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ABSTRACT 
The present study looks at how integrating text, image, and 

video data through multi-modal learning could improve the 

abilities of Large Language Models (LLMs). The LLMs we 

have now been very good at processing natural words, but they 

could be even better if they could handle more than one type of 

input. A new framework that blends text-based LLMs, like 

GPT-4, with image and video models that use transformers and 

convolutional neural networks (CNNs) is what we're 

proposing. This method is used for jobs like visual question 

answering (VQA) and automated content generation, showing 

big gains in accuracy and understanding of the context. When 

compared to text-only models, our multi-modal model did 25% 

better on VQA standards. The system also improved the ability 

to create material by giving outputs that were richer and more 

context-aware. The results show that multi-modal learning can 

help LLMs make progress by helping them understand and 

react to different types of input better. 
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1. INTRODUCTION 
Over the last few years, aggressive development of Artificial 

Intelligence (AI) technologies resulted in the progress in natural 

language processing. Conventional NLP systems have mainly 

dealt with the textual content; however, advanced technologies 

require an extended approach to handling multimedia content. 

This has posed the challenge that has been solved by the multi-

modal learning learning where different data modal like text, 

image, video etc are used in order to boost the performance of 

the ARTIFICIAL INTLLIGENCE. As for the current position, 

this approach can be positively utilized in large language 

models (LLMs) which manifested excellent results in NLP 

endeavours yet remain rather isolated from any other forms of 

interaction [1]. 

Multi-modal learning aims at capitalize on the strengths of 

using different types of data to improve the understanding and 

the creation of data by AI systems. For example, text based 

information carries valuable linguistic information while 

figural, graphic and video information gives contextual and 

spatial information that cannot otherwise be obtained from text 

data. Combining different types of modalities may result in 

improving the architecture of the models being created to 

become more adaptive and have contextual awareness for 

solving real-life problems [2]. 

1.1 The Importance of Multi-modal 

Learning 
Incorporation of the multi-modal information has become 

necessary in handling problems related to unstructured and 

diverse data. Take, for example, online content filtering in 

social networks when one message may contain both the text 

and the pictures as well as the videos. In some instances, the 

whole picture may be understood only with the help of 

integrating information from all these modes. Likewise, the 

intersection with healthcare, autonomous driving, and virtual 

assistants also has solutions that incorporate multi-modal 

systems that can analyze textual, visual, and audio data [3]. 

Generative and transformer-pretrained models as GPT and 

BERT have recently presented high-level achievements in 

language comprehension and emulation. However, their 

inability to take inputs from text constrains them from areas 

where visual or video context has paramount influence. For 

instance, understanding a meme always involves appreciating 

the way a text connects with an image; deciphering a tutorial 

video calls for an assessment of both assertiveness in language 

and demonstration in the visual realm. It is also proposed that 

by enabling LLMs with multi-modal learning capacities, such 

systems can be better able to comprehend and respond to such 

situations [4]. 

1.2 Challenges in Multi-modal Learning 
Multimodal NLP involves challenges like: 

1. Multimodal Representation: Combining data from 

multiple modalities into a representation that it easier 

for a machine to interpret and work with. 

2.  Alignment and Fusion: Integrating information from 

different modalities so that information from one 

type will support the data obtained from another type 

of modality. 

3. Multimodal Understanding: Creation of models that 

translate and understand information from different 

modes of input as well. For instance, it may be both 

appreciating the textual information of a picture or 

video, and comprehending a message conveyed 

through the picture or moving images. 

4. Multimodal Generation: Developing systems that are 

able to produce output that spans more than one 

modality. For example, it provides the textual 

description of the image, or it produces a video based 

on the entered text. 

 
Fig 1: Example of multimodal NLP 

It is a multimodal NLP technique, where text is translated into 

a video or an image and it is shown in figure 1. NLP with a 

focus on multimodal captures and interprets information in the 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.34, August 2025 

67 

way how machines are built to do that and is, therefore, an 

essential area of growth in AI. 

Despite this, multi-modal learning brings out some difficulties 

as described below. Perhaps the main challenge arises from the 

fact that in most situations both the columns, which are sources 

of the data, and the data themselves are structured, but possess 

different structures and representations. Text, for example, is 

linear and by nature uses symbols and signs, while images and 

videos are by nature spatial and temporal in nature, 

respectively. Still, how one can develop models that can allow 

for crossing these gaps keeping at the same time the specificity 

of modalities of information representation in mind is crucial 

and still an essential research topic [5]. 

The other problem is related to annotation for data and its 

availability. When multiple modalities are involved in multi-

modal datasets, a lot of time and effort are consumed in the 

annotation of such data. Furthermore, quantity and variety of 

dataset can affect the training of multi-modal models. Another 

target that makes the process even more challenging is to avoid 

biases between modalities and achieve a fair reward [6]. 

Finally, computational demands for multi-modal learning are 

higher compared to those in single-modal cases. Since training 

LLMs for multi-modal data is computationally intensive, and 

consumes more data, the hardware and optimization used need 

to be better. The fine degree where the performance 

enhancements overlap with computation complexity has been a 

continual focus for research [7]. 

1.3 Advances in Multi-modal Learning with 

LLMs 
In response to these problems, scholars as intended 

architectures and training approaches. CLIP (Contrastive 

Language-Image Pretraining) and DALL·E are examples of a 

successful attempt to combine textual and visual data. It is easy 

to work with cross-modal understanding and generation with 

these models because they use joint embeddings to match text 

and image [8].  

Video-based models like MERLOT (Multimodal 

Representation Learning from Transformers) build on this idea. 

These models include time information that lets systems reason 

over both video and text data. Improvements to transformer-

based designs have made these changes possible because they 

offer a single format for handling different types of data [9]. 

In the same way, adding multi-modal features to LLMs makes 

them more useful by allowing for interactive stories, virtual 

reality experiences, and other ways for people and computers 

to engage better. Multi-modal conversational agents, for 

example, can react to both text and images. This means that the 

technology can sense both text messages and images to give the 

user the most natural response [10].  

1.4 Implications and Future Directions 
Multiple types of learning are being used in LLMs, which has 

a huge effect on many businesses. In care delivery, multi-modal 

systems can work on medical reports simultaneously with 

imaging that enhances diagnostic results. In the context of 

education, these models can be helpful in creating multimedia 

student models which would analyze the textual input as well 

as face and voice to identify students’ individual learning 

needs. Likewise, the multi-modal AI can spawn more engaging 

content experiences in entertainment media [11]. 

It is anticipated that in future research in the same domain, there 

will be orientations towards issues of scalability and efficiency. 

Strategies like model distillation, sparsity optimization, and 

efficient attention design are proposed to overcome such a 

problem at the multi-modal learning stage. Furthermore, further 

growing and diversifying the training data will enhance the 

question of how multi-modal LLMs will work in other relevant 

contexts and populations to deal with bias or unfairness [12]. 

Furthermore, it is apparent that multi-modal learning brings 

significant advancements in the improvement of the large 

language models is possible. Actually, by incorporating text, 

image and video data into corresponding system, more 

elaborate understanding of scenarios will be possible opening 

up vast new areas of application. Thus, as further research in 

the area develops multi-modal LLMs will serve as the key to 

determining the future of artificial intelligence. 

2. LITERATURE REVIEW 

2.1 Review on Multi-modal Learning 
Instead, the topic of multi-modal learning has been researched 

broadly during the last few years based on multiple 

methodologies and applications to remove the data modality 

gap. A significant work to pave the path for such research was 

done by [13] in which the authors presented a framework for 

multi-modal deep learning and used autoencoder to combine 

data from audio and video stream. They showed that 

developing joint representations can boost the performance of 

individual models on different tasks and paved the way for 

future innovations. 

In [14] also made a great work by introducing multi-modal deep 

Boltzmann machine for text-image Description learning. I 

found this model useful in tasks such as image captioning and 

text based image retrieve since it was able to map and record 

the relationships of different modalities. A similar approach 

stressed the need for joint embeddings to be solid to support 

cross-modal mapping processes. 

A related approach was later expanded by [15] with a new fully 

connected neural network model for the connection of vision to 

language through a method of regional images annotations. 

Their work that added RNN on CNN made improvements on 

the image description generation at that time. This method 

focused on the technique of linking different sectors of an 

image to catalogs an idea that has gingered the current world. 

In [16] proposed the Visual Semantic Embedding (VSE) 

developed with the help of a margin-based technique in which 

visual and textual features were learnt in the same space 

Discriminative. This model enables cross-modal search and 

fosters the development of complex multi-modal systems. Part 

of their work was useful as other researchers later explored the 

metric learning for multi-modal tasks. 

In this study, they transformed into being the main-stream, and 

did bring some changes to the multi-modal learning. In their 

work, in [17] have adopted a complex architecture of the 

transformer that also had the inherent capability of handling 

sequential data and it was then used in multi-modal case as 

well. Subsequently in [18], this was extended with LXMERT, 

a vision-language transformer that employed cross-modal 

attention and demonstrated good performance on tasks such as 

VQA and image captioning. 

In [19] designed a model of BERT architecture referred to as 

ViLBERT that enabled processing bidirectional vision-

language transformers. This they did with intention of 

demonstrating that by pretraining such model from large sets of 

collections of data, it can perform well in various tasks 

downstream thus making it possible to integrate multi-modal 

learning into LLMs. In the same in [20], the authors introduced 
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VideoBERT , an architecture that incorporates both video and 

text data for solving some some problem in video 

understanding. 

The DALL·E and Imagen models earlier this year defined the 

creative elements of multi-modal AI by Further, these models 

learned how to produce true, acceptable and proper visuals 

from the text descriptions. In a way, it is used in different fields 

such as arts and graphic designing, education, as well as 

advertisement. 

In [22] the authors proposed the integration of video and 

language data while using MERLOT, a video-text transformer 

pre-trained on video-text pairs. This model performed well in 

logical reasoning of temporal sequences and, in narrative 

comprehension, which underscores the significance of the 

temporal information component when learning with videos in 

multi-modal systems. 

In [23], Zhang proposed OSCAR for multi-modal systems 

analysing the cross-modal fine-grained alignment process. 

Their work highlighted how careful incorporation of granular 

representations is key to getting high levels of performance. 

Another new trend in multi-modal learning is the use of the 

speech modality into models for multi-modal learning. In [24] 

he developed Speech2Vec – a framework for fusion of both 

spoken language and text and visual data. With this model, new 

possibilities for multi-modal applications in voice activated 

systems and conversational AI were introduced. 

Recent and related work has also aimed to deal with biases and 

fairness in multiple modalities AM. Consumption of vision-

based systems was substantially discussed in [25], that made a 

case for fair performance across different demographics 

leading to the creation of fairness-aware multi-modal systems. 

In [26] this line of research was further extended by suggesting 

fairness-aware training methodologies for multi-modal 

applications. 

Thus, the literature review of multi-modal learning highlighted 

the objective of this approach and its applicability in a broad 

list of tasks. Heterogeneous data fusion withholds challenging 

problems and encourages creativity for building up right 

architectures and algorithms for better enhancements in AI. 

3. METHODOLOGY 

 
Fig 2: The flowchart of methodology 

The flowchart in fig 2 illustrates the methodology of the 

proposed multi- modal learning framework. It commences with 

Framework Design where the architecture blends the text-based 

models with image as well as a video processing one. This is 

then succeeded by Data Collection and Preprocessing to 

develop a general and unified dataset for every modality. 

Further, Model Training employs supervised and unsupervised 

learning process mechanisms for cross-modal integration. In 

the specific-task implementation stage, the model is optimized 

for uses such as Visual Question Answering and Content 

Generation. The EB step of the model evaluates its performance 

and benchmarks contributions of different modality. 

Performance Optimization then enables a reduction in the 

computational cost on the model via compaction and fine-

tuning. Last but not the least, Results and Analysis brings out 

Enunjments, Limitations and Possibilities for further study. 

Such systematic approach contributes to identifying and 

forming a rather solid and effective multi-modal framework. 

3.1 Framework Design and Integration 
To build a strong multi-modal architecture, we need to engage 

text based LLMs such as GPT4 with images and video models. 

The architecture incorporates multi modal transformers for the 

cross-modal attention and feature extractors, which enables the 

model to map information from the different modes 

respectively. Specifically, Convolutional Neural Networks 

(CNNs) are used for the process of the presence of patterns in 

images and video frames as meaningful spatial features. A 

proper pipeline is instituted to extract, align, and integrate 

features from text (Xt), images (Xi), and video (Xv) inputs to 

create a comprehensive modal fusion. 

The joint representation Z is computed by combining modality-

specific features and applying cross-modal attention 

mechanisms: 

  (1) 

where ht, hi, and hv represent the feature extraction functions 

for text, image, and video modalities, respectively. 

The cross-modal attention makes sure that features of all 

modalities are in alignment with one another. For instance, 

attention weights α are computed as: 

(2) 

where W can be learned weight matrix. 

When combined, these components can be learned in a single 

pipeline, allowing the model to better learn and coordinate tasks 

that require the analysis of all modalities, such as visual 

question answering applications and content generation. 

3.2 Data Collection and Preprocessing 
For efficient multi-modal learning, a diverse dataset is gathered 

in which text data in addition to images and videos are 

contained as much as possible to obtain coverage of possible 

scenarios. Data processing is accomplished in conventional 

feature extraction style on each modality’s input data in order 

to have similar data to integrate. For text data (Xt), 

preprocessing includes tokenization, cleaning to remove noise, 

and embedding generation using pre-trained language models, 

resulting in text embeddings (Et): 
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                                    (3) 

For image data (Xi), preprocessing involves resizing to a fixed 

dimension, normalization to standardize pixel values, and 

feature extraction using pre-trained CNNs such as ResNet, 

yielding image feature vectors (Fi): 

                                                            (4) 

where fCNN denotes the CNN-based feature extraction process. 

Video data (Xv) is subjected to frame sampling to make the 

data rate less redundant before the temporal features extraction 

and representation compression. Temporal features (Fv) are 

computed using techniques like 3D CNNs or transformers, 

enabling compact and informative representations: 

                           (5) 

where fvideo-preprocess encompasses frame sampling, 

temporal modeling, and feature compression. 

These standardized representations (Et, Fi, Fv) are then 

combined together in the other stages of the multi-modal 

framework, where exact compatibility is needed for 

performance across tasks. 

3.3 Model Training and Cross-Modal 

Learning 
Supervised learning is used to train the multi-modal model on 

tasks like Visual Question Answering (VQA) and automatic 

content creation. For these tasks to be completed, different 

types of information must be combined. This is done by using 

cross-modal attention mechanisms. These parts align and 

combine data from text, picture, and video inputs, which lets 

the model make outputs that make sense in the given context. 

To be more specific, attention weights are calculated across 

modalities to make sure that their aspects work well together. 

For instance, if you have text features (Et), picture features (Fi), 

and video features (Fv), you can figure out the aligned 

representation (Z) by: 

                  (6) 

To improve cross-modal models even more, unsupervised pre-

training methods like masked modeling and contrastive 

learning are used. Randomly masking parts of the input (like 

words in text or areas in pictures) and teaching the model to 

guess what the missing information is is what masked modeling 

does. This makes feature extraction more reliable. Contrastive 

learning makes representation alignment even better by 

pushing similar inputs from different senses to be more closely 

embedded in the latent space. All of these techniques work 

together to make the model better at understanding and 

responding to inputs that come in more than one form. 

3.4 Task-Specific Implementation 
The multi-modal framework has been fine-tuned to work with 

certain apps, like Automated Content Generation and Visual 

Question Answering (VQA). For VQA, a question-image 

alignment module is created so that the model can match up 

parts of text questions (Qt) with parts of images (Fi). This is 

done with a cross-attention system that figures out relevance 

scores and combines the two types of attention. This is how you 

get the alignment result (ZVQA): 

   (7) 

3.5 Evaluation Metrics and Benchmarking 
Using standard benchmarks to measure improvements across 

different jobs, the multi-modal framework's performance is 

checked. Accuracy measures are used to compare how well the 

multi-modal model does in Visual Question Answering (VQA) 

to baselines that only use text. Here's how to figure out the 

accuracy (A): 

       (8) 

It will providing big improvements over old ways of doing 

things. For automated content creation, the outputs are 

evaluated by both humans and computers to see how relevant, 

rich, and coherent they are. Automated methods calculate 

objective metrics like BLEU and ROUGE scores, while human 

evaluations use qualitative scoring. This shows that the model 

can make high-quality content that is aware of its context. 

Ablation studies are also done to look at the role of each 

modality (text, picture, and video) and the ways that features 

are combined. By taking out or isolating certain modalities 

selectively, the effect on total performance can be measured, 

which shows how important each part is. These tests show that 

the suggested multi-modal framework works well at using 

knowledge from different modes to make performance better 

across tasks.  

3.6 Performance Optimization 
To get the best performance and efficiency from the computer, 

the model design is tweaked by trying out different 

arrangements of transformers, CNNs, and cross-modal 

attention layers. To find the best configuration, changes are 

made to the architecture of CNNs, the amount of attention 

heads, and the depth of the transformer layers. The optimization 

process makes sure that the model can successfully combine 

features from text, image, and video formats while still being 

able to handle large amounts of data. Techniques like model 

compression and information distillation are used to cut down 

on the amount of work that needs to be done on the computer. 

Model compression gets rid of unnecessary weights and 

quantizes parameters, which makes the model smaller with 

little loss in accuracy. By teaching a smaller student model 

(fstudent) to copy the actions of a bigger teacher model 

(fteacher), knowledge distillation makes things even more 

efficient. This is what the distillation loss (Ldistill) means:  

   (9) 

α is a weighting factor, LCE is the cross-entropy loss, and LKL 

is the Kullback-Leibler divergence between the student and 

teacher model results. The model can do complicated multi-

modal tasks with fewer resources while still being accurate and 

reliable due to these strategies.  

3.7 Results and Analysis 
Visual Question Answering (VQA) benchmarks show that the 

suggested multi-modal framework is 25% better than text-only 

models. This shows that it is better at integrating and processing 

multi-modal inputs. The model makes big improvements to 

content generation tasks by giving better, more fully-formed 
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results that are aware of their surroundings than older methods. 

Also, looking at failure cases and limitations can teach you a 

lot. For example, it can show you when the model has trouble 

with complicated cross-modal interactions or training data that 

isn't very representative. These results make it clear that more 

study is needed to solve these problems and make the 

framework useful for a wider range of difficult tasks. 

4. RESULTS AND DISCUSSION 
The following results show that the suggested multi-modal 

framework works well. There is a big jump in accuracy, as 

shown by the VQA Accuracy Comparison. The multi-modal 

model always does better than text-only models on all tasks. 

This score shows how much better the outputs are, showing that 

the model can make material that is richer and more relevant to 

the situation. Cross-modal learning is important for better 

performance, as shown by the Feature Contribution Analysis, 

which shows a balanced use of text, image, and video 

modalities. The Comparative Computational Efficiency Shows 

shorter processing times, which are due to model optimization 

methods, making the results useful in real life. Lastly, the 

Training Loss Curve shows that convergence is stable and 

effective over epochs, which highlights the model's strong 

learning process. Overall, these results show that the suggested 

multi-modal framework is strong, effective, and useful for a 

wide range of tasks. 

 
Fig 3: VQA Accuracy Comparison 

In Figure 3, the proposed multi-modal model is shown next to 

a text-only model to show how well they do at different tasks. 

The multi-modal model always does better than the text-only 

method, showing an enormous rise in accuracy. 

 
Fig 4: Content Generation Quality Score 

This Figure 4 shows the quality scores that people gave to jobs 

that involved making content. All of the tasks give better 

quality scores to the multi-modal model, which shows that it 

can produce richer and more context-aware outputs. 

 
Fig 5: Feature Contribution Analysis 

The contributions of text, picture, and video modalities to the 

multi-modal framework are shown in Diagram 5. It shows how 

information from all available modes is balancedly combined. 

 
Fig 6: Computational Efficiency Comparison 

Figure 6 shows a comparison between the multi-modal model 

and the basic system in terms of how quickly tasks can be 

completed. Because the multi-modal model has been improved, 

processing times are shorter than they were in the baseline. 

 
Fig 7: Model Training Loss 

Figure 7 shows how the training loss changes over time, with a 

steady drop as the model gets better. It shows how well the 

model is learning and staying stable while it is being trained. 

5. CONCLUSION 
The results of this study show that multi-modal learning has a 

lot of promise to make Large Language Models (LLMs) 

superior. Through a new framework that uses transformers and 

convolutional neural networks (CNNs), the suggested model 

greatly enhances tasks such as visual question answering 

(VQA) and automated content generation. Compared to text-

only models, the results show a 25% rise in VQA scores and 

much more detailed, context-aware outputs for content 
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creation. Incorporating different types of information can help 

improve performance and understanding of context. 

Furthermore, the framework shows fast computations and a 

balanced input of modalities, which emphasizes its durability 

and usefulness. These improvements show that multi-modal 

learning will radically change the future of LLM development, 

making AI systems more complete and flexible. 
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