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ABSTRACT

Prototypical Networks operate by embedding both support and
query samples into a common feature space and then
representing each class with the mean vector of its support
embeddings. Yet, the inherent complexity of medical imagery
poses significant challenges for isolating features that are both
precise and dependable. Consequently, constructing effective
prototypes in this domain demands not only sophisticated
preprocessing and more powerful embedding architectures, but
also deliberate refinement of feature representations. In this
context, most important and representative feature map selection
is critical. We introduce Selective Feature Representation in
Prototypical Networks, a lightweight yet effective enhancement
to prototype-based few-shot learning. Proposed approach
explicitly refines support embeddings by ranking and selecting
the top feature maps for each class, leveraging an ensemble of
channel-wise statistics—Global Average Pooling, Max Pooling,
and Variance. Built on a compact CONV4 backbone, proposed
method outperforms much larger state-of-the-art models on two
medical benchmarks: achieving 67.18% (1-shot) and 78.20% (5-
shot) on Derm7pt skin-lesion classification, and 63.39% (1-shot),
77.17% (5-shot), and 83.06% (10-shot) on BloodMNIST
pathology classification. These gains demonstrate that targeted
feature-map selection significantly improves prototype quality
and generalization with minimal complexity, offering a practical
solution for resource-constrained clinical applications.
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1. INTRODUCTION

Since the past few years, deep learning has brought a revolution
in diverse fields of mankind through its astonishing features and
extremely powerful prediction capabilities throughout various
disciplines [12, 13]. It has brought great prosperity in many
industries like finance, automotive, manufacturing including
healthcare [15] e.g., computer-aided diagnosis [5], medical
image retrieval [17], medical image mining [2], medical image
sorting [23], etc. Deep learning and its applications have had a
huge impact on the healthcare industry and have uplifted
diagnostic capability by their outstanding features, flexibility,
and robustness. But the main drawback with these models lies in
their hunger for huge, annotated samples to achieve efficient
performance. Researchers have explored various techniques to
address this challenge, including transfer learning [26] and
domain adaptation [8], which leverage large source domains to
provide models with rich feature representations and favourable
initialization for generalization. However, these approaches often
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struggle in extreme scenarios, such as severely tail distributed
data or significant domain shift.

The necessity for large numbers of labelled samples poses a huge
challenge in data-scarce domains such as medicine. Even though
many approaches have been proposed, learning from very few
annotated samples remains an open challenge. This contrasts
with human intelligence, which adapts quickly in a new
environment using prior knowledge. This is where meta-learning
comes in—it leverages exactly this human-like ability to learn
and react from very few examples [10]. This is the crux of meta-
learning, which replicates learning from very few samples.
Recently, meta-learning has gained popularity as an alternative
in low-data regimes, especially in medicine. For instance, in
predicting extremely rare disease classes with almost no samples,
meta-learning can be highly significant. This few-sample
prediction scenario is termed Few-Shot Learning [25]. Various
meta-learning techniques have been applied to Few-Shot
problems: metric-based approaches like Matching Networks [24]
and Prototypical Networks [22], gradient-based methods such as
MAML [7] and Optimization-Based Few-Shot [20].

Prototypical Networks [22] have become popular owing to their
simple and intuitive design where they form class prototypes by
averaging support-set embeddings and then classify queries
according to the nearest-prototype distance. However, this
vanilla formulation treats every support embedding equally,
which may not reflect their true relevance or importance in class
prototype formation. Several studies [9, 21] have introduced
support-sample reweighting schemes to improve prototype
construction, including the previously proposed work IPNET

[18] that employed
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Fig. 1: Overview of the proposed refinement of prototypes
in Prototypical Networks, where feature maps from each
support embedding are selected using an ensemble strategy
that combines global average pooling, max pooling, and
variance-based selection
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Maximum Mean Discrepancy to identify and emphasize the most
influential examples during prototype formation. In parallel,
methods such as COMET [3] have explored in extracting
semantically meaningful “Concepts” from each class sample to
build” Concept-Based Class Prototypes”.

Feature selection plays a critical role in enhancing the
discriminative power and robustness of deep representations,
particularly in high-dimensional settings like few-shot learning.
Recent studies have highlighted that not all features contribute
equally to the final prediction, and the presence of redundant or
noisy dimensions can adversely affect the learning process [14,
27]. Works such as [4] and [11] have shown that adaptive filtering
or attention-based weighting of features can significantly
improve generalization and reduce overfitting, especially in low-
data regimes. In the context of prototype-based few-shot
methods, this becomes even more pertinent since prototype
computation depends heavily on the aggregated feature
embeddings.

Despite these advances, none of the existing approaches
explicitly emphasize filtering out noisy or less informative
feature maps within each embedding; they still aggregate all
feature maps when computing prototypes, potentially diluting the
representation with irrelevant information. In this work, we
propose Selective Feature Representation in Prototypical
Networks which is a novel feature selection strategy that retains
only the most salient feature maps in support sample
embeddings, thereby reducing noise and enhancing class
prototype quality. Proposed method determines important feature
maps through an ensemble of three techniques—Global Average
Pooling, Max Pooling, and Variance ensuring both diversity and
robustness in the resulting class prototypes. The major
contributions of this paper are as follows:

e  This work proposes refining prototypes in prototypical
networks through selective feature maps, where only
the most influential support embedding feature maps
are retained for class prototype formation.

o  The feature maps are selected using an ensemble of
three techniques—Global Average Pooling, Max
Pooling, and Variance—ensuring a diverse and
informative representation by capturing
complementary aspects of the feature space.

e The effectiveness of the proposed method is
demonstrated on two medical imaging domains:
dermatoscopic imaging using the Derm7pt [6] dataset
and pathology using the BloodMNIST [1] dataset.

e  t-SNE visualizations on the BloodMNIST dataset show
that Selective Feature Representation in Prototypical
Networks yields more compact intra-class clusters and
clearer inter-class separations than vanilla Prototypical
Networks.

The paper begins by introducing the preliminaries in Section 2,
then describes the proposed methodology in Section 3. Section 4
details the experimental setup and analysis, followed by the
presentation of results in Section 5. Finally, Section 6 concludes
the paper and outlines directions for future work.

2. PRELIMINARIES
2.1 Meta Learning

Meta-learning, or “learning to learn” [7], aims to train models
that can swiftly master new tasks from only a few examples by
optimizing for adaptability rather than a single fixed objective.
Given a labelled dataset D with C classes, we first partition it into
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two non-overlapping subsets, DMeta-Train and Dweta-Test, ensuring
that classes seen during meta-training do not appear in meta
testing. During the meta-training phase, over Ewain episodes we
sample a task 7; from Dweta-Train and split it into a small support
set Si (used to update the meta-learner fp via gradient descent on
the loss L(fo(S:),ys)) and a query set O: (used to evaluate
L(fo(Q0:),y0)), thereby refining the model’s few-shot learning
strategy through episodic training. In the meta-testing phase, we
assess generalization over Erest episodes by sampling tasks 7;
from DMeta-Test, fine-tuning fs on each support set, and measuring
performance on the corresponding query set; the aggregate query
loss across these episodes quantifies the model’s ability to adapt
to entirely new tasks with minimal data.

2.2 Few Shot Learning

Conventional deep learning approaches typically depend on large
volumes of labelled data, which becomes a significant limitation
in domains such as medical imaging, where data imbalance and
scarcity especially for rare classes are common. Few-Shot
Learning (FSL) [20] offers an effective alternative by enabling
models to perform classification tasks using only a small number
of labelled instances.

In Few-Shot Learning, tasks are framed as N-way K-shot
classification problems, where N indicates the number of distinct
classes involved in each task and K specifies the number of
available support samples per class. This episodic setting is
designed to simulate the conditions under which the model will
be evaluated. As described in Algorithm 1, the meta-training
phase involves generating Etrin Such tasks 7;, each structured
according to the N-way K-shot format. An analogous process is
followed during meta-testing, where the model is assessed on
Etest previously unseen tasks drawn from a separate test
distribution.

2.3 Prototypical Networks

Meta-learning approaches have become key to addressing Few-
Shot Learning (FSL) challenges especially in data scarce fields
like medical imaging by enabling rapid adaptation from limited
examples. Among these, metric-based strategies [16] excel in
both simplicity and accuracy; notably, Prototypical Networks
[22] perform N-way K-shot classification by embedding support
set examples, computing each class prototype as the mean of its
feature vectors, and assigning queries to the nearest prototype in
embedding space.

Formally, given a labelled dataset P = {(ens we) Fizt drawn
from class set C, we split C into disjoint training and testing
subsets Cy and Cis (so that Ce N Cis = @), thereby ensuring that
during evaluation the model must generalize to entirely unseen
classes using only the few support examples provided. The
training procedure follows a meta-learning framework consisting
of repeated episodes. During each meta-training episode, a task
Tiis created by randomly sampling N classes from Cy. For each
class ¢ within the task, K samples from the support set Si*, and Q
samples from the query set Qci, both drawn from DMeta-Train. A
class prototype p<; for each class ¢ is computed by averaging the
feature representations of its support set:

b= O folen)
2k €SY (])

For each query sample (x5y;) € (9, the distance to each
prototype is calculated. The probability that the query belongs to
class ¢ is obtained by applying a SoftMax over the negative
distances:
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exp(—d(fo(xzq), p§))
>ouexp(—d(fe(zy), p;")) )

Here, d(fo(xq),pi) denotes the distance between the query
embedding fo(x4) and the prototype p“. The model is optimized
by minimizing the negative log-likelihood of the true class label
over all query samples, thereby updating the parameters 6 of the
embedding function fo.

poly=clzy) =

In the meta-testing phase, the trained model is evaluated on new
tasks sampled from Cts, which contain previously unseen classes.
This phase serves to assess how well the model generalizes
beyond the training distribution.

3. PROPOSED METHODOLOGY

The core objective of this study is to eliminate redundant or noisy
feature maps and preserve only those that are most informative,
thereby enabling the construction of more robust class
prototypes. We posit that not all extracted feature maps
contribute positively to prototype formation some may introduce
extraneous information that could impair predictive
performance. Consider an input image x € R*4*E where 4 x 4
denotes the spatial resolution and B the number of input channels.
When processed by the encoder fo : R¥4*E — R®®® 3 pre-final
feature tensor z = fy(x) € R’ is extracted where axa is the
reduced spatial resolution and b is the number of feature
channels. From this tensor, we select the top M feature maps by
integrating three complementary selection strategies: Global
Average Pooling, Max Pooling, and Variance analysis. Global
Average Pooling, Max Pooling, and Variance each capture
complementary aspects of feature maps, and their integration
leads to richer prototype representations. Global Average Pooling
summarizes the overall activation strength across spatial
locations, offering a sense of the dominant trends or global
context within each channel. Max Pooling emphasizes the most
strongly activated regions, often corresponding to highly
discriminative or distinctive visual cues that are critical for class
separation. Variance, in contrast, quantifies the degree of
fluctuation within a channel, highlighting feature maps where
activations exhibit strong diversity and thus capturing localized
complexity or structural variation. When combined, these three
statistical perspectives provide a holistic characterization of the
support samples: the average conveys representativeness, the
maximum emphasizes saliency, and the variance reflects
diversity and richness of visual patterns. This multi-faceted view
ensures that prototypes are not only broadly representative but
also sensitive to fine-grained details and discriminative features
qualities that are particularly essential for image-based tasks
where subtle local variations often determine class identity. Let
suppose, each support sample embedding from a class ¢ is
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represented as a feature map of dimension a x a X b, where b
denotes the number of channels and a x « is the spatial resolution.

For each class ¢ € {1,...,N} in an N-way classification setting, we
extract feature maps for K support samples using the encoder fs.
Each support sample of ¢ class is represented as z.; € R”“,
where j = 1,...,K. These samples collectively form the support set
S, corresponding to class ¢ in task 7. For each support sample
Z.j, we identify the most informative feature maps by using three
different channel-wise statistics: the average pooled vector a.;=
GlobalAvgPool(z.,), the max pooled vector m.;= MaxPool(z.,),
and the per-channel variance vector vc;= Var(z.,), all of which
lie in R%. These methods are chosen because they each highlight
unique aspects of the feature activations. A detailed picture of
proposed feature selection strategy is depicted in Figure 1. The
calculated vectors from these channels are then ranked based on
descending values of ac;, mc;, and v.,. A fixed number of top M
unique channels (denoted as I, where |Ic;| = M) are selected by
interleaving the sorted indices from the three metrics. After
constructing the selected index set I, for a support embedding

Zcj € R¥@_ we apply a binary channel-wise mask that preserves

the chosen channels and suppresses the rest. Formally, let M, €
0,1}°

be the binary mask such that M. j(k) = 1 if k € I;and 0 otherwise.
The masked tensor retains the original shape R?®®, which
simplifies batching and downstream processing. In our
experiments, this zeroing operation (retaining selected channels
and suppressing others) proved effective for preserving tensor
shapes and enabling efficient batching. The resulting masked
embedding is denoted as z"¢;. The prototype for class ¢ in task 7:
is then obtained by averaging the corresponding masked support
features:

P = — Z Zej, piERP
i=1 . 3)

Each class prototype p< captures the most informative channel
activations from its support samples based on average,
maximum, and variance-based criteria. For a given query sample
(xx,vx) € O°i, we first extract feature embedding z” for each query
sample using the proposed feature selection strategy, and its
distance to each class prototype is obtained by computing the
corresponding Euclidean distance. The probability pe(y = ¢ | 2°)
that the query sample is classified into class c is then expressed
using a SoftMax function applied over the negative distances:

cxp( — d(zy, Pi))
o exp( — d(z, p7)) €

poly=c|zx) =
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Algorithm 1: Meta-learning with Selective Feature Representation in Prototypical Networks

1: Input:
2:* Dataset D = {(xx,yx) ., withye€ {1,..,C}
3: * Cu,Cys: disjoint train/test class splits (|Cy| + [Cis| = C)
4: * DMeta-Train, DMeta-Test: subsets of D for train/test classes
5:* EfTrain, ETest: number of meta-training/testing episodes
6: * N: classes per episode
7: * K, Np: support/query samples per class
8: * M: number of top feature-map channels per support sample to be chosen by Global Average Pooling, Max Pooling and Variance
9: Randomly initialize parameters 6 of Meta-Learner /'
10: Meta-Training Phase: (for i = 1,..., ETrain):
11: Sample N classes C; € Cyr

12: Construct support set S;and query set Qi

13: for c € Cido

14: Dic — {(X,y) € DMeta-Train ‘ y= C}

15: Si¢ «— random K samples from D > Form support set pf class ¢
16: Q¢ < random Np samples from D\ S > Form query set pf class ¢
17: Si—SiU Sic, Qi QiU Qci D> Feature-map selection for each support sample
18: for zc;= fo(xc,;) in Sic do

19: a.; < GlobalAvgPool(z.,) € R* D> Calculate Global Average Pooling across all channels
20: m,; < MaxPool(z.;) € R4 > Calculate Max Pooling across all channels
21: Ve,j < Var(zc)) € R4 D> Calculate Variance across all channels
22: Sort channels by descending ac,j, mc,, Ve,

23: Interleave top indices to form I.; with |I.;| = M

24: ZAL',j «— MaSk(Zc,j, Ic,j)

25: end for D> Class Prototype with masked feature map
26 pi=+4 f;l Zej, pf€RBHEAK

27: end for

28: L+ 0

29: for (xryx) € Qido

30: Extract fo(xr) and compute distances d(fo(xx),p%)

31: Accumulate cross entropy loss into L

32: end for

33: Update 6 < 6 — aVyL > Update parameter 6 of model f

34: Meta-Testing Phase: repeat from step 10 for Erest episodes on Dueta-Test to evaluate the performance of fy

where the SoftMax function is applied to the negative distances Table 1: Configuration details of datasets used in this study
between the query embedding z" and the class prototypes p©i.

Here, as mentioned in Section 2.3 also, d(z'x,p%) denotes the Dataset Summary

distance between the feature representation of the query sample

2"t and the corresponding class prototype pci. The prototypical #Train  #Test
network is trained by minimizing the negative log-likelihood of Dataset #Images  Resolution ~ Classes  Classes
the true class for each query sample, thereby learning the Derm7pt [6] 2,000 224x224 13 7
parameters 6 of the feature extractor fo. A step-by-step overview

of proposed approach is outlined in Algorithm 1. BloodMNIST [1] 17092 84x84 4 4

4. EXPERIMENTATION DETAILS
4.1 Datasets

To ensure broad applicability, the proposed method was
evaluated on two diverse medical imaging benchmarks, covering
dermatology and pathology, thereby offering a comprehensive
evaluation of its performance. The details of dataset used and its
configuration are provided in Table 1. Some sample images from
random classes of each dataset are shown in Figures 2 and 3 as a
reference.
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4.2 Implementation Details

The experiments utilize a CONV4 backbone consisting of four
sequential blocks, each containing 64 filters of size 2 X 2,
followed by ReLU activations, batch normalization, and 2 x 2
max-pooling with stride 2. We train the network with Stochastic
Gradient Descent (SGD), setting the learning rate to 0.1 and the
momentum to 0.9, under a standard few-shot learning
framework. All experiments were carried out on an NVIDIA
A100-SXM4 GPU with 40 GB of memory. The implementation
was done in Python 3.10.4 using the PyTorch framework.

4.3 Evaluation

Few-shot learning (FSL) performance is evaluated using
classification accuracy. Meta-training consists of 2000 episodes,
repeated for E7ain epochs. Meta-testing includes 600 tasks or
randomly sampled episodes per dataset, with average accuracy
reported for Derm7pt [6] and BloodMNIST [1] dataset.

5. RESULTS AND ANALYSIS
5.1 Comparison with SOTA Methods

We performed a comparative evaluation of proposed model’s
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performance against multiple state-of-the-art (SOTA) methods.
The values in bold are the highest and values in underline are the
second highest)

5.1.1 Derm7pt. Figure 4 presents a comparative analysis of
proposed method against various state-of-the-art approaches on
the Derm7pt dataset. The bar charts depict 1-shot and 5-shot
accuracies across multiple methods, where each bar corresponds
to a reported SOTA model, and the error bars represent
performance variance. As shown in the 1-shot chart, most
methods cluster between 56—62%, with WRN-28-10 and
DenseNet121 variants reaching around 61%, and Conv6
approaches plateauing below 63%. In contrast, proposed
method’s Conv4-based model (red bar) clearly rises above the
group, achieving 67.18%, which is an approximate gain of 5%
over the strongest WRN-28-10 baseline and more than 6% over
Conv6. The 5-shot chart illustrates an overall upward shift in
performance, with WRN-28-10 methods peaking at 79.83% and
DenseNet121 around 79.18%, while Conv6 approaches remain
below 77%. Proposed method’s model maintains strong
competitive performance at 78.20%, comparable to the heavy
WRN-28-10 and DenseNet121 backbones.

Despite employing a lightweight Conv4 backbone with only
50,688 parameters, the proposed method consistently
outperforms much larger models in the more challenging 1-shot
setting while sustaining competitive results in the S5-shot
scenario. Moreover, as highlighted in the Baseline [19] work,
such compact architectures are advantageous for feature
extraction offering faster inference, lower memory requirements,
and improved generalization making them particularly well-
suited for resource-constrained clinical deployment.

5.1.2 BloodMNIST. Figure 5 presents a comparative analysis of
the proposed method against various state-of-the-art approaches
on the BloodMNIST dataset. The bar charts show 1-shot, 5-shot,
and 10-shot accuracies, with each bar representing a reported
SOTA model and the error bars indicating variance. In the 1-shot
setting, most approaches fall between 55-63%, with ResNet-50
methods performing strongly Multi-ProtoNets achieves 63.10%
and GDSL with ResNet-25 reaches 63.47%. The proposed
Conv4based model (red bar) delivers 63.39%, nearly matching
the best heavy ResNet-50 baselines despite using only 50k
parameters. In the 5-shot chart, overall performance rises, with
LDP-Net (ResNet50) achieving 73.31% and Latent
Augmentation reaching 70.22%. Yet, the proposed Conv4-based
method clearly surpasses all, attaining 77.17% and
outperforming both ResNet-50 and ResNet25 models.
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Derm7pt: 2-Way Few Shot Classification

SCAN [P43]
mOurs o —
1-shot 5-shot
SOTA Backbone Parameters 1-shot 5-shot

NCA [P45] WRN-28-10 ~36.5M 56.32+1.29 67.18+1.15
Baseline [P46] WRN-28-10 ~36.5M 59.43+1.34 74.28+1.14
|s2m2_R [P47] WRN-28-10 ~36.5M 61.37+1.33 79.83+1.34
NegMargin [P48] WRN-28-10 ~36.5M 58.00+1.44 70.12+1.30
PT+NCM [P49] WRN-28-10 ~36.5M 60.92+1.68 74.33+1.48
PEMb E_NCM [P50] WRN-28-10 ~36.5M 60.40+1.72 72.63+1.48
EASY [P51] WRN-28-10 ~36.5M 61.02+1.67 75.98+1.41
DTL-Base [P44] DenseNet121 ~8.0M 60.00+0.39 77.25+0.41
DTL-CutMix [P44] DenseNet121 ~8.0M 61.57+0.41 78.65+0.40
DTL-ResizeMix [P44] DenseNet121 ~8.0M 61.09+0.38 79.1840.39
DTL-All-Augment [P44] DenseNet121 ~8.0M 60.88+0.40 78.30+0.40
Meta-DermDiagnosis [P42] |Convé 83840 61.8 76.9
SCAN [P43] Convé 83840 62.80+1.34 76.65+1.21
ProtoNet [P13] Conv4 50688 59.98+1.28 70.62+1.30
SCAN [P43] Conva 50688 61.42+1.49 72.58+1.28
Ours Conva 50688 67.18+0.08 78.20+0.03

Fig. 4: Performance comparison of few-shot learning methods on Derm7pt dataset for 2-way classification under 1-shot and 5-

shot settings. Accuracy (%) is reported along with model backbones and parameter sizes
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BloodMNIST: 3-Way Few Shot Classification

m CGRN [P31]
= LDP-Net [P32] 80
= Latent Augmentation [P33] x
7
Histology Siamese Network [P34] B z
= Multi-ProtoNets [P35] z &
60 I E
= MAML [P14] oo
m ProtoNet [P13] £33 E
m RelationNet [P36] E
m Versa [P37] g 40 £
m R2D2 [P38] < |
= ANIL [P39] 3, !
m MTL [P40] |
20
= GDSL [P41] | !
™ GDSL [P41] i |
GDSL [P41]
W Ours o .
1-shot S-shot 10-shot
SOTA Backbone Parameters 1-shot S-shot 10-shot
CGRN [P31] Resnet-50 ~23.9M 61.59 + 0.67 68.67+0.74 79.58 + 0.69
LDP-Net [P32] Resnet-50 ~23.9M 62.97 +0.74 73.31+0.59 81.45+0.67
Latent A ion [P33] Resnet-50 ~23.9M 61.58 +0.71 70.22+0.71 75.40+0.78
Histolcﬂ Siamese Network [P34] Resnet-50 ~23.9M 60.42 + 0.83 68.56 + 0.59 72.29+0.91
Multi-ProtoNets [P35]) Resnet-50 ~23.5M 63.10+0.75 72.44 1+ 0.62 80.01+0.76
MAML [P14] Resnet-25 ~15-17M 54.37 + 0.89 56.54 + 0.75 57.69 + 0.66
ProtoNet [P13] Resnet-25 ~15-17M 57.40 + 1.16 71.62 £ 0.95 73.23+0.55
RelationNet [P36] Resnet-25 ~15-17M 56.62 + 0.99 61.14+0.48 66.79 + 0.66
Versa [P37] Resnet-25 ~15-17M 59.63 £ 0.79 62.79+ 0.53 64.63 + 0.49
R2D2 [P38] Resnet-25 ~15-17M 55.93+0.79 68.06 + 0.60 82.66+0.47
ANIL [P39] Resnet-25 ~15-17M 61.28 + 0.81 72.62+0.61 74.36+ 0.64
MTL [P40] Resnet-25 ~15-17M 59.07 + 1.04 69.36 + 0.65 70.55+ 0.55
GDSL [P41] Resnet-25 ~15-17M 63.47 £ 0.94 71.97 £ 0.66 76.21+ 0.50
GDSL [P41] Resnet-18 ~11.7M 57.99 + 0.97 63.50 + 0.58 66.75+ 0.57
GDSL [P41] CONV4 50688 53.41+0.97 62.39+0.59 63.81+0.54
Ours CONV4 50688 63.39+0.04 77.17 + 0.05 83.06 + 0.02

Fig. 5: Performance comparison of few-shot learning methods on the BloodMNIST dataset for 3-way classification under 1-
shot, 5-shot, and 10-shot settings. Accuracy (%) is reported along with model backbones and parameter sizes

The 10-shot results highlight a similar trend: ResNetS0 methods
plateau around 79-80% (e.g., Multi-ProtoNets at 80.01%), while
some ResNet-25 approaches such as R2D2 reach 82.66%. In
contrast, the proposed Conv4 model continues to improve and
achieves the best overall accuracy of 83.06%, exceeding both
heavy and mid-weight backbones.

Overall, while deep models like ResNet-50 (23.9M parameters)
and ResNet-25 (15-17M parameters) perform competitively,
their gains diminish at higher shots. Lightweight Conv4 methods
like GDSL suffer sharp drops in accuracy (53.41% at 1-shot and

only 63.81% at 10-shot). The proposed Conv4-based approach
not only closes this gap but also establishes new performance
highs, demonstrating that extremely compact models can exploit
scarce support examples more effectively than heavier
architectures, making them highly practical for resource-
constrained clinical deployment.

t-SNE Visualization

To qualitatively assess the discriminative power of learned
prototypes, we visualize the embedded representations of support
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and query samples for a representative 3-way 10-shot task on
BloodMNIST wusing t-SNE. As shown in Figure 6 (a)
conventional Prototypical Network produces clusters that are
both dispersed and partially overlapping indicating prototype
ambiguity and weaker inter-class separation. In contrast, 6 (b)
Selective Feature Representation in Prototypical Networks
approach yields markedly more compact and well-separated
clusters with each class forming a distinct, tightly grouped
manifold. This clear improvement stems from proposed
method’s channel-wise filtering, which suppresses noisy or
redundant activations and retains only the most informative
feature maps for prototype construction. Consequently, the
resulting embeddings exhibit sharper decision boundaries and
reduced intra-class variance, providing compelling gains in few-
shot accuracy achieved by proposed method.
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Fig. 6: t-SNE Visualization of (a) ProtoNet vs (b) Proposed
approach on 3-way 10-shot classification in Blood MNIST
dataset

6. CONCLUSION AND FUTURE
DIRECTIONS

In this work, we introduced a lightweight yet effective refinement
to prototypes of prototypical few-shot learning by Selective
Feature Representation, which explicitly filters support
embeddings by selecting only the top-M feature maps per class
using an ensemble of Global Average Pooling, Max Pooling, and
Variance criteria. Built upon a compact CONV4 backbone,
proposed approach achieves state-of-the-art performance on two
challenging medical imaging benchmarks, yielding 67.18% (1-
shot) on Derm7pt and up to 77.17% (5-shot) and 83.06% (10-
shot) on BloodMNIST, outperforming much larger architectures.
Looking ahead in future, although proposed selective feature
refinement strategy shows strong potential, there are several
directions to further improve and broaden its impact. First, to
select more varied and discriminative feature maps, future work
will focus on employing additional statistical measures or
alternative techniques alongside the current ensemble of Global
Average Pooling, Max Pooling, and Variance. This would allow
the identification of the most descriptive and representative
feature maps that not only form stronger class prototypes but also
highlight the most salient regions of medical images, thereby
improving interpretability and classification accuracy. Second,
we plan to extend this framework to a wider range of medical
imaging datasets, particularly those that face resource
constraints, limited annotations, and severe class imbalance.
Validating proposed method’s under such challenging conditions
will help demonstrate its robustness and practical usefulness in
real-world clinical scenarios where high-quality labelled data is
scarce. Together, these directions aim to make selective feature
refinement a more general, adaptive, and clinically valuable
solution for few-shot medical image analysis. Overall, selective
feature refinement represents a promising direction for
enhancing prototype quality in few-shot medical imaging while
maintaining efficiency and scalability.
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