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ABSTRACT
Electric Vehicle (EV) systems are becoming significantly increas-
ingly integrated with advanced algorithms for navigation, sen-
sors, actuators, cameras, safety, and energy management. However,
these real-time systems are vulnerable to cybersecurity threats,
which can significantly compromise their performance and secu-
rity risk. One of the key limitations of present EV systems is
their vulnerability to key cyberattacks, which can disrupt naviga-
tion and control, potentially leading to accidents, risk, reduced ef-
ficiency, and compromised safety. This extended work addresses
this limitation by using simulation to model EV digital twin sys-
tems under attack and assessing the performance of the proposed
algorithms in terms of state estimation accuracy, safety, and ef-
ficiency. The main contributions of this work include a detailed
analysis of the impact of False Data Injection and Denial of Ser-
vice attacks on EV systems, as well as the evaluation of three
robust algorithms in detecting and mitigating these attacks. The
simulation results demonstrate that the Extended Kalman Filter
(EKF), and Unscented KF (UKF), methods can enhance the re-
silience of EV systems compared with the Particle Filter (PF). Ad-
ditionally, Machine Learning algorithms are used to evaluate the
performance. This research and findings has significant implica-
tions for both the academic community and industry, providing
valuable insights into cybersecurity challenges in real time EVs.
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1. INTRODUCTION
Recently, the advent of Electric Vehicles (EVs) has transformed
current transportation, promising demoted carbon emissions, im-
proved energy efficacy, and a cleaner ecosystem. As these mission
critical systems become more self-directed, their reliance on cyber-
physical EV systems introduces critical vulnerabilities to cyberat-

tacks [1], [2]. EVs depend greatly on enhanced state estimation
algorithms for navigation, security, and maneuver, making robust
state estimation acute for safeguarding operational spirit [3], [4].
While considerable research has been overseen on state estimation
techniques, their efficacy under cyberattacks such as False Data In-
jection (FDI) and Denial of Service (DoS) remains an open chal-
lenge.

Table 1. : Literature on EV State Estimation and Cyberattack

Reference Methodology and Advancements/Limitations
[5] EKF effective for linear systems but struggles with nonlin-

earities in EVs.
[6] UKF handles nonlinearities well but is computationally in-

tensive.
[7] PF robust to noise but suffers from particle degeneracy.
[8] Bayesian Estimation offers solid probabilistic models but

lacks real-time adaptability.
[9] Digital Twin provides accurate simulation but faces integra-

tion challenges.
[10] FDI Detection algorithms detect anomalies but struggle

with stealthy attacks.
[11] DoS Mitigation reduces impact of missing data but adds

computational overhead.
[12] CPS models integrate cyber-physical systems but are diffi-

cult to scale.
[13] Autonomous EV frameworks lack strategies for handling

FDI and DoS.
[14] Sensor Fusion improves accuracy but is sensitive to sensor

failures.
Proposed
method

Combines attack resilience with advanced state estima-
tion; handles non-linearities and attacks in real-time, but
increases computational complexity and requires accurate
attack models.

Several scientists have investigated state estimation methods in
cyber-physical EV systems [15], [16]. Table 1 reviews key contri-
butions, concentrating on their schemes, improvements, and con-
straints. However, these investigates often fail to address the dis-
tinctive complexities of EVs, such as their vigorous environments
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and inclination to cyberattacks. Regardless of substantial advance-
ments in autonomous EVs, three significant questions remain unan-
swered:

(1) How can an EV digital twin be modeled to simulate realistic
observation data and attack profiles?

(2) What are the greatest successful state estimation techniques for
safeguarding resilience in autonomous EV approaches?

(3) How can these developments affect not only EV operations but
also broader communities and society?

This framework addresses these tasks by developing a thorough
simulation for EV state estimation under cyberattacks, evaluating
the performance of EKF, UKF, and PF procedures in both ideal and
attack scenarios. This is an extension of conference paper in [17].
The key contributions include:

(1) Proposing a realistic EV simulation that encompasses dynamic
models and cyberattack profiles.

(2) Assessing the resilience of EKF, UKF, and PF against FDI and
DoS attacks.

(3) Showing the societal benefits of improved state estimation for
protected and more trustworthy EV systems.

The impact of this effort lies in its potential to develop EV cyber-
security, inform algorithm outline, and inspire confidence in au-
tonomous vehicle systems, directly promoting scholars, engineers,
and end-users. This is an extension (including ML algorithms) of
the author published paper in conference [17].

2. EV DIGITAL TWIN DYNAMIC MODEL
The EV dynamic digital twin system is modeled by a nonlin-
ear state transition function f(x) and a corresponding observation
model h(x) [18], [19], [20], [21]. The EV state transition model is
given as:

f(x) =


x1 + x2 ·∆t

x2 + sin(x3) ·∆t
x3 + x4 ·∆t

x4 − 0.1 · x3 ·∆t
x5 + x6 ·∆t

x6 − 0.05 · x5 ·∆t


where x = [x1, x2, x3, x4, x5, x6]

T represents the state vector, ∆t
is the time step, x1, x3, x5 are EV position states, and x2, x4, x6 are
EV velocity states along different axes and he nonlinear terms such
as sin(x3) introduce dynamics into the system. The EV observation
model assumes that only position states (x1 and x3) are observable:

h(x) =

[
x1

x3

]
where h(x) maps the state vector to the measurement vector, ob-
servability is limited to specific states, making this a partially ob-
served system. Noise are introduced into above frameworks, pro-
cess noise (wk) and measurement noise (vk) are assumed to follow
Gaussian distributions:

wk ∼ N (0, Q), vk ∼ N (0, R)

where Q and R are the process noise covariance matrix and mea-
surement noise covariance matrix, respectively. Generally, EV sys-
tems face significant risks of hijacking and cyberattacks, particu-
larly in environments such as charging stations, shopping centers,
parking lots, and airports.

In the presence of an FDI attack, the attacker injects biased data into
the EV system, causing the observation to deviate from its original
value [22]. The observation model becomes:

hFDI(x) =

[
x1 +∆FDI

x3 −∆FDI

]
,

where ∆FDI is the attack magnitude injected into the system. This
type of attack impacts the reliability of navigation and control sys-
tems by providing incorrect position information.
In the presence of a DoS attack, certain sensor data is periodically
unavailable or dropped. The observation model becomes:

hDoS(x) =


[
x1

x3

]
, if data is available,

NaN, if data is dropped.

The DoS attack impacts the system by reducing the frequency of
valid data, forcing the estimator to rely more heavily on predictions
from the dynamic model. Based on the unobservable EV states such
as x2, x4, x5, x6 and potential cyber attacks, we will need an algo-
rithm that can estimate these states and monitor them properly. This
way, the algorithm can be embedded into the EV Copilot system for
driving.

3. EV STATE ESTIMATION ALGORITHMS
In order to estimate the EV states, this framework explore the Par-
ticle Filter (PF), Extended Kalman Filter (EKF), and Unscented
Kalman Filter (UKF). The algorithm 1 shows the summary of state
estimation for EV using PF, EKF, and UKF [23], [24], [25], [26].

Algorithm 1 State Estimation for EV using PF, EKF, and UKF
Given: x0,y0, Q,R, f, h,N x̂(N), ŷ(N), P (N)
x0,y0, Q,R, f, h,N
Initialize: x̂(0)← x0, ŷ(0)← y0, P (0)← Q, S(0)← R

for k = 1 to N do
1. Prediction Step:
For PF: Propagate particles using EV system dynamics.
For EKF and UKF: Predict state and covariance using EV system
dynamics.
2. Update Step:
For PF: Update particle weights and resample.
For EKF: Compute Kalman gain, update state and covariance.
For UKF: Generate sigma points, update state and covariance. end
Output: Return EV estimated states x̂(N) and ŷ(N), P (N).

3.1 PF for EV States Estimation
The PF are intetaive Bayesian filters that estimate the EV state of
a system by approximating the posterior distribution using a set of
weighted particles [27]. It has the following steps:
1. Prediction Step: Each particle i is propagated according to the
EV model:

xi(k + 1) = f(xi(k)) +wi(k)

where, xi(k) is the state of particle i at time step k, f(·) is the
nonlinear state transition function, and wi(k) ∼ N (0, Q) is the
process noise for particle i at time step k.
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2. Update Step: The weight of each particle is updated based on
the likelihood of the EV observation y(k) given the predicted mea-
surement ŷ(k):

wi(k) = wi(k − 1) · p(y(k)|xi(k))

where: - p(y(k)|xi(k)) is the likelihood of the measurement y(k)
given the predicted state xi(k).
3. Resampling Step: The particles are resampled based on the up-
dated weights to generate the next set of particles:

xi(k + 1) = resample(xi(k), wi(k))

4. State Estimate: The EV state estimate is the weighted average
of all the particles:

x̂(k) =
1

N

N∑
i=1

xi(k)

3.2 EKF for EV States Estimation
The EKF has the following steps [28]:
1. Prediction Step: The EV state is predicted based on the nonlin-
ear system model:

x̂−(k + 1) = f(x̂(k), u(k))

where u(k) is the control input at time step k.
2. Covariance Prediction: The error covariance is predicted using
the Jacobian matrix F(k) of the system model:

P̂−(k + 1) = F(k)P̂ (k)FT (k) +Q

where Q is the process noise covariance matrix.
3. Update Step: The Kalman gain K(k+1) is computed and used
to update the state estimate:

K(k + 1) = P̂−(k + 1)HT (k + 1)

(
H(k + 1)P̂−(k + 1)HT (k + 1) +R

)−1
where H(k + 1) is the Jacobian of the observation model and R is
the measurement noise covariance.
The EV state estimate is updated as:

x̂(k + 1) = x̂−(k + 1) +K(k + 1) (y(k + 1)− h(x̂−(k + 1)))

where h(x̂) is the observation model.
4. Covariance Update: The error covariance is updated as:

P̂ (k + 1) = (I −K(k + 1)H(k + 1)) P̂−(k + 1)

3.3 UKF for EV States Estimation
The UKF has the following steps [29]:
1. Sigma Points Generation: The UKF begins by generating a set
of sigma points χk that represent the state distribution at time step
k. These sigma points are selected such that they capture the mean
and covariance of the state distribution:

χk = x̂(k)± α
√

P (k)

where α is a scaling parameter, and P (k) is the covariance matrix.
2. Prediction Step: The sigma points are propagated through the
nonlinear EV system model:

χ−k (k + 1) = f(χk(k), u(k))

The predicted EV state estimate is then determined as a weighted
mean of the sigma points:

x̂−(k + 1) =

2n∑
i=1

W i
mχ−k (k + 1)

where W i
m are the weights associated with the sigma points.

3. Covariance Prediction: The predicted covariance is determined
as:

P−(k + 1) =

2n∑
i=1

W i
c (χ

−
k (k + 1)− x̂−(k + 1))

(χ−k (k + 1)− x̂−(k + 1))
T
+Q

where W i
c are the covariance weights and Q is the process noise

covariance.
4. Update Step: The predicted measurement is calculated as:

ŷ−(k + 1) =

2n∑
i=1

W i
mh(χ−k (k + 1))

and the innovation covariance is:

S(k + 1) =

2n∑
i=1

W i
c (h(χ

−
k (k + 1))− ŷ−(k + 1))

(h(χ−k (k + 1))− ŷ−(k + 1))
T
+R

The Kalman gain is determined as:

K(k + 1) = P−(k + 1)HT (k + 1)S(k + 1)−1

Lastly, the EV state estimate and covariance are updated as:

x̂(k + 1) = x̂−(k + 1) +K(k + 1) (y(k + 1)− ŷ−(k + 1))

P (k + 1) = P−(k + 1)−K(k + 1)S(k + 1)KT (k + 1)

To evaluate the effectiveness of the aforementioned algorithms and
observe the EV states, as well as to provide recommendations for
real-time Copilot use, MATLAB is used for simulation.

4. PF, EKF, AND UKF BASED SIMULATION
RESULTS AND DISCUSSIONS

Table 2. : EV Systems with Simulation Parameters

Parameter Value
Simulation Time
(T)

10 s

Time Step (∆t) 0.1 s
N 100
Q diag(0.01, 0.02, 0.01, 0.02, 0.01, 0.02)
R [0.1, 0.1]

Number of Parti-
cles

1000

FDI [0.5, -0.5] Bias
DoS Drops every 5th step

The key simulation parameters, along with their descriptions and
values, are provided in the table 2. It can be seen that the FDI at-
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Fig. 1: EV Velocity-Y: Ground Truth and Predicted One based on EKF,
UKF, and PF without Cyber Attack.

Fig. 2: EV Velocity-Z: Ground Truth and Predicted One based on EKF,
UKF, and PF without Cyber Attack.

tack introduces a constant bias of [0.5, -0.5] to the observation pro-
file throughout the simulation, affecting position and velocity es-
timates and the DoS attack simulates intermittent observation data
loss every 5th time step, causing temporary disruptions in state es-
timation. The simulation results in Figs. 1- 6 demonstrate that EKF
and UKF provide better estimation results compared to PF because
EKF and UKF use more sophisticated techniques and approches to
handle nonlinearities and account for EV system dynamics more
effectively. In contrast, PF is more susceptible to inaccuracies and
attacks that disrupt the particle distribution, leading to poorer EV
estimation performance, especially in attack scenarios.

5. MLP REGRESSOR AND GRADIENT BOOSTING
BASED SIMULATION RESULTS AND
DISCUSSIONS

This paper employs supervised machine learning—MLP
(with 2 hidden layers of 64 neurons each, ReLU activation,
maxiter=2000) and Gradient Boosting (300 estimators)—to learn
state estimation from partial observations of a nonlinear 6-state
system. The simulation results are illustrated in 7-13. It can be see

Fig. 3: EV Position-X: Ground Truth and Predicted One based on EKF,
UCF, and PF with FDI Attack.

Fig. 4: EV Velocity-X: Ground Truth and Predicted One based on EKF,
UCF, and PF with FDI Attack.

that the performance is consistent and teh Gradient Boosting X
algorithm provides better performance compared with the MLP.
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Fig. 5: EV Position-Z: Ground Truth and Predicted One based on EKF,
UCF, and PF with DoS Attack.

Fig. 6: EV Velocity-Z: Ground Truth and Predicted One based on EKF,
UCF, and PF with FDI Attack.

Fig. 7: ML Algorithms.

6. CONCLUSION
This work assesses state estimation methods for autonomous EV
digital twin systems under cyberattack, explicitly evaluating the

Fig. 8: ML Algorithms.

Fig. 9: ML Algorithms.

Fig. 10: ML Algorithms.

flexibility of EKF, UKF, and PF against FDI and DoS attacks. The
findings emphasize that EKF and UKF perform better than PF in
terms of state estimation precision, remarkably when handled with
cyber threats. This is due to their capacity to better dominate non-
linearities and approach dynamics. These results address the funda-
mental challenges in safeguarding the protection and robustness of
EV systems, suggesting the use of EKF (best) or UKF for effective
understanding and advancing the strength of state estimation meth-
ods. The inferences of this work extend to enhancing EV cyber-
security, refining algorithmic strategy, and encouragement greater
faith in autonomous car systems, which are fundamental for their
safe operation and common adoption. The study impacts to an in-
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Fig. 11: ML Algorithms.

Fig. 12: ML Algorithms.

Fig. 13: RMSE using ML Algorithms.

nate knowing of how cyber threats impact EV systems and paves
the way for advance investigation into resilient controller and esti-
mation schemes in the autonomous vehicle driving.
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