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ABSTRACT 

Livestock diseases significantly impact agricultural 

productivity, food security, and rural livelihoods, especially in 

regions like Nigeria where livestock farming is vital. 

Traditional diagnostic methods are often inaccessible or 

delayed in resource-limited settings, leading to unchecked 

disease spread and economic losses. This paper proposes an 

innovative framework combining deep learning techniques 

with a care recommendation system to facilitate early and 

accurate detection of prevalent livestock diseases such as Foot 

and Mouth Disease (FMD), Peste des Petits Ruminants (PPR), 

Bovine Fasciolosis, and Tick-borne Diseases. Using a 

comprehensive dataset of over 20,000 labeled images collected 

from veterinary sources and farms, a Mask R-CNN based 

model is designed to identify species-specific disease 

symptoms in cattle, goats, and sheep. The system integrates 

with a cloud-based large language model leveraging retrieval 

augmented generation (RAG) to provide tailored, actionable 

care advice, including treatment, and preventive measures. This 

approach aims to empower farmers with timely diagnostics and 

management strategies to mitigate disease impact, thereby 

enhancing livestock health, productivity, and overall food 

security.   

General Terms 

Deep Learning, Convolutional Neural Networks 

Keywords 
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1. INTRODUCTION 
Livestock farming, along with food security and rural 

livelihoods, faces acute challenges due to the prevalence of 

livestock diseases. According to the Food and Agriculture 

Organization (FAO), the livestock sector alone contributes 

approximately 40% of agricultural GDP and provides 

employment to nearly 1.3 billion people in low- and middle-

income countries, where many communities economically 

depend on it [9]. Beyond economic contributions, livestock 

farming supports various socio-cultural activities, ensuring 

food, employment, income generation, and reinforcing cultural 

identity. Additionally, animal husbandry plays a critical role in 

nutritional security, supplying primary commodities such as 

meat, milk, eggs, and leather, which are not only essential for 

domestic consumption but also valuable for international trade. 

In recent years, a global shortage of meat has been observed, 

triggering a ripple effect on local consumption patterns and 

broader economic stability. Rising meat prices have 

increasingly marginalized low-income households from 

accessing animal protein. Nigeria, the focus of this study, has 

been significantly affected, battling the adverse effects of 

prevalent livestock diseases such as Foot and Mouth Disease 

(FMD), Tick-borne Diseases, Peste des Petits Ruminants 

(PPR), and Bovine Fasciolosis [5]. 

FMD, a highly contagious viral infection, is clinically 

characterized by fever, the formation of vesicular lesions in the 

mouth and interdigital spaces, excessive salivation, lameness, 

and abrupt declines in milk production. PPR, affecting mainly 

goats and sheep, manifests as high fever, necrotic stomatitis, 

diarrhea, bronchopneumonia, dehydration, and can lead to 

rapid mortality in severe cases. Bovine Fasciolosis, caused by 
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liver fluke (Fasciola spp.) infestation, results in anemia, 

jaundice, chronic weight loss, and significant reductions in 

meat and milk production. Collectively, these diseases not only 

compromise animal welfare but also threaten rural livelihoods 

and national food security by destabilizing the livestock value 

chain [19]. 

Traditional methods for disease detection and diagnosis 

primarily rely on clinical observation and laboratory analyses. 

However, these approaches are fraught with challenges, 

particularly in rural and resource-limited settings [10]. Clinical 

assessments are complicated by the nonspecific nature of many 

disease symptoms, which often overlap among different 

conditions, making differential diagnosis difficult. Laboratory 

diagnostics, while more accurate, are expensive, time-

consuming, and require specialized equipment and trained 

personnel resources that are often inaccessible to smallholder 

farmers [10]. Consequently, delays in diagnosis facilitate the 

unchecked spread of infections, amplifying economic losses 

and animal mortality. 

Although several advancements have been made in livestock 

health management through expert systems [14], mobile 

applications, and electronic monitoring tools, many existing 

systems rely on simple symptom tracking and offer only basic 

advisory services [1]. These tools often lack the sophistication 

needed for precise disease identification or for providing 

context-specific, actionable care recommendations that can 

significantly impact animal recovery outcomes. 

Recent advances in artificial intelligence (AI) and machine 

learning (ML) present promising opportunities to revolutionize 

livestock disease management. Techniques such as support 

vector machines, random forests, decision trees, and naïve 

Bayes classifiers have been applied for disease detection, 

particularly in cattle [6][22][21]. Furthermore, the advent of 

deep learning, especially Convolutional Neural Networks 

(CNNs), has greatly enhanced image recognition capabilities, 

enabling successful applications in medical diagnostics and 

agricultural monitoring [20]. 

CNNs operate by applying trainable filters (kernels) to input 

images to detect features such as edges, textures, and patterns. 

These operations quantify the presence of specific features 

through convolution operations, allowing models to learn 

complex visual patterns associated with diseased and healthy 

states [12][23]. 

Leveraging these technologies, a robust and intelligent 

framework can be developed to analyze images and health data 

of livestock, facilitating early disease detection, risk prediction, 

and timely care recommendations. We propose a framework 

for livestock disease detection and care recommendation with 

the objective of designing a deep learning model for the 

detection of cattle and goat diseases based on physical 

symptoms, as well as a care recommendation model. the system 

will not only diagnose the potential disease but also provide 

tailored care recommendations, including treatment options, 

isolation measures, nutritional support, and preventive health 

tips. 

The contributions of this study are as follows. 

1. Integration of the Mask R-CNN model enables pixel-

level segmentation of diseased regions on livestock images, 

significantly improving the precision of visual disease 

identification. 

2.  The system incorporates a domain-specific 

Retrieval-Augmented Generation (RAG) pipeline to enhance 

the factual consistency and contextual relevance of care 

recommendations, reducing hallucinations associated with 

large language model. 

3. The framework is designed for mobile compatibility, 

enabling farmers in remote and underserved regions to capture 

livestock images, receive instant diagnoses, and obtain 

actionable recommendations on-the-go. 

The rest sections of the study are presented as follows: related 

and summary of the work are described in Section 2. Methods 

and framework design are described in Section 3. The 

conclusion is described in Section 4.  

2. LITERATURE REVIEW 
This section emphasized the different methodologies or 

frameworks that have been employed in identifying livestock 

diseases and recommending health tips based on the detected 

diseases. 

The authors in [28] performed comparative analysis of eight 

ML algorithms in cattle disease detection. The models were 

applied to spot symptoms, and monitor animal movement 

trends, and their immunization records were used as data 

quantities on animal health. However, the study's 

generalizability may be limited due to its focus on two 

commercial farms in northeast China and the need for domain-

specific adjustment and validation in different farm contexts. 

[10] carried out animal disease classification by applying deep 

learning techniques on livestock diseased images. One 

thousand four hundred five (1405) different images that 

comprise sheep, goats and sheep. The significant feature was 

extracted from the images using three (3) deep learning models 

namely EfficentNetB7, MobileNetV2, DenseNet201 and 

EffiecientNetB7, while softmax classifier was for the 

classification skin diseases. However, in the framework a care 

recommendation system was not considered to instigate early 

combative measures.  

The authors in [14] detected and classified ranges of cow health 

conditions, stress, and reproduction on daily activities using 

machine learning algorithms. They applied five datasets 

containing information on the conditions of cows which were 

recorded by human and monitored continuously by sensors. 

The datasets were collected over a period of 12 months, 

preprocessed, balanced and passed to random forest to relate 

the features of the timeseries data to animal conditions. 

However, there was still high level of false positives despite 

balancing the datasets as random forest failed to detect some 

cow conditions. 

[29] researched on lumpy skin disease diagnosis in cattle. The 

dataset employed for the research consists of 464 healthy and 

329 lumpy disease images. The images were fed into pre-

trained mobilenetv2 model optimized using RMSProp 

optimizer. However, image processing was not carried out, 

which could have further improved the detection accuracy of 

the model.  

Subsequently, [30] emphasized early detection of lumpy skin 

detection in cattle by performing comparative analysis of pre-

trained models. The authors evaluated ten (10) pretrained 

models and carried out detailed data pre-processing, 

augmentation, and balancing of the dataset. However, there are 

other cattle diseases that could have been incorporated into the 

model, thereby making it a multiclassification model for robust 

diagnosis.  

[6] leveraged machine learning algorithms and optimization 
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frameworks to predict Bovine Respiratory Disease (BRD) in 

cattle. The model uses features such as clinical symptoms, 

environmental conditions, and animal behavior patterns to 

detect early signs of the disease. By doing so, it improves 

diagnosis accuracy, allowing farmers to treat the disease early 

and reduce economic losses. It focuses on computational 

efficiency and optimization to ensure the model's practical 

deployment on farms. The model's performance may vary 

depending on the quality and size of the dataset. It also requires 

high computational resources for optimization, limiting its use 

in smaller farms with limited access to technology.  

The research by [22] employed the YOLOv5-ASFF (You Only 

Look Once version 5 with Adaptive Spatial Feature Fusion) 

deep learning framework to detect and monitor cattle bodies in 

real-time. The model is designed for precision farming and 

helps farmers monitor the health and location of cattle. By 

using image-based detection, the system identifies potential 

physical abnormalities, allowing for early disease prediction. It 

is particularly useful for detecting diseases like foot-and-mouth 

disease by analyzing visual symptoms such as lesions or 

swelling. However, YOLOv5-ASFF’s accuracy can be 

compromised in poor lighting or cluttered environments. It may 

also struggle with diverse cattle body shapes and sizes, 

reducing the system's precision in detecting certain diseases.  

The authors in [23] investigated the potential of machine 

learning in classifying and predicting the spread of animal 

diseases, some of which may evolve into zoonotic diseases 

(those that can infect both animals and humans). Various 

machine learning techniques including XGBoost, Random 

Forest and CNN to predict animal diseases and assess if they 

are likely to become zoonotic. While the research made 

valuable contributions to understanding animal disease 

prediction, the dataset used for model training may not fully 

represent all possible disease conditions, which could affect the 

model's accuracy in real-world applications. 

[15] The study used machine learning techniques, specifically 

the Tree-Based Pipeline Optimization Tool (TPOT), to analyze 

sensor behavior data from dairy cows to identify changes 

associated with digital dermatitis. The dataset was split into 

training and testing cohorts, and a Monte Carlo method was 

used to ensure balanced distribution. A 5-fold cross-validation 

approach was applied for robust performance evaluation. The 

study recommends integrating advanced sensor tools for 

further detection and prediction. 

The authors in [4] used machine learning algorithms to predict 

and detect cattle diseases like foot-and-mouth disease (FMD) 

and lumpy skin disease (LSD) by analyzing vast amounts of 

animal health data. The methodology involved gathering 

clinical records, cleaning and formatting data, identifying 

significant features, training algorithms, assessing accuracy 

and diagnostic precision, and implementing the trained model 

in real-world scenarios. However, the study highlighted some 

shortcomings such as limited training data, potential for 

inaccurate outcomes, and the need for regular updates and 

retraining. 

[17] developed and evaluated ML models for early detection 

and classification of bovine diseases, aiming to improve animal 

welfare and productivity in the dairy industry. They used four 

models, Random Forest, XGBoost, Logistic Regression, and 

Single Perceptron, and the models were trained using Holstein 

cattle datasets. However, potential limitations include needing 

more extensive datasets and potential impact on 

generalizability across dairy production systems. 

Overall, it is very important to address the diseases in animals 

to enhance the healthy livestock production for sustainability 

and for the general goal of ensuring safe, high quality meat 

production and consumption for consumers. In addition, 

leveraging technological advancement to deploy targeted 

control strategies in disease detection, prevention and 

monitoring with effective feedback systems are suggested. 

Table 1. Summary of Literature Review 

S/N Author Dataset Disease/Condition Algorithm Limitations 

1 Lardy et al., 

(2023) [14] 

Text 

(Symptomatic + 

Sensor) 

health, stress and 

reproduction 

conditions 

 Random forest (RF)  RF remain sensitive to 

majority category despite data 

sampling.  

2 Nadeem and 

Anis (2024) 

[17] 

Text 

(Symptomatic) 

 Bovine disease RF, XGBoost, Logistic 

Regression, and Single 

Perception. 

Imbalanced data categories. 

3 Magana et al., 

(2023) [15] 

Text (Sensor) Dermatitis (Cows) The Tree-Based Pipeline 

Optimization Tool (TPOT). 

Limited behavioral patterns 

was captured by sensor used. 

4 Zhou, et al., 

(2022) [28] 

Text (Sensor) Common disorder 

in dairy cows 

(mastitis, ketosis, 

lameness, and 

metritis) 

Rpart (Decision Tree 

Algorithm), XGBoost, 

Adaboost, Random Forest, 

Naïve Bayes, KNN, SVM, 

and Logistic Regression. 

Poor calibration sensor could 

lead to false behavioral 

interpretations  

5 Akash (2023) 

[4] 

Text and Images foot-and-mouth 

disease (FMD) and 

lumpy skin disease 

(LSD) 

ANN and Logistic 

Regression 

Article not well elaborated. 
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6 Qiao et. al., 

(2023) [22] 

Images Physical disease 

symptoms on head 

and mouth of cows 

and sheep 

YOLOv5-ASFF Images collected at night 

require extensive image 

processing due to poor 

lighting. 

7 Rehman et al. 

(2023) [23] 

Text 

(Symptomatic) 

Not specified XGBoost, Random Forest 

and CNN 

Data imbalance was not 

addressed. 

8 Saqib et al., 

(2024) [29] 

Images Lumpy Skin 

(Cattle) 

mobilenetv2 model image processing was not 

carried out. 

9 Casella et al., 

(2023) [6] 

Text 

(Symptomatic + 

Sensor) 

Bovine Respiratory 

Disease 

Gradient Boosting 

Classifier (GBC) and 

Support Vector Machines 

(SVM 

 It relies on a dataset collected 

from a specific population of 

calves and may not generalize 

to other herds or breeds, 

potentially limiting the broader 

applicability of the findings. 

10 Girmaw 

(2025) [10] 

Images Lumpy Skin 

disease (Cattle, 

Goat, and Sheep) 

three (3) deep learning 

models namely 

EfficentNetB7, 

MobileNetV2, 

DenseNet201 and 

EffiecientNetB7 was used 

 A care recommendation 

system was not considered. 

11 Senthilkumar 

et al (2024) 

[30] 

Images Lumpy Skin 

(Cattle) 

Xception, VGG16, VGG19, 

ResNet152V2, 

InceptionV3, MobileNetV2, 

DenseNet201, 

NASNetMobile, 

NASNetLarge, and 

EfficientNetV2S  

Not robust enough to handle 

other cattle diseases. 

 

Table 1 shows the recent advancements in livestock disease 

detection which largely focused on image-based deep learning 

models that emphasize classification, yet many lack the ability 

to perform pixel-level segmentation essential for precise 

diagnosis. Models like YOLOv5-ASFF [22] and MobileNetV2 

[29] struggled with poor image conditions and did not 

implement segmentation, while [30] reported limited 

robustness in their multi-model approach. In response to these 

limitations, this study integrates Mask R-CNN to perform 

instance-level segmentation, enabling precise identification of 

diseased regions, which can significantly enhance diagnostic 

accuracy and interpretability compared to conventional 

classification methods. 

In addition to detection, current systems often neglect the 

provision of intelligent, context-specific care 

recommendations. Studies such as [10] and [6] demonstrated 

strong predictive capabilities but lacked post-diagnosis 

guidance. To bridge this gap, this study incorporates a large 

language model (LLM) with domain-specific Retrieval-

Augmented Generation (RAG) pipeline that can retrieve 

veterinary-relevant content to generate factually accurate and 

actionable care instructions. This approach transforms the 

system from a basic diagnostic tool into a comprehensive 

decision-support system for livestock health management. 

Furthermore, many existing solutions overlook deployment 

feasibility in real-world, resource-limited environments. Most 

recent works either depend on sensor-based infrastructure 

[15][28] or do not consider usability for rural farmers [17][23]. 

This study addresses this concern by designing a mobile-

compatible framework that allows farmers to use smartphones 

to capture livestock images, obtain instant disease diagnoses, 

and receive tailored recommendations. This ensures 

accessibility, usability, and real-world applicability, especially 

for underserved communities. 

3. METHODOLOGY 

3.1 Livestock Disease Analysis 
As part of the development of our framework for Livestock 

Disease Detection and Care Recommendation, we undertook 

an extensive disease analysis phase. Through direct 

consultations with key organizations, experienced 

veterinarians, and a thorough review of relevant literature, we 

identified the most common and economically significant 

livestock diseases prevalent in Nigeria, with particular attention 

to the southern and northern regions. 

This collaborative effort enabled us to systematically map out 

diseases based on their frequency, severity, and impact on 

animal health and productivity. We found that many of these 

diseases manifest through observable physical signs, including 

lesions, abnormal posture, swelling, respiratory distress, 

discolorations, and behavioral changes signs that can be 

captured effectively using mobile device cameras or farm-

based digital imaging systems. 

Our analysis emphasized understanding the progression of 

symptoms from early stages to severe conditions, a critical 

aspect for providing timely and actionable care 

recommendations. By categorizing diseases based on livestock 

species namely, cattle, goats, and sheep. We were able to tailor 

our detection approach for species-specific accuracy and 

design targeted intervention strategies. 

Furthermore, specific clinical features were defined and 
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documented as shown in Table 2 to serve as the foundation for 

training our detection models, particularly Convolutional 

Neural Networks (CNNs), which will be responsible for 

identifying disease indicators from visual data. 

Table 2. Prevalent Livestock Diseases in Southern and 

Northen Nigeria 

S/N Disease Livestock 

Affected 

Key Physical 

Symptoms 

1 Foot and 

Mouth 

Disease 

(FMD) 

Cattle,Sheep, 

Goats 

Blisters in mouth and 

feet, and drooling, 

lameness.  

2 Peste des 

Petits 

Ruminants 

(PPR) 

Goat, Sheep Mouth sores, 

diarrhea, pneumonia, 

dehydration 

3 Bovine 

Fasciolosis 

Cattle Weight loss, anemia, 

jaundice, decreased 

milk and meat 

production 

4 Liver 

Fluke 

Goat, Sheep, 

Cattle 

Bottle jaw, pale 

mucus membrane, 

extreme weight loss 

5 Tick-borne 

Disease 

Cattle Visible tick found 

around the neck, ear 

and body. 

 

3.2 System Model 
The architecture of the proposed framework for detection and 

recommendation of livestock diseases is presented in Figure 1. 

The proposed architecture is meticulously structured to ensure 

accurate and efficient disease diagnosis and subsequent care 

advice for farmers. The process commences with 

comprehensive data collection, where a vast repository of 

livestock images, both healthy and diseased, is amassed. This 

data is then labeled and validated to ensure accuracy and 

consistency, forming the foundation for the deep learning 

model's training. Subsequent data preprocessing techniques, 

including noise removal, augmentation, and conversion, further 

enhance the dataset's quality and suitability for model training. 

The deep learning model, specifically Mask R-CNN will be 

trained and evaluated to detect various livestock diseases with 

high precision. Once the model is fine-tuned, it is deployed to 

the cloud, where it integrates with a large language model API 

that leverages on retrieval augmented generation (RAG) 

architecture to provide comprehensive care recommendations 

based on detected conditions. This seamless integration ensures 

that farmers receive timely and context-specific advice to 

manage their livestock's health effectively.  

3.2.1 Data Collection 
Images of healthy and diseased livestock were sourced from 

online repositories such as the World Animal Health 

Information System (WAHIS) as well as in veterinary clinics 

and hospitals, research institutions, agricultural and livestock 

farms within targeted areas (Southern and Northern Nigeria). A 

minimum of 20,000 healthy and diseased images were 

collected. Figure 2 (a)-(d) presents the diseases and 

accompanying symptoms prevalent in the south and northern 

region of Nigeria considered in this study. Figures 2(a) and 2(b) 

are symptoms for PPR while 2(c) and 2 (d) are for fascioliasis 

and tick-borne disease respectively. 

3.2.2 Data Labeling 
Labeling of objects such as the physical disease signs in 

livestock images was a crucial step in this study. Livestock 

objects in the images were manually outlined. This process 

involved drawing polygons (bounding boxes) around each 

object of interest (i.e., visible symptoms) and labeling them 

with disease categories. During this process, a metadata file in 

JSON format was created for each labeled image. The JSON 

file contained information such as the label name, which was 

the name of the labeled objects (that is, areas where the disease 

sign was visible); image data in Base64-encoded format, 

enabling image visualization within the JSON file; the file path 

to the annotated image; the dimensions, which were the width 

and height of the annotated image; and the coordinates of the 

annotated objects' vertices or bounding boxes. 

3.2.3 Data Validation 
To ensure the accuracy and completeness of the labelling 

process, a validation procedure was carried out by conducting 

the following checks: checks for any missing images in the 

dataset, verification that each JSON file was correctly linked to 

its corresponding image file, confirmation of proper labeling of 

livestock objects, and ensuring that labeled images adhered to 

specified size requirements. 

3.2.4 Data Preprocessing 
The preprocessing methods applied in this study include noise 

removal, data conversion, and some data augmentation steps: 

These processes ensure improved image quality and aids in 

effective extraction of salient features in images.  

3.2.4.1 Noise Removal  
In some scenerios, the images usually contain unwanted noise 

and if not addressed could degrade model performance. To 

mitigate this issue, image smoothing techniques will be applied 

on our images, specifically, median filtering to reduce impulse 

noise such as salt-and-pepper noise. Equation (1) models this 

type of noise by generating fixed pixel values: 0 for pepper 

noise and 255 for salt noise. While equation (2) and (3) models 

the median filtering process. First, pixels will be classified as 

either noisy (np) or non-noisy (nnp), as defined in equation (2). 

Thereafter, a filtering window will be applied to each pixel x_i, 

identifying noisy pixels and replacing them with the median 

value of the surrounding pixels within that window, as 

illustrated in equation (3). 

𝑥𝑖 = {

0           𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦           𝑝𝑛

255          𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦        𝑝𝑝 

      𝜙𝑖,𝑗       𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − ( 𝑝𝑛 +  𝑝𝑛)
           (1) 

where 𝑥𝑖 is the noisy image,  𝜙𝑖,𝑗  denotes the grey level of an 

original image 𝜙 at pixel location (𝑖, 𝑗), The variable 𝑝𝑛 and  𝑝𝑝 

to the probabilities of a pixel being corrupted by pepper and salt 

noise, Both  𝑝𝑛 are equal to the half of the noise ratio, where 

the noise ratio ranges between 0 and 1. 

𝑥𝑖 = {
𝑛𝑛𝑝            𝑖𝑓 0 <  𝑥𝑖 < 255
𝑛𝑝   𝑖𝑓 𝑥𝑖 = 0 𝑜𝑟 𝑥𝑖 =  255

                        (2)                                                          

𝑥̅𝑖,𝑗
𝑤 = {𝑥𝑘,𝑖|𝑖 −

𝑤−1

2
≤ 𝑘 ≤ 𝑖 +

𝑤−1

2
, 𝑗 −

𝑤−1

2
≤ 𝑙 ≤ 𝑗 +

𝑤−1

2
}   

                                                (3) 

where 𝑥𝑖,𝑗
𝑤  denotes the set of pixels in the image 𝑥𝑖 within a 𝑤 ∗
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𝑤 window at (𝑖, 𝑗) such that 𝑤 is an odd integer not less than 3.  

 

Fig 1: Proposed livestock disease and care recommendation model 

 

Fig 2: Physical symptoms of Livestock Diseases Mouth  (a) Ulcer   (b) Ocula Discharge   (c) Bottle Jaw  (d) Tick infestation 

3.2.4.2 Data Augmentation 
a. Random cropping: Cropping involves selecting a portion of 

the image and discarding the rest. This can help simulate 

zoomed-in or focused views on specific areas of interest, such 

as an animal’s limb or face. Cropping forces the model to pay 

attention to fine details within a particular region, which is 

crucial when detecting localized symptoms like rashes or 

wounds.  

b. Saturation: Varying lighting conditions can significantly 

impact how colors are captured in images, affecting the 

detection of disease symptoms in animals. Adjusting image 

saturation during data augmentation helps simulate these 

variations, allowing the model to recognize symptoms 

regardless of lighting differences. Training with diverse 

saturation levels ensures the model generalizes well to real-

world scenarios. This research will employ context-aware 

saturation, adjusting image saturation based on specific 

features like disease symptoms.  

c. Rotation: Rotating an image involves turning it around its 

center at different angles, such as 15°, 30°, 45°, and more. This 

simulates different perspectives from which an image might be 

captured. This technique is particularly useful when the 

orientation of the object (a livestock animal) can vary, such as 

when the animal is standing, lying down, or moving. By 

training on rotated images, the model becomes invariant to 

these changes in orientation.  

d. Flipping: Flipping increases the variety of spatial 

configurations in the dataset. For livestock disease detection, 

this ensures the model can identify symptoms on either side of 

an animal, regardless of which direction it is facing.  

e. Brightness: Varying the brightness of the image simulates 

different lighting conditions, such as cloudy versus sunny days.  

f. Contrast: Adjusting contrast can make certain features stand 

out more clearly, which is helpful for highlighting symptoms 

like discoloration or patches on the skin.  

3.2.4.3 Data Conversion 
The conversion of the annotated images from its format to 

Common Objects in Context (COCO) format is a critical step 

in this study to ensure proper adoption of the Masked R-CNN 

model for livestock disease detection. The COCO format is 

widely recognized for its compatibility with various advanced 

DL models, offering structured and standardized ways to 

organize data for object detection tasks. By transitioning from 

its original format to COCO format, the dataset can effectively 

leverage the rich capabilities of the Masked R-CNN 

architecture, which excels in detecting and segmenting objects 

in images. This conversion process involves translating 

annotations from the JSON structure into the specific format 

required by COCO, which includes defining images, 

annotations, categories, and segmentation masks in a way that 

enhances usability and facilitates efficient training of the 
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model. 

3.2.4.4 Data Split 
After successfully converting the dataset to the COCO format, 

we will proceed to splitting the data into training and test sets. 

This division is essential for developing a robust deep learning 

model, as it allows for the training phase to be conducted on a 

portion of the data while reserving another segment for 

evaluation. The training set will be used to teach the model to 

recognize and segment various livestock diseases based on the 

annotated images, enabling it to learn the underlying patterns 

and features associated with different conditions. Meanwhile, 

the test set will serve as an independent benchmark to assess 

the model's performance, ensuring that it generalizes well to 

unseen data. 

3.2.5 Deep Learning Model Training 
This phase involves training a deep learning object detection 

model called Mask RCNN on the training set. The algorithm 

will be designed to learn the distinctive features of healthy and 

diseased livestock. The training process includes feeding the 

model with annotated images of livestock with labeled regions 

of interest that highlight specific disease symptoms or healthy 

characteristics. By learning from these annotated images, Mask 

R-CNN will be able to segment and distinguish between 

healthy and diseased areas. 

Mask R-CNN is composed of several key components: a CNN 

for extracting features from the input image, a Region Proposal 

Network (RPN) for identifying potential areas of disease, along 

with multi-branch prediction networks for detailed 

classification or segmentation. These prediction branches 

include two fully connected (FC) layers for bounding box 

classification and regression, as well as a fully convolutional 

network (FCN) dedicated to predicting disease masks. The 

CNN processes the input image 𝑥, represented as a 

multidimensional array, by applying convolution operations 

with trainable weights followed by a non-linear activation 

function. This process results in a convolutional feature map 

𝑓𝑞in equation (4) which captures critical attributes of the 

livestock images, essential for distinguishing between healthy 

and diseased regions. 

𝑓𝑞= 𝑅𝑒𝐿𝑈(𝑊𝑞ʘ 𝑥 + 𝑏)   (4) 

where 𝑓𝑞is the 𝑞𝑡ℎ feature map, 𝑊𝑞   represents the weight 

related to the feature map, ʘ represents the convolution 

operator, ReLU is the activation function, and b represents the 

bias factor.  

The RPN uses the convolutional feature maps generated in the 

convolutional layer as input and outputs a set of region 

proposals, which indicate areas where diseased or healthy 

livestock might be located. This will be achieved by sliding a 

window convolution over the input feature map. The likelihood 

of each anchor containing a target region is calculated by 

computing the Intersection over Union (IoU) overlap ratio 

between the anchor box 𝐴𝑏    and the ground truth box 𝐺𝑡as 

presented in equation (5) and (6). Based on this calculation, the 

algorithm classifies anchors into positive and negative 

categories: anchors with IoU less than 0.3 are assigned a label 

of zero (0) indicating negative labels (no disease), while those 

with IoU greater than 0.7 are assigned a label of one (1), 

indicating positive labels (disease presence). 

𝑝∗ = {
0          𝑖𝑓 𝐼𝑜𝑈 < 0.3
1          𝑖𝑓 𝐼𝑜𝑈 > 0.7

    (5) 

𝐼𝑜𝑈 =
𝐴𝑏∩𝐺𝑡

𝐴𝑏∪𝐺𝑡
                               (6) 

where p∗represents the ground truth value of anchors. Training 

RPN requires minimizing its loss function which are defined as 

follows:  

𝐿(𝑝𝑖 , 𝑡𝑖) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗)𝜆
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗)

𝑁𝑟𝑒𝑔

𝑖=1

𝑁𝑐𝑙𝑠
𝑖=1     (7) 

where 𝑖 represents the index of the anchor, 𝑝𝑖is the probability 

of the 𝑖th anchor being an object, 𝑡𝑖 is the vector representing 

the 4 parametrized coordinates of the predicted bounding box, 

𝑡𝑖
∗is the coordinate vector of the corresponding ground-truth 

bounding box. 𝐿𝑐𝑙𝑠 represents the classification loss function. 

𝐿𝑟𝑒𝑔 is the regression loss function, 𝑁𝑐𝑙𝑠 and 𝑁𝑟𝑒𝑔 are the 

normalization coefficients of 𝐿𝑐𝑙𝑠 and 𝐿𝑟𝑒𝑔 respectively, while 

𝜆 is the weight parameter between 𝐿𝑐𝑙𝑠 and 𝐿𝑟𝑒𝑔.  The 

classification loss function is defined as: 

𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗) = −𝑙𝑜𝑔[𝑝𝑖𝑝𝑖

∗ + (1 − 𝑝𝑖
∗)(1 − 𝑝𝑖)]      (8) 

The regression layer loss function is defined as: 

𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) = 𝑅(𝑡𝑖 − 𝑡𝑖

∗)        (9) 

where 𝑅 represents the robust smooth loss function which is 

defined as: 

𝑅(𝑥) = {
0.5𝑥2,    |𝑥| < 1

|𝑥| − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑠
   (10) 

The region proposals produced by the RPN are adjusted using 

RoIAlign to ensure they conform to the required input 

dimensions of the multi-branch prediction networks. RoIAlign 

applies bilinear interpolation to accurately extract the 

corresponding features for each proposed region from the 

feature map. During model training, the loss function of the 

Mask R-CNN for each proposal is defined as follows: 

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑟𝑒𝑔 + 𝐿𝑚𝑎𝑠𝑘    (11) 

where 𝐿𝑐𝑙𝑠 is the classification loss, 𝐿𝑟𝑒𝑔 represents 

regression loss, and 𝐿𝑚𝑎𝑠𝑘 is the segmentation loss. 

Figure 3 shows the Mask R-CNN model designed for the 

proposed system.  Input image will be passed through a series 

of convolutional layers (conv1 to conv5), which gradually 

extract deeper features while reducing the spatial dimensions 

from the original size down to 1/32. Specifically, the number 

of feature channels will increase from 64 in conv1 to 2048 in 

conv5. The RPN generates candidate object regions (anchors) 

using the high-level features. These proposals are then aligned 

using ROI Align, which ensures fixed-size, well-aligned 

feature maps for each regionThese aligned features are fed into 

two fully connected (FC) layers (each with 1024 units) for 

classification and bounding box regression. In parallel, a mask 

branch will predict a binary segmentation mask (28×28 pixels) 

for each detected object, allowing for pixel-level  
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Fig 3: Designed Mask R-CNN Architecture for the Livestock Diseases 

Table 3: Summary of Designed Mask-RCNN Architecture 

S/N Block Channels Spatial Reduction 

1 Conv1 64 -- 

2 Conv2 256 1/4 

3 Conv3 512 1/8 

4 Conv4 1024 1/16 

5 Conv5 2048 1/32 

6 RPN 5 Region-wise output 

7 ROI Align -- Fixed size per ROI (7x7) 

8 FCs 1024 No spatial dimensions (Fully 

connected) 

9 Mask 256 28x28 

 

 
Fig 4: Domain-Aware Retrieval Augmented Generation (RAG) framework 

localization. The final outputs of the architecture are the object 

class, bounding box, and segmentation mask, making Mask R-

CNN a powerful model for object detection and instance 

segmentation. 

3.2.6 Design of Care Recommendation Model 
To provide timely and context-specific recommendations, a 

Domain-Aware Retrieval Augmented Generation (RAG) 

framework shown in Figure 4 was designed, integrating a Large 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.33, August 2025 

33 

Language Model (LLM) with the output from the livestock 

disease detection module. Unlike the conventional RAG 

systems that rely on global, the proposed model will apply 

disease specific indexing, ensuring only contextually relevant 

information are retrieved.  

Once a disease is detected, the system automatically constructs 

a dynamic prompt based on the disease type, the species 

affected, and the farmer’s geographical location. 

Rather than sending this prompt to a general-purpose language 

model, the system leverages a domain-aware retrieval 

mechanism, which constrains the search space to a veterinary-

specific knowledge base. This indexed corpus contains 

structured documents such as clinical guidelines, regional 

treatment protocols, and expert veterinary publications. 

Filtering is applied based on the detected disease, the livestock 

species, and the local context (e.g., West Africa, Nigeria), 

ensuring that only medically relevant and geographically 

appropriate documents are retrieved. 

The retrieval phase identifies the top-matching documents 

which are semantically aligned with the constructed prompt. 

These documents are then passed along with the query to the 

generation module of the LLM. By fusing real-time detection 

input with curated veterinary knowledge, the model generates 

tailored recommendations, such as treatment options, isolation 

protocols, vaccination strategies, and feeding plans, all aligned 

with the actual health condition of the animal. 

For instance, if Peste des Petits Ruminants (PPR) is detected in 

a goat located in Nigeria, the system automatically assembles a 

prompt such as: 

“Provide treatment and preventive strategies for managing PPR 

in goats in West Africa.” 

The retrieval engine then searches only within documents 

tagged with PPR, goat-specific veterinary cases, and West 

African regional data. The response generated thus reflects 

domain-specific precision, practical applicability, and cultural 

relevance. 

This domain-aware RAG model advances prior approaches by 

introducing a disease-specific indexing scheme and retrieval 

filtering mechanism. The integration of these components 

enables the system to support field-level decision-making by 

providing accurate, adaptive, and trustworthy responses. 

Detailed explanation of the components in figure 4 is given as 

follows: 

1. The system starts at the user end, where a mobile 

device captures an image of a livestock animal exhibiting 

visible symptoms. The image is sent to the Mask R-CNN which 

detects diseased regions and predicts a probability distribution 

over possible disease {𝑝(𝑑𝑗|𝑥)}
𝑗=1

𝐽
where 𝑑𝑗is the j-th disease 

in the model’s label set, and 𝑝(𝑑𝑗|𝑥)  ∈ [0,1]  is the posterior 

probability. The top-1 predicted disease with its associated 

confidence is given as: 

𝑑∗ = argmax
𝑗

𝑝(𝑑𝑗|𝑥)   (12) 

𝑐∗ = 𝑝(𝑑∗|𝑥)   (13) 

Alongside the disease probabilities, the system constructs a 

disease-specific prompt 𝑝 incorporating both the raw input and 

contextual metadata as captured in equation (14), 

     𝑄 = (𝑑̂, 𝑙, 𝑠, 𝑝, 𝑐∗, 𝑡)     (14) 

where 𝑑̂ is the disease label predicted by Mask-RCNN, 𝑙 is the 

location of the observation, 𝑠 is the livestock species, 𝑐∗ is 

confidence score from Mask-RCNN, and 𝑡 is the image 

detected. However, for any retrieval to occur, the system 

applies a confidence-gated decision rule to determine how to 

proceed. This decision is based on two thresholds which are 

defined as high-confidence threshold (𝜏) and escalation 

threshold 𝜏𝑒𝑠𝑐 <  𝜏. The decision logic is given as: 

Decision(𝑥) = {

𝑆𝑖𝑛𝑔𝑙𝑒 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 , 𝑐∗ ≥ 𝜏
 𝑚𝑢𝑙𝑡𝑖 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙, 𝜏𝑒𝑠𝑐 ≤ 𝑐∗ <  𝜏
𝐸𝑠𝑐𝑎𝑙𝑎𝑡𝑒 𝑡𝑜 𝑉𝑒𝑡 , 𝑐∗ <  𝜏𝑒𝑠𝑐

                          (15)  

In the first case, single-disease retrieval proceeds with one 

hypothesis 𝐻 = {𝑑∗}, while in the second case, multi-disease 

retrieval proceeds with a set of plausible diseases: 𝐻 =
{𝑑𝑗: 𝑝(𝑑𝑗|𝑥) ≥  𝜖} where 𝜖 filters out very unlikely diseases. 

The third case is where retrieval is skipped, and the system 

recommends veterinary attention directly. Only the first two 

cases proceed to the next stage. 

2. Canonical Rendering: This involves structuring the 

query. For each disease hypothesis ℎ ∈ 𝐻, the system 

constructs a hypothesis-specific tuple 𝑄ℎ = (ℎ, 𝑙, 𝑠, 𝑝, 𝑐∗, 𝑡) and 

converts it into a schema-tagged canonical string: 

𝜙(𝑄ℎ) = "[𝐷𝐼𝑆𝐸𝐴𝑆𝐸]ℎ[𝑆𝑃𝐸𝐶𝐼𝐸𝑆]𝑠[𝐿𝑂𝐶𝐴𝑇𝑁]𝑙[𝐶𝑂𝑁𝐹]𝑐∗[𝑃𝑅𝑂𝑀𝑃𝑇]𝑝  

𝑄̃ℎ = 𝜙(𝑄)     (16) 

The 𝑄̃ℎ improves semantic representation when passed to the 

embedding module. 

3. Embedding Module: converts each canonical query 𝑄̃ℎ into 

a dense semantic vector 𝑞ℎ via a transformer-based encoder 

𝑓𝜃 (. ). Similarly, each document 𝑑𝑜𝑐𝑖  in the domain knowledge 

base has a canonical render 𝑑𝑜𝑐𝑖
𝑟𝑒𝑛𝑑𝑒𝑟  and an embedding (Eq. 

18) 

𝑞ℎ =
𝑓𝜃 (𝑄̃ℎ)

||𝑓𝜃 (𝑄̃ℎ)||
   (17) 

 

𝑣𝑖 =
𝑓𝜃 (𝑑𝑜𝑐𝑖

𝑟𝑒𝑛𝑑𝑒𝑟)

||𝑓𝜃 (𝑑𝑜𝑐𝑖
𝑟𝑒𝑛𝑑𝑒𝑟)||

   (18) 

where 𝑓𝜃 is the transformer encoder and 𝑑𝑜𝑐𝑖
𝑟𝑒𝑛𝑑𝑒𝑟 is the 

canonical text rendering of each knowledge item. 

Sparse lexical encoding: To complement semantic retrieval, 

the system also parses lexical scoring with BM25 on the same 

canonical text as shown in equation ().  

𝑙𝑒𝑥ℎ,𝑖 = 𝐵𝑀25(𝑄̃ℎ, 𝑑𝑜𝑐𝑖
𝑟𝑒𝑛𝑑𝑒𝑟)   (19) 

This captures exact term matches that embeddings may 

overlook, such as uncommon disease names or rare symptom 

descriptors.  

Domain-specific signal for ranking refinement: Once both 

dense semantic and sparse lexical scores are available, the 

retrieval process incorporates domain-specific signals to tailor 

results to the livestock health domain. This ensures that the 

ranking process not only matches on surface-level similarity 

but also reflects epidemiological plausibility, semantic disease 

relationships, and document freshness. The domain-specific 

signal applied include: 

(a) Compatibility priors: this represents the apriori 

likelihood that a document is relevant to a disease 

hypothesis, given the species 𝑠, location 𝑙, and time 𝑡 of 

observation: 
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𝜋ℎ,𝑡 ∝ 𝑃(ℎ|𝑠, 𝑙, 𝑡). 𝑃(𝑑𝑜𝑐𝑖|ℎ, 𝑠, 𝑙, 𝑡) (20) 

where 𝑃(ℎ|𝑠, 𝑙, 𝑡) models’ epidemiological likelihood and 

𝑃(𝑑𝑜𝑐𝑖|ℎ, 𝑠, 𝑙, 𝑡) measures domain-specific relevance. 

(b) Ontology graph signal (𝑔ℎ,𝑖): quantifies the proximity 

between the hypothesis ℎ and the concepts in 𝑑𝑜𝑐𝑖  using 

personalized page rank. 

(c) Penalty function (𝑃ℎ,𝑖):  this ensures recent veterinary 

guideline or material are prioritized over outdated 

recommendations. Here, the system down-weight less 

reliable matches such as species mismatch, region 

mismatch, and outdated content. 

These signals were combined with the dense cosine similarity 

and BM25 score to produce the hybrid retrieval score  

𝑆ℎ,𝑖 = 𝛼𝑐𝑜𝑠ℎ,𝑖 + 𝛽𝑙𝑒𝑥ℎ,𝑖 + 𝛾𝑔ℎ,𝑖 + 𝛿𝑙𝑜𝑔𝜋ℎ,𝑖 − 𝜆𝑃ℎ,𝑖     (21) 

where 𝛼, 𝛽, 𝛾, 𝛿, 𝜆 are tunable weights and 𝑐𝑜𝑠ℎ,𝑖 = 𝑞ℎ
𝑇𝑣𝑖 is the 

cosine similarity between dense vectors. 

However, if the decision stage chose multi retrieval, the per-

hypothesis scores 𝑆ℎ,𝑖  are combine using the model’s 

detection posterior probabilities: 

𝑝ℎ =
𝑝(ℎ|𝑥)

∑ 𝑝(ℎ′|𝑥)ℎ′∈𝐻

 ,  𝑆𝑖
𝑚𝑖𝑥 =  ∑ 𝑝ℎ. 𝑆ℎ,𝑖ℎ∈𝐻  

The final retrieved set 𝒟𝑡𝑜𝑝−𝑘 is given as: 

𝒟𝑡𝑜𝑝−𝑘  = {
𝑇𝑜𝑝𝐾𝑖𝑆𝑑∗,𝑖  , 𝑐∗ ≥ 𝜏,

𝑇𝑜𝑝𝐾𝑖  𝑆𝑖
𝑚𝑖𝑥 , 𝜏𝑒𝑠𝑐 ≤ 𝑐∗ < 𝜏

 (22) 

Where 𝑆𝑑∗,𝑖 is for the single mode and 𝑆𝑖
𝑚𝑖𝑥  is for the multi-

retrieved option. This set along with the query 𝑄̃ℎ and 

confidence 𝑐∗ is passed to the LLM: 

𝑟̂ = 𝐿𝐿𝑀(𝑄̃, 𝒟𝑡𝑜𝑝−𝑘 , Conf =   𝑐∗ )         (23) 

where 𝑟̂ is the generated response tailored to the specific 

disease context, species, and geographic metadata. 

Algorithm: Livestock Disease Detection and Care Recommendation Framework 

INPUT:  

    - Raw livestock images from multiple sources 

OUTPUT:  

    - Trained deep learning model for livestock disease detection 

    - Care recommendation module integrated into deployment system 

BEGIN 

    1: Acquire livestock images from farm databases, veterinary organizations, and public datasets. 

   2: Collect and organize images systematically into categories (species, disease type, healthy status). 

  3: Label and annotate each image with disease or health status information. 

  4: Perform Data Validation: 

        # Check for missing labels, mismatch labels, and quantity of images. 

          IF data is invalid THEN 

               Apply Data Replication technique/get more data (quantity of images). 

   Apply correction script to images with missing and mismatch labels 

              Return to Data Validation step. 

        ELSE 

            Proceed to step 5. 

  5: Preprocess Data: 

        Apply Data Augmentation techniques (e.g., rotation, flipping, noise injection). 

        Resize images to uniform dimensions. 

        Normalize pixel intensity values. 

        Encode labels into numerical formats. 

  6: Split the preprocessed dataset into three subsets: 

          Training Set 

          Validation Set 

          Test Set 

7: Train Deep Learning Models: 

           Employ Mask RCNN . 

           Optimize model parameters using the Training Set. 

           Validate model performance using the Validation Set. 

8: Evaluate model performance on the Test Set: 

          Metrics: Accuracy, Precision, Recall, F1-Score. 

9: Deploy the trained model: 

           Integrate into the LivestockGuardian mobile application. 

           On user image input: 

               Detect disease using the trained model. 

              Generate care and treatment recommendations using LLM assistance. 

END 

4. CONCLUSION 
This study presents a proposed framework for livestock disease 

detection and care recommendation that leverages deep 

learning models, specifically Mask R-CNN, alongside a 

retrieval augmented generation-based recommendation system. 

The framework is designed to address the significant challenge 
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of early and accurate identification of prevalent livestock 

diseases in Nigeria, including Foot and Mouth Disease, Tick-

borne Disease, Peste des Petits Ruminants, and Bovine 

Fasciolosis. With an extensive labeled image dataset of the 

studied livestock, the model aims to facilitate precise disease 

diagnosis and provide tailored care advice to farmers. Although 

the framework has not yet been implemented or empirically 

validated, it lays a strong foundation for future development 

and deployment. Subsequent work will focus on building, 

training, and evaluating the system in real-world farming 

contexts to assess its feasibility, scalability, and impact on 

livestock health management and food security.  
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