
International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.34, August 2025

Secure Extended Kalman Filter-Based State Estimation
and PID Controller for Resilience Water Systems under

Sensor False Data Injection Attacks

MD Masud Rana
Computer Science
Lamar University
4400 MLK Blvd

Beaumont, Texas 77710

Bo Sun
Computer Science
Lamar University
4400 MLK Blvd

Beaumont, Texas 77710

ABSTRACT
Secure state estimation and optimal control in cyber-physical sys-
tems (CPS) such as interconnected water tanks are necessary to
ensure reliability, safety, and stability under adversarial conditions.
This paper identifies three key research challenges: (1) Develop an
attack-resilient water level state estimation process under false data
injection attacks, (2) Design an optimal controller for maintaining
stability of water levels, and (3) Conduct extensive simulations to
find a suitable solution for practical water system implementation
under adversarial conditions. These are critical business issues, as
water cannot be stored in a large- scale, however water is essen-
tial for daily life and industries. Therefore, it is important to know
the water level observability through state estimation process, after-
ward we will need to apply the control framework to maintain the
water level stability as an acceptable level. To address these impor-
tant challenges, this paper proposes the Chi-square residual based
extended Kalman filter algorithm for accurate water level estima-
tion under adversarial conditions. Afterwards, the PID controller
is adopted to maintain the stability of the water level at the refer-
ence position. Extensive simulations demonstrate that the proposed
algorithm can estimate and maintain water level at an acceptable
level in a short period of time. Hopefully, these contributions and
findings can significantly help cybersecurity education, CPS secure
control ecosystems, and water reservoir framework development.
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1. INTRODUCTION
Water is one of the most important parts of our daily life, and the
water system can integrate the physical process, communication
network, sensors, valves, and cyber infrastructure [1], [2]. This
cyber-physical integration introduces critical vulnerabilities to

cyber threats, especially false data injection (FDI) and denial of
service (DoS) attacks. In water ecosystems, the sensors, actuators,
and the communication network can play an important role [3].
Due to the limitation of key water sensor data, it is very difficult to
analyze this mission critical ecosystem [4]. It should be create sig-
nificant disruption to the the public and industries [1]. To address
these challenges, this paper proposed a Chi-square residual based
secure extended Kalman filter (EKF) cyber attach detection, miti-
gation and control method for the water system. The water system
digital twin is designed using physical and electric relationships
such as Mass balances and Bernoulli’s law. The whole process is
implemented through software that uses the system dynamics, EKF
algorithm, Chi-square residual attack detection and mitigation,
and PID control loop in real time, ensuring resilient and accurate
operation of the water-level ecosystem. The developed framework
is scalable and transferable, and this study contributes to the imple-
mentation of a resilient and demand-responsive water network. In
future, the data will be available for Lab, research and investigation.

There are some existing methods that have been used for water
level digital twin design, state estimation and control. To begin
with, the Kalman Filter (KF) method is used for water level pre-
diction, but it is mainly used linear systems [5]. The extended KF
is used for the nonlinear system [6], [7] but it has not considered
the cyber attacks. Moreover, an even triggered method under DoS
attacked is presented in [8]. The ML is used for predicting inter-
nal corrosion of crude oil and gas pipelines [9]. Furthermore, an
optimal and complex stealthy attack with side information against
remote state estimation is demonstrated in [10]. Additionally, an
agent-based supervision for service-oriented industrial CPS is de-
rived in [11]. Beside, a reinforcement leaning method is applied
for controlling the water levels in [12], and it takes signification
amount of time for training the process. Moreover, a mathematical
tool for analysis cyber attack has been proposed in [13]. Finally, a
factor graph based belief propagation and LSTM based methods are
proposed in [14] and [15]. They will need huge amount of data and
not scalable. Overall, this process can challenge to this critical in-
frastructure such as reliability of water level estimation algorithm,
controller design and impact analysis. To address these challenges,
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this paper proposes the Chi-square residual based extended Kalman
filter algorithm for water level estimation under adversarial condi-
tion. The PID controller is adopted to maintain water level in the
reference position. Extensive simulations demonstrate that the pro-
posed algorithm can able to estimate and maintaining water level at
an acceptable level within a short period of time. Hopefully, these
contributions can significantly helpful for cybersecurity education,
CPS secure control ecosystems and water reservoir framework de-
velopment.
The reminder of paper is organized as follows. The water system
digital twin is designed in Section 2 which follows the EFK algo-
rithm. The simulation result is Section 4 which follows the conclu-
sion.

2. WATER TANK DIGITAL TWIN PROCESS
The figure 1 shows the water tank systems. Here, there are four wa-

Fig. 1: The quadruple water tank process [16], [17].

ter tanks and the dynamic system is demonstrated in [16]. It can
be seen that it will need to control the level in the lower two wa-
ter tanks with two pumps. The voltage is applied to water pump.
The flow is regulated using valve [18]. The goal is to estimate
the water levels in all 4 tanks. The details physical and electri-
cal relationship are described in [16], [17]. Here, the state vector
x = [h1 h2 h3 h4]

T is the water levels in tanks 1 to 4 (in cm) and
the input vector u = [u1 u2]

T is the control inputs (pump voltages).
The nonlinear water tank dynamics are governed by Torricelli’s law
and pump inflows as follows [19]:
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where ai is the outlet hole area of tank i, Ai is the cross-sectional
area of tank i, k1,and k2 are pump gain constants, γ1, and γ2 are
flow split ratios, g = 981 cm/s2 is the gravitational constant. The
measurements are obtained by a set of sensors which can be com-
promised by false data incretion attacks [20]. For the system dy-
namics, the Jacobian matrix is:
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We assume that only the tanks (Tank 1 and Tank 2) are directly
measured by a set of sensors such as Motorola MPX5010DP (Dif-
ferential Pressure Sensor):

y = h(x) =

[
h1

h2

]
The sensing Jacobian matrix H = ∂h

∂x
is obtained as follows:

H(x) =

[
1 0 0 0
0 1 0 0

]
From these measurements, we will need to fully estimate all water
level then the controller is applied to maintain water level stability.

3. CHI-SQUARE BASED SECURE EXTENDED KF
The Prediction and Correction are the two steps for the EKF algo-
rithm [21], [7].

1. Prediction Step:

x̂k|k−1 = x̂k−1|k−1 + Tsf(x̂k−1|k−1,uk−1)

Pk|k−1 = FPk−1|k−1F
⊤ +Q

2. Update Step:

yk = h(xk) + vk

Kk = Pk|k−1H
⊤(HPk|k−1H

⊤ +R)−1

x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1))

Pk|k = (I −KkH)Pk|k−1

The water sensor attacks are detected by calculating the residual
r = y−ypred using the Chi-square test χ2 = rT (HPHT +R)−1r
[22]. If χ2 exceeds a predefined threshold (e.g., 9.21 for 2 DOF at
95% confidence), the sensory measurement is rejected and replaced
with the prediction to maintain state estimation integrity [23]. The
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validation and effective of the algorithm is demonstrated through
simulation with Python.

4. SIMULATION RESULTS AND DISCUSSIONS
The four-tank ecosystem is implemented using two water level sen-
sors, two voltage-controlled pumps, and a PID controller guided
by EKF-based dynamic state estimates. Real-time anomaly detec-
tion ensures robust control by switching to predicted measurements
during sensor attack conditions. For simulation, a sensor false data
injection attack is introduced on the tank one measurement be-
tween 10s and 20s, where a constant offset is added to simulate
tampering. Having said this, if 100 < k < 200, then attack on
tank one h1 is = 2.0. All the simulation parameters are described in
Table I [16], [24]. It includes physical constraints, tank reference
values, noise, and other parameters. Considered the four tanks in

Table 1. : Simulation parameters for 4 water tanks.

Key Parameter Value
g 981 cm/s2

A1 = A2 = A3 = A4 28.0 cm2

a1 = a2 = a3 = a4 0.071 cm2

k1 = k2 3.33 cm3/Vs
γ1 0.7

γ2 0.6

hss
1 12.4 cm

hss
2 12.7 cm

hss
3 1.8 cm

hss
4 1.4 cm
Ts 0.1 s

Simulation Time 30 s
Process Noise, Q 0.001 · I4

Measurement Noise, R 0.01 · I2
Chi-square Threshold 9.21

Fig.1, the simulation results are described in 2. It can be seen that
the proposed EKF algorithm can able to estimate the system states
within short time. The EKF successfully detects this anomaly using
a chi-square residual test [25], and the mitigation process replaces
the corrupted sensor measurement with the predicted value dur-
ing the attack condition. The cyber attack detection rate is shown
3. Obviously, the mean squared error remains low. The attack de-
tection indicator also indicates timely identification of the injected
anomaly, validating the robustness of the EKF estimator.
For better accessibility and visibility, the system has been extended
considering 96 tanks. The results are described in Fig. 4. It can be
seen that the results are consistence and algorithm can apply large-
scale system.
Next our targe is to maintain the water level at an acceptable level.
Otherwise the water tank can be overflow and create many prob-
lems. After applying the PID, the results are described in Fig. 5.
The controller is able to maintain the stability of the water levels
within short time.

5. CONCLUSION AND FUTURE WORK
The four-tank water system dynamics with water levels and pump
inputs where are nonlinear where output vector cannot be di-
rectly measured. After obtaining measurements by sensors, the
Chi-square residual based EKF is applied to estimate the water
level under adversarial conditions. Simulation results demonstrated

Fig. 2: Water level state estimation results.

Fig. 3: Attack detection performance.

Fig. 4: Estimation simulation results with 96 tanks.

that the EKF algorithm with chi-square residual test can able iden-
tified and mitigate the cyber attacks at an acceptable level. The sys-
tem has been extended to 96 tanks, and it can apply the considered
method. Finally, the PID controller is applied to maintain the wa-
ter levels. In future, we will combine the water system with energy
to nexus including corrosion for the real-time CPS application [9].
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Fig. 5: Simulation results with PID controller.

Hopefully, the proposed framework supports reliable monitoring
and control in CPS susceptible to sensor faults or malicious attacks.
Additionally, the data will be available for Lab, research and inves-
tigation.
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