- 
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viously proposed work IPNET [18] that employed Maximum Mean 
Discrepancy to identify and emphasize the most influential ex-
amples during prototype formation. In parallel, methods such as 
COMET [3] have explored in extracting semantically meaningful 
“Concepts” from each class sample to build ”Concept-Based Class 
Prototypes”.  
Feature selection plays a critical role in enhancing the discrimi-native 

power and robustness of deep representations, particularly in high-

dimensional settings like few-shot learning. Recent studies have 

highlighted that not all features contribute equally to the fi-nal prediction, 

and the presence of redundant or noisy dimensions can adversely affect the 

learning process [14, 27]. Works such as  
[4] and [11] have shown that adaptive filtering or attention-based 

weighting of features can significantly improve generalization and reduce 

overfitting, especially in low-data regimes. In the context of prototype-

based few-shot methods, this becomes even more per-tinent since prototype 

computation depends heavily on the aggre-gated feature embeddings.  
Despite these advances, none of the existing approaches explic-itly 

emphasize filtering out noisy or less informative feature maps within each 

embedding; they still aggregate all feature maps when computing 

prototypes, potentially diluting the representation with irrelevant 

information. In this work, we propose Selective Feature Representation in 

Prototypical Networks which is a novel feature selection strategy that 

retains only the most salient feature maps in support sample embeddings, 

thereby reducing noise and enhanc-ing class prototype quality. Proposed 

method determines important feature maps through an ensemble of three 

techniques—Global Av-erage Pooling, Max Pooling, and Variance 

ensuring both diversity and robustness in the resulting class prototypes. The 

major contri-butions of this paper are as follows: 
 
—This work proposes refining prototypes in prototypical networks 

through selective feature maps, where only the most influential 
support embedding feature maps are retained for class prototype 
formation.  

—The feature maps are selected using an ensemble of three 

techniques—Global Average Pooling, Max Pooling, and Vari-

ance—ensuring a diverse and informative representation by cap-

turing complementary aspects of the feature space.  
—The effectiveness of the proposed method is demonstrated on 

two medical imaging domains: dermatoscopic imaging using the 
Derm7pt [6] dataset and pathology using the BloodMNIST [1] 
dataset.  

—t-SNE visualizations on the BloodMNIST dataset show that Se-

lective Feature Representation in Prototypical Networks yields more 

compact intra-class clusters and clearer inter-class separa-tions than 

vanilla Prototypical Networks. 
 
The paper begins by introducing the preliminaries in Section 2, then 

describes the proposed methodology in Section 3. Section 4 details the 

experimental setup and analysis, followed by the presentation of results 

in Section 5. Finally, Section 6 concludes the paper and outlines 

directions for future work. 

 

2. PRELIMINARIE

S 2.1 Meta Learning 

Meta-learning, or “learning to learn” [7], aims to train models that can 

swiftly master new tasks from only a few examples by optimizing for 

adaptability rather than a single fixed objective. Given a labeled dataset D 

with C classes, we first partition it into 

 
two non-overlapping subsets, DMeta-Train and DMeta-Test, ensur-ing that 

classes seen during meta-training do not appear in meta-  
testing. During the meta-training phase, over Etrain episodes we sample a 

task Ti from DMeta-Train and split it into a small sup-port set Si (used to 

update the meta-learner fθ via gradient descent  
on the loss L(fθ(Si), ySi )) and a query set Qi (used to evaluate L(fθ(Qi), yQi )), 

thereby refining the model’s few-shot learning strategy through episodic 

training. In the meta-testing phase, we as-sess generalization over Etest episodes 

by sampling tasks Tj from 
DMeta-Test, fine-tuning fθ on each support set, and measuring per-formance 
on the corresponding query set; the aggregate query loss 
across these episodes quantifies the model’s ability to adapt to en-
tirely new tasks with minimal data. 
 

2.2 Few Shot Learning 
 
Conventional deep learning approaches typically depend on large 
volumes of labeled data, which becomes a significant limita-tion in 
domains such as medical imaging, where data imbalance and 
scarcity—especially for rare classes—are common. Few-Shot 
Learning (FSL) [20] offers an effective alternative by enabling 
models to perform classification tasks using only a small number 
of labeled instances.  
In Few-Shot Learning, tasks are framed as N-way K-shot classifi-cation 

problems, where N indicates the number of distinct classes involved in a 

given task and K specifies the number of available support samples per 

class. This episodic setting is designed to sim-ulate the conditions under 

which the model will be evaluated. As described in Algorithm 1, the meta-

training phase involves generat-  
ing ETrain such tasks Ti, each structured according to the N-way K-shot 

format. An analogous process is followed during meta-testing,  
where the model is assessed on ETest previously unseen tasks 
drawn from a separate test distribution. 
 

2.3 Prototypical Networks 
 
Meta-learning approaches have become key to addressing Few-Shot 

Learning (FSL) challenges especially in data scarce fields like medical 

imaging—by enabling rapid adaptation from limited examples. Among 

these, metric-based strategies [16] ex-cel in both simplicity and accuracy; 

notably, Prototypical Networks  
[22] perform N-way K-shot classification by embedding support 
set examples, computing each class prototype as the mean of its 
feature vectors, and assigning queries to the nearest prototype in 
embedding space. 
Formally, given a labeled dataset D = {(xk, yk)}n

k=1 drawn from class set 

C, we split C into disjoint training and testing subsets Ctr and Cts (so that 

Ctr ∩Cts = ∅), thereby ensuring that during evalua-tion the model must 

generalize to entirely unseen classes using only the few support examples 

provided. The training procedure follows a meta-learning framework 

consisting of repeated episodes. Dur-ing each meta-training episode, a task 

Ti is created by randomly sampling N classes from Ctr. For each class c 

within the task, K samples form the support set Si
c, and Q samples form the 

query set Qc
i, both drawn from DMeta-Train.  

A class prototype p
c
i for each class c is computed by averaging 

the feature representations of its support set: 
 

pi
c
 = 

1 
fθ(xk) (1) 

 

K  

 

xk∈Si
c 

 
 

   
  

For each query sample (xq, yq) ∈ Qc
i, the distance to each proto-type is 

calculated. The probability that the query belongs to class c 
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Fig. 1: Overview of the proposed refinement of prototypes in Prototypical Networks, where feature maps from each support embedding are 

selected using an ensemble strategy that combines global average pooling, max pooling, and variance-based selection. 

 
is obtained by applying a softmax over the negative distances: 
 

p 

 

(y = c 

| 

x ) = exp(−d(fθ(xq), pi
c
)) (2) 

 

 
 

 

c′ exp(−d(fθ(xq), pi
c′ )) 

 

 θ  q  
  

Here, d(fθ(xq), p
c
i) denotes the distance between the query em-

bedding fθ(xq) and the prototype p
c
i. The model is optimized by 

minimizing the negative log-likelihood of the true class label over 
all query samples, thereby updating the parameters θ of the embed-

ding function fθ. 
In the meta-testing phase, the trained model is evaluated on new 

tasks sampled from Cts, which contain previously unseen classes. 
This phase serves to assess how well the model generalizes beyond 
the training distribution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: Sample images from random classes of BloodMNIST dataset 

 

3. PROPOSED METHODOLOGY 
The core objective of this study is to eliminate redundant or noisy feature 

maps and preserve only those that are most informative, thereby enabling 

the construction of more robust class prototypes. We posit that not all 

extracted feature maps contribute positively to prototype formation—some 

may introduce extraneous informa-tion that could impair predictive 

performance. Consider an input 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3: Sample images from random classes of Derm7pt dataset  

 

image x ∈ R
A×A×B

, where A × A denotes the spatial resolu-tion and B 

the number of input channels. When processed by the encoder fθ : 

R
A×A×B

 → R
a×a×b

, a pre-final feature tensor  
z = fθ(x) ∈ R

a×a×b
 is extracted where a×a is the reduced spatial resolution and b 

is the number of feature channels. From this ten-sor, we select the top M feature 

maps by integrating three comple-mentary selection strategies: Global Average 

Pooling, Max Pool-ing, and Variance analysis. Global Average Pooling, Max 

Pool-ing, and Variance each capture complementary aspects of feature maps, 

and their integration leads to richer prototype representa-tions. Global Average 

Pooling summarizes the overall activation strength across spatial locations, 

offering a sense of the dominant trends or global context within each channel. 

Max Pooling empha-sizes the most strongly activated regions, often 

corresponding to highly discriminative or distinctive visual cues that are critical 

for class separation. Variance, in contrast, quantifies the degree of fluc-tuation 

within a channel, highlighting feature maps where activa-tions exhibit strong 

diversity and thus capturing localized complex-ity or structural variation. When 

combined, these three statistical perspectives provide a holistic characterization 

of the support sam-ples: the average conveys representativeness, the maximum 

empha-sizes saliency, and the variance reflects diversity and richness of vi-sual 

patterns. This multi-faceted view ensures that prototypes are not only broadly 

representative but also sensitive to fine-grained 
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Algorithm 1 Meta-learning with Selective Feature Representation in Prototypical Networks   

1: Input:  
2: * Dataset D = {(xk, yk)}

n
k=1 with yk ∈ {1, . . . , C} 

3: * Ctr, Cts: disjoint train/test class splits (|Ctr| + |Cts| = C) 

4: * DMeta-Train, DMeta-Test: subsets of D for train/test classes 

5: * ETrain, ETest: number of meta-training/testing episodes 

6: * N: classes per episode 

7: * K, NQ: support/query samples per class 

8: * M: number of top feature-map channels per support sample to be chosen by Global Average Pooling, Max Pooling and Varianc  
9: Randomly initialize parameters θ of Meta-Learner f  

10: Meta-Training Phase (for i = 1, . . . , ETrain): 
11: Sample N classes Ci ⊂ Ctr 

12: Construct support set Si and query set Qi: 

13: for c ∈ Ci do 

14: Di
c
 ← {(x, y) ∈ DMeta-Train | y = c} 

15: Si
c
 ← random K samples from Di

c
 

16: Qc
i ← random NQ samples from Di

c \ Si
c
 

17: Si ← Si ∪ Si
c
, Qi ← Qi ∪ Q

c
i 

18: for zc,j = fθ(xc,j) in Si
c
 do 

19: ac,j ← GlobalAvgPool(zc,j) ∈ R
b
 

20: mc,j ← MaxPool(zc,j) ∈ R
b
 

21: vc,j ← Var(zc,j) ∈ R
b
 

22: Sort channels by descending ac,j, mc,j, vc,j 

23: Interleave top indices to form Ic,j with |Ic,j| = M 

24: zˆc,j ← Mask(zc,j, Ic,j) 
25: end for 
  c 

 

26:pi
c
 = 

1 
j
S

=1
i zˆc,j,  pi

c
 ∈ R

b
  

K 
 

27: end for 
28: L ← 0  
29: for (xk, yk) ∈ Qi do 

30: Extract fθ(xk) → zˆk using Step 18 to 25 

31: pθ(y = c | zˆk) = 
exp −d(zˆk,pi

c
)    

 

c
′ 

exp 
− 

d(zˆk,p
c′

 )  
 

32: 
 1   c i  c

′  
 

L←L+ N∗Q d(zˆk, pi ) + log c′ exp(−d(zˆk, pi )) 
 

 
 
 
 
 

 

▷ Form support set pf class c 
▷ Form query set pf class c 

▷ Feature-map selection for each support sample 
 

▷ Calculate Global Average Pooling across all channels ▷ 

Calculate Max Pooling across all channels ▷ 

Calculate Varince across all channels 
 

 

▷ Class Prototype with masked feature map 
 

 
▷ Initialize Loss 

 

▷ For each query sample in 

Q ▷ Compute prediction probability of each query 

embedding ▷ Compute Cross Entropy Loss 
 

33: end for 
34: Update θ ← θ − α ∇θL ▷ Update parameter θ of model f 

35: Meta-Testing Phase: repeat from step 10 for ETest episodes on DMeta-Test to evaluate the performance of fθ 

 
 
details and discriminative features qualities that are particularly es-sential for 

image-based tasks where subtle local variations often determine class identity. 

Let suppose, each support sample embed-ding from a class c is represented as a 

feature map of dimension a × a × b, where b denotes the number of channels and 

a × a is the spatial resolution. For each class c ∈ {1, . . . , N} in an N-way 

classification setting, we extract feature maps for K support sam-ples using the 

encoder fθ. Each support sample of c
th

 class is rep-  
resented as zc,j ∈ R

a×a×b
, where j = 1, . . . , K. These samples 

collectively form the support set Si
c
, corresponding to class c in  

task Ti. For each support sample zc,j, we identify the most infor-mative 
feature maps by using three different channel-wise statis-tics: the average 

pooled vector ac,j = GlobalAvgPool(zc,j), the  
max pooled vector mc,j = MaxPool(zc,j), and the per-channel variance 

vector vc,j = Var(zc,j), all of which lie in Rb. These methods are chosen 
because they each highlight unique aspects of  
the feature activations. A detailed picture of proposed feature se-lection strategy 

is depicted in Figure 1. The calculated vectors from these channels are then 

ranked based on descending values of ac,j, mc,j, and vc,j. A fixed number of top 

M unique channels (denoted as Ic,j, where |Ic,j| = M) are selected by interleaving 

the sorted indices from the three metrics. After constructing the selected in- 

 
 
dex set Ic,j for a support embedding zc,j ∈ Ra×a×b, we apply a binary 

channel-wise mask that preserves the chosen channels and  
suppresses the rest. Formally, let Mc,j ∈ {0, 1}b be the binary mask such 

that Mc,j(k) = 1 if k ∈ Ic,j and 0 otherwise. The masked tensor retains the 

original shape Ra×a×b, which simplifies batching and downstream 

processing. In our experiments, this zero-ing operation (retaining selected 

channels and suppressing others) proved effective for preserving tensor 

shapes and enabling efficient batching. The resulting masked embedding is 

denoted as zˆc,j. The prototype for class c in task Ti is then obtained by 

averaging the corresponding masked support features: 
  S

c  
 

 1 i  
 

pi
c
 = zˆc,j,  pi

c
 ∈ R

b
. (3) 

 

  

K 
 

j=1 
 
Each class prototype pc

i captures the most informative channel acti-vations 

from its support samples based on average, maximum, and variance-based 

criteria.For a given query sample (xk, yk) ∈ Qc
i, we first extract feature 

embedding zˆ for each query sample us-ing the proposed feature selection 

strategy, and its distance to each class prototype is obtained by computing 

the corresponding Eu-clidean distance. The probability pθ(y = c | zˆ) that 

the query 
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Fig. 4: Performance comparison of few-shot learning methods on the Derm7pt dataset for 2-way classification under 1-shot and 5-shot 
settings. Accuracy (%) is reported along with model backbones and parameter sizes.(values in bold are the highest and values in underline 

are the second highest) 

 

sample is classified into class c is then expressed using a softmax 

function applied over the negative distances:  

pθ(y = c | zˆk) = 

exp − d(zˆk, pi
c
) 

(4) 

 

 

. 

 

c′ exp − d(zˆk, pi
c′ ) 

 

where the softmax function is applied to the negative distances be-tween 

the query embedding zˆk and the class prototypes pc
i. Here, as mentioned 

in Section 2.3 also, d(zˆk, pc
i) denotes the distance be-tween the feature 

representation of the query sample zˆk and the cor-responding class 

prototype pc
i. The prototypical network is trained by minimizing the 

negative log-likelihood of the true class for each query sample, thereby 

learning the parameters θ of the feature ex-tractor fθ. A step-by-step 
overview of proposed approach is out-lined in Algorithm 1. 
 
4. EXPERIMENTATION DETAILS  

4.1 Datasets 

To ensure broad applicability, the proposed method was evaluated on two 

diverse medical imaging benchmarks, covering dermatol-ogy and 

pathology, thereby offering a comprehensive evaluation of its performance. 

The details of dataset used and its configuration 

 

 
are provided in Table 1. Some sample images from random classes of each 

dataset are shown in Figures 2 and 3 as a reference. 

 

Table 1. : Configuration details of datasets used in this study  

 

Dataset Summary   
   #Train #Test 
Dataset #Images Resolution Classes Classes 
     

Derm7pt[6] 2,000 224×224 13 7 
BloodMNIST[1] 17092 84×84 4 4 
     

 

 

4.2 Implementation Details 
 
The experiments utilize a CONV4 backbone consisting of four se-quential 

blocks, each containing 64 filters of size 2 × 2, followed by ReLU 

activations, batch normalization, and 2 × 2 max-pooling with stride 2. We 

train the network with Stochastic Gradient De-scent (SGD), setting the 

learning rate to 0.1 and the momentum to 0.9, under a standard few-shot 

learning framework. All experiments were carried out on an NVIDIA 

A100-SXM4 GPU with 40 GB of 
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Fig. 5: Performance comparison of few-shot learning methods on the BloodMNIST dataset for 3-way classification under 1-shot, 

5-shot, and 10-shot settings. Accuracy (%) is reported along with model backbones and parameter sizes.(values in bold are the 

highest and values in underline are the second highest) 

 

memory. The implementation was done in Python 3.10.4 using the 

PyTorch framework. 
 
4.3 Evaluation 
 
Few-shot learning (FSL) performance is evaluated using classifi-cation 

accuracy. Meta-training consists of 2000 episodes, repeated for ET rain 

epochs. Meta-testing includes 600 tasks or randomly sampled episodes per 

dataset, with average accuracy reported for Derm7pt [6] and BloodMNIST 

[1] dataset. 

 

5. RESULTS AND ANALYSIS 
 
5.1 Comparison with SOTA Methods 
 
We performed a comparative evaluation of proposed model’s per-

formance against multiple state-of-the-art (SOTA) methods. 
 
5.1.1 Derm7pt. Figure 4 presents a comparative analysis of pro-posed 

method against various state-of-the-art approaches on the Derm7pt dataset. 

The bar charts depict 1-shot and 5-shot accu-racies across multiple 

methods, where each bar corresponds to a reported SOTA model, and the 

error bars represent performance variance. As shown in the 1-shot chart, 

most methods cluster be- 

 

 
tween 56–62%, with WRN-28-10 and DenseNet121 variants reach-ing 

around 61%, and Conv6 approaches plateauing below 63%. In contrast, 

proposed method’s Conv4-based model (red bar) clearly rises above the 

group, achieving 67.18%, which is an approximate gain of 5% over the 

strongest WRN-28-10 baseline and more than 6% over Conv6. The 5-shot 

chart illustrates an overall upward shift in performance, with WRN-28-10 

methods peaking at 79.83% and DenseNet121 around 79.18%, while 

Conv6 approaches remain be-low 77%. Proposed method’s model 

maintains strong competitive performance at 78.20%, comparable to the 

heavy WRN-28-10 and DenseNet121 backbones.  
Despite employing a lightweight Conv4 backbone with only 50,688 

parameters, the proposed method consistently outperforms much larger 

models in the more challenging 1-shot setting while sustain-ing competitive 

results in the 5-shot scenario. Moreover, as high-lighted in the Baseline [19] 

work, such compact architectures are advantageous for feature extraction 

offering faster inference, lower memory requirements, and improved 

generalization making them particularly well-suited for resource-

constrained clinical deploy-ment. 
 
5.1.2 BloodMNIST. Figure 5 presents a comparative analysis of the 

proposed method against various state-of-the-art approaches on 
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Fig. 6: t-SNE Visualization of (a) ProtoNet vs (b) Proposed approach on 

3-way 10-shot classification in BloodMNIST dataset 

 
the BloodMNIST dataset. The bar charts show 1-shot, 5-shot, and 10-shot 

accuracies, with each bar representing a reported SOTA model and the error 

bars indicating variance. In the 1-shot set-ting, most approaches fall 

between 55–63%, with ResNet-50 meth-ods performing strongly—Multi-

ProtoNets achieves 63.10% and GDSL with ResNet-25 reaches 63.47%. 

The proposed Conv4-based model (red bar) delivers 63.39%, nearly 

matching the best heavy ResNet-50 baselines despite using only 50k 

parameters. In the 5-shot chart, overall performance rises, with LDP-Net 

(ResNet-  
50) achieving 73.31% and Latent Augmentation reaching 70.22%. Yet, the 

proposed Conv4-based method clearly surpasses all, at-taining 77.17% and 

outperforming both ResNet-50 and ResNet-25 models. The 10-shot results 

highlight a similar trend: ResNet-50 methods plateau around 79–80% (e.g., 

Multi-ProtoNets at 80.01%), while some ResNet-25 approaches such as 

R2D2 reach  
82.66%. In contrast, the proposed Conv4 model continues to im-
prove and achieves the best overall accuracy of 83.06%, exceeding 
both heavy and mid-weight backbones. 
Overall, while deep models like ResNet-50 (23.9M parameters) and 

ResNet-25 (15–17M parameters) perform competitively, their gains 

diminish at higher shots. Lightweight Conv4 methods like GDSL suffer 

sharp drops in accuracy (53.41% at 1-shot and only 63.81% at 10-shot). 

The proposed Conv4-based approach not only closes this gap but also 

establishes new performance highs, demonstrat-ing that extremely compact 

models can exploit scarce support ex-amples more effectively than heavier 

architectures, making them highly practical for resource-constrained 

clinical deployment. 

 

5.2 t-SNE Visualization 
 
To qualitatively assess the discriminative power of learned proto-types, we 

visualize the embedded representations of support and query samples for a 

representative 3-way 10-shot task on Blood-MNIST using t-SNE. As 

shown in Figure 6 (a) conventional Pro-totypical Network produces clusters 

that are both dispersed and partially overlapping indicating prototype 

ambiguity and weaker inter-class separation. In contrast, 6 (b) Selective 

Feature Repre-sentation in Prototypical Networks approach yields 

markedly more compact and well-separated clusters with each class 

forming a dis-tinct, tightly grouped manifold. This clear improvement 

stems from proposed method’s channel-wise filtering, which suppresses 

noisy or redundant activations and retains only the most informative fea-

ture maps for prototype construction. Consequently, the result-ing 

embeddings exhibit sharper decision boundaries and reduced intra-class 

variance, providing compelling gains in few-shot accu-racy achieved by 

proposed method. 

 
 
6. CONCLUSION AND FUTURE DIRECTIONS 
 
In this work, we introduced a lightweight yet effective refinement to 

prototypes of prototypical few-shot learning by Selective Fea-ture 

Representation, which explicitly filters support embeddings by selecting 

only the top-M feature maps per class using an ensem-ble of Global 

Average Pooling, Max Pooling, and Variance crite-ria. Built upon a 

compact CONV4 backbone, proposed approach achieves state-of-the-art 

performance on two challenging medical imaging benchmarks, yielding 

67.18% (1-shot) on Derm7pt and up to 77.17% (5-shot) and 83.06% (10-

shot) on BloodMNIST, outper-forming much larger architectures. 
Looking ahead in future, although proposed selective feature re-finement 

strategy shows strong potential, there are several direc-tions to further 

improve and broaden its impact. First, to select more varied and 

discriminative feature maps, future work will fo-cus on employing 

additional statistical measures or alternative tech-niques alongside the 

current ensemble of Global Average Pooling, Max Pooling, and Variance. 

This would allow the identification of the most descriptive and 

representative feature maps that not only form stronger class prototypes but 

also highlight the most salient regions of medical images, thereby 

improving interpretability and classification accuracy. Second, we plan to 

extend this framework to a wider range of medical imaging datasets, 

particularly those that face resource constraints, limited annotations, and 

severe class im-balance. Validating proposed method’s under such 

challenging con-ditions will help demonstrate its robustness and practical 

usefulness in real-world clinical scenarios where high-quality labeled data 

is scarce. Together, these directions aim to make selective feature re-

finement a more general, adaptive, and clinically valuable solution for few-

shot medical image analysis. Overall, selective feature re-finement 

represents a promising direction for enhancing prototype quality in few-

shot medical imaging while maintaining efficiency and scalability. 
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