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ABSTRACT 

Diagnosis of Coronary Artery Disease (CAD)-one of the 

highest non-communicable diseases that are affecting millions 

of people in every corner of the world-requires suitable 

diagnostic instruments that are effective, precise, and easy to 

understand. The study proposes an early detection machine 

learning pipeline for CAD based on the Z-Alizadeh Sani 

dataset. This pipeline consists of domain-specific 

preprocessing, SMOTE-based class balancing, hybrid feature 

selection using RFECV and RFE trimming, and evaluation 

using several classifiers. XGBoost outperformed all models 

that were employed with a sensitivity of 0.9637 and ROC AUC 

of 0.9503. To increase the safety of the categorization, a 

clinically tuned threshold was used. SHAP analysis revealed 

the key variables to model openness, such as common chest 

pain, EFTTE, DM, and BMI. The suggested method stands 

superior with its diagnostic sensitivity and interpretability 

when compared with existing norms for clinical applicability. 
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1. INTRODUCTION 
Coronary Artery Disease (CAD) is the prominent 

cardiovascular illness responsible for killing millions of people 

every year. It happens when coronary arteries are narrowed or 

completely blocked by atheromatous plaques, preventing blood 

flow to the heart muscle. According to the WHO, 

cardiovascular diseases, including CAD, accounted for 17.9 

million deaths each year, the leading cause of global death [1]. 

That said, it tends to impact low-and middle-income countries 

the most because they usually do not have easy access to 

invasive diagnostic technologies. That's what is going to be 

further discussed in this topic [2]. 

Early Getting CAD diagnosis subscribes to the logic of 

decreasing hospital admissions, preventing heart attacks, and 

improving the overall quality of life. Traditional methods of 

diagnosis, like coronary angiography, are rather accurate but 

are invasive, expensive, and unsuitable for screening large 

populations [3]. Even non-invasive methods like stress testing 

and echocardiography require medical expertise and available 

facilities that render them impractical in mass-scale 

applications [4]. 

In this field, machine learning (ML) is proving to be an efficient 

tool to build non-invasive, cheap, and scalable diagnostic 

solutions. With high sensitivity and specificity, ML algorithms 

discover hidden patterns from complex clinical data and utilize 

them to accurately forecast early disease risk  [5]. Over the 

previous decade, many machine learning techniques like neural 

networks, support vector machines, decision trees, and 

ensemble methods were used in healthcare, with good results 

in disease classification and forecasting  [6]. However, many 

of the current computer-aided diagnosis systems have 

deficiencies in interpretability or do not exceed the sensitivity 

benchmarks. 

To address these constraints, the study presents a  

comprehensive ML pipeline for CAD diagnosis, which 

includes aspects like model optimization, engineering of 

clinical features, and post hoc interpretability through SHAP. 

The purpose is to develop a system that not only augments the 

prediction power but at the same time fosters confidence by 

explaining how every clinical factor has contributed to the final 

judgment. The sensitivity of the proposed model has exceeded 

that of some state-of-the-art works, like the benchmark 

proposed by Naji et al. (2024), and is shown by virtue of a 

threshold optimization step and a global feature importance 

analysis. [7]. Through this integrated approach, the 

enhancement of early CAD detection in typical real-world 

practices can be envisaged via a synergy of accurate predictions 

and clinical interpretability.  

2. RELATED WORK 
Currently, early detection and risk evaluation for coronary 

artery disease (CAD) have become very dependent on machine 

learning (ML), which is one of the major health concerns 

worldwide. The most recent research studies have used a 

combination of modern and traditional ML techniques to 

improve accuracy in diagnosis and provide support for the 

clinical decision, and explainability. 

CAD holds great promise for diagnosis. Abdar et al. [6]  have 

designed an outstanding hybrid machine learning model, which 

combines probabilistic reasoning and soft computing. But the 

clinical applicability was ruled out because the processes 

involved were not comprehensible. Naji et al. [7] developed an 

artificial neural network model with a good score on the Z-

Alizadeh Sani dataset, using feature selection via LASSO.  

Garavand et al. [8]  implemented a variety of methodologies in 

undertaking a comparative study of ML models, including 

Random Forest, Decision Trees and ANN. In their results, they 

suggested that whereas interpretability was limited in ensemble 

methods, these methods showed better performance in terms of 

accuracy. Similarly, Bilal et al. [9] underlined the importance 

of feature selection and that ensemble learning methods (i.e., 

XGBoost) yielded better sensitivity and F1-score for CAD 

detection. 
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Performance evaluation of several ML classifiers, including 

logistic regression and deep learning, was done by Muhammad 

et al. [10] Their results indicated that deep learning models 

work well with larger datasets, while conventional modeling 

has a better track record with smaller clinical datasets, such as 

Z-Alizadeh Sani. In another study, Kataria and Kumar [11] 

proposed a gradient boosting approach supported by SHAP 

explainability to elucidate the clinical significance of important 

predictors. 

A CAD prediction model has been proposed by Wang et al. 

[12] utilizing AutoGluon and AutoML framework. The model 

incorporated SHAP values that provided clinical transparency 

and a very high accuracy (91.67%) showing potential for 

diagnostic use. 

 Amini et al. [13] Radiomics data for myocardial perfusion 

from SPECT imaging were analyzed using machine learning 

techniques. This could describe how the interpretation of 

imaging biomarkers and SHAP-based explanation could be 

coupled to improve diagnosis with interpretable machine 

learning models categorizing CAD risk.  

All these potentially necessitate the development of predictive 

interpretable models that can be used in hospitals for 

meaningful application in diagnosing CAD. 

3. DATASET AND PREPROCESSING 
The present study was based on the Z-Alizadeh Sani dataset, 

which is a clinically validated dataset popularly used in CAD 

prediction studies. The database contains 303 patient records 

and 54 attributes [7].  Therefore, 'Cath'(CAD: 1, Normal: 0) has 

been used as the target variable for supervised learning. 

Categorical variables such as hypertension and sex are encoded 

as binary values (e.g., Male = 1, Female = 0; Yes = 1, No = 0), 

whereas ordinal ones have symptoms of valvular heart disease 

encoded as an ordered list of integers according to the degree 

[10]. Model-derived clinically relevant properties were 

composed similarly to the LDL/HDL ratio, BMI, Age 

interaction, and BUN/Creatinine ratio based on diagnostic 

indicators recommended in the literature [2][12]. 

SimpleImputer was used for handling missing values brought 

about by median imputation. In addition, StandardScaler was 

utilized to normalize the feature range. The final preprocessed 

dataset comprised 57 features, balancing both raw clinical 

indicators and derived insights to enhance model robustness. 

 

Figure 1. Overall Workflow for Coronary Artery Disease Detection using Optimized Machine Learning Pipeline. 

4. FEATURE SELECTION 
 To identify the most informative subset of features for 

coronary artery disease (CAD) prediction, Recursive Feature 

Elimination with Cross-Validation (RFECV) was applied using 

a Logistic Regression estimator with class balancing and ROC 

AUC as the scoring metric. Stratified 5-fold cross-validation 

ensured robust performance estimation across imbalanced 

classes. A minimum of 15 features was enforced, and RFECV 

initially selected 28 features. To refine the selection further, 

RFE was used to prune the set down to exactly 23 features. This 

final set balanced statistical importance and clinical 

interpretability, including features such as Age, BMI, DM, EF-

TTE, HTN, PR, Q Wave, Function Class, Typical Chest Pain, 

and engineered metrics like BMI × Age interaction. The 

selected features aligned well with established clinical 

indicators of CAD, enhancing the interpretability and medical 

relevance of the final model [2][6][7]. Figure 2 presents the 

correlation heatmap of the selected features, where minimal 

multicollinearity was observed, supporting their 

complementary nature in predictive modeling.
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Figure 2: Correlation Heatmap of Selected Features 

Correlation heatmap of the 23 final features selected after 

RFECV and RFE pruning. Blue tones indicate negative 

correlation, red tones indicate positive correlation, and white 

indicates low or no correlation. The matrix elaborates that most 

characteristics have very little correlation, thereby ensuring a 

diversity of predictive information. 

5. MODEL DEVELOPMENT AND 

EVALUATION  
In addition to the selection of proper algorithms, the medical 

context and statistical soundness must be carefully considered 

in the development of a clinically meaningful model for 

Coronary Artery Disease (CAD). This chapter describes the 

key components of the modeling process, from data validation 

to model comparison, along with justification for the rationale 

behind each step. 

5.1 Cross-Validation Strategy 
Clinical dataset issues are rife with overfitting owing to 

extreme class imbalance and very small sample sizes. 

Therefore, cross-validation is applied stratified by fold sizes, 

wherein PCG was divided into 5 equal folds with an equal share 

of CAD-positive and CAD-negative cases in every fold. 

Whereas in every round, the training is carried out on 4 folds 

and testing on one. 

By using some stratification, every layer will represent the 

actual distribution of the data, which is a key part of making 

machine learning predictions to carry over to real-world 

scenarios in healthcare [14]. 

5.2 Dealing with Class Imbalance 
The dataset has more instances of CAD compared to normal 

instances. A model trained on such an imbalanced dataset 

would learn to be biased towards the majority class. To counter 

this effect during training, the Synthetic Minority Over-

sampling Technique (SMOTE) was applied. Unlike traditional 

oversampling, which simply duplicates minority class 

examples, SMOTE generates new samples by interpolating 

between nearby points in the feature space [15]. 

This approach enriches the minority class without introducing 

overfitting risks. Importantly, SMOTE was applied only to the 

training folds, leaving the validation data untouched there by 

preserving the integrity of the evaluation process [16]. 

5.3 Choice of Models: Principles and 

Medical Relevance 
The diverse set of machine learning algorithms used to detect 

Coronary Artery Disease (CAD), balancing interpretability and 

predictive strength. balancing interpretability and predictive 

strength. This included linear models for transparency, tree-

based models for decision logic, and neural networks for 

capturing complex nonlinear interactions. 

5.3.1 Logistic Regression (LR) 
Logistic Regression maps clinical variables to a probability 

score using the sigmoid activation: 

𝑝(𝑦 = 1|𝑋) =  
1

1+𝑒−(𝛽𝟶+∑𝛽𝑖𝑥𝑖 )
 

 Its linear structure in the log-odds makes it easy to trace 

predictions back to specific clinical features, thus maintaining 

clinical interpretability [17]. 

5.3.2 Support Vector Machine (SVM) 

SVM constructs a maximum-margin hyperplane to distinguish 

CAD and non-CAD cases. For nonlinear cases, it uses kernel 

functions like: 

𝑘(𝑥𝑖 , 𝑥𝑗) = ∅(𝑥𝑖)𝑇∅(𝑥𝑗 ) 

This allows SVM to operate in higher-dimensional spaces, 

making it robust for complex or small clinical datasets [18]. 
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5.3.3 Random Forest (RF) 
RF builds multiple decision trees using bootstrap samples and 

aggregates their predictions through majority voting: 

ŷ= 𝑚𝑜𝑑𝑒(𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑛(x)) 

This ensemble method reduces overfitting and naturally 

highlights feature importance, a useful trait in clinical 

diagnostics [19]. 

5.3.4 Gradient Boosting Machine (GBM) 
GBM improves accuracy by sequentially correcting errors of 

previous models. Each iteration minimizes the loss: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜂 . ℎ𝑚(x) 

Its additive nature enables the model to learn subtle interactions 

between clinical factors [20]. 

5.3.5 XGBoost 
XGBoost extends GBM with regularization: 

Obj = ∑Ɩ( ŷ𝑖 , 𝑦𝑖) + ∑ Ω (𝑓𝑘), Ω(𝑓𝑘)=  𝛾𝑇+ 
1

2
 𝜆 ||ѡ||2 

This prevents overfitting and offers fast, accurate predictions in 

structured medical datasets [21]. 

5.3.6 LightGBM 
LightGBM grows trees leaf-wise instead of level-wise and uses 

histogram-based binning, accelerating training while 

preserving accuracy. It is ideal for datasets with high 

cardinality features [22]. 

5.3.7 Multi-Layer Perceptron (MLP) 

MLP is a fully connected neural network where each neuron 

performs: 

𝑧 = 𝜎 ( ∑𝑤𝑖𝑥𝑖 + 𝑏 ) 

MLPs approximate nonlinear patterns in data, useful for 

capturing subtle and non-obvious CAD risk factors [23]. 

5.4 Hyperparameter Optimization 
Each algorithm’s performance depends on its internal 

configuration. RandomizedSearch CV [24] is used , which 

samples a subset of possible combinations to efficiently tune 

parameters like tree depth, learning rate, or regularization 

strength. This search was embedded within 5-fold cross-

validation, ensuring that parameter selection generalized across 

patient subgroups. Sensitivity was prioritized throughout the 

tuning process to reduce the risk of missing true CAD cases. 

5.5 Evaluation Metrics and Clinical 

Interpretation 
In CAD diagnosis, it is critical not only to achieve high 

predictive accuracy but also to minimize life-threatening errors 

like false negatives. Therefore, a comprehensive set of clinical 

and statistical metrics was employed, each supported by 

established literature [25][27]. 

 

5.5.1 Sensitivity (Recall) 
 Measures the model’s ability to detect actual CAD patients. A 

higher value reduces the risk of undiagnosed cases[25]. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

5.5.2 Specificity 
Assesses the ability to correctly identify non-CAD cases, 

minimizing unnecessary anxiety or invasive tests[25]. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

5.5.3 Precision 
 Indicates the proportion of correctly identified CAD cases 

among all predicted positives, important for reducing 

overtreatment[25]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

5.5.4 F1-Score 
The harmonic mean of precision and sensitivity; useful when 

dealing with imbalanced datasets [26]. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

5.5.5 Accuracy 
Captures the overall prediction correctness but may be 

misleading if classes are imbalanced[25]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

5.5.6 ROC AUC 
Reflects the model’s discrimination ability over all thresholds. 

AUC values closer to 1 indicate excellent separability between 

CAD and non-CAD cases [25]. 

5.5.7 Negative Predictive Value (NPV) 
Measures how often a negative prediction truly corresponds to 

the absence of disease, which is crucial when ruling out CAD 

[27]. 

6. MODEL RESULTS AND 

COMPARISON 
After training and tuning all models under a unified evaluation 

framework, their performance was assessed using cross-

validated predictions on the entire dataset. Table 1 presents a 

comprehensive summary of seven candidate models based on 

a variety of diagnostic metrics. 

Each model was evaluated using the same 5-fold cross-

validation strategy and SMOTE-adjusted training folds to 

ensure a fair and unbiased comparison. The metrics include 

Accuracy, Sensitivity (Recall for CAD class), Specificity, 

Precision, F1-Score, Area Under the ROC Curve (ROC AUC), 

Negative Predictive Value (NPV), and raw confusion matrix 

values (TP, TN, FP, FN). Training time was also recorded for 

completeness. 
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Table 1. Simplified Model Performance Summary (Cross-Validation Pipeline Results) 

Model Accuracy Sensitivity Specificity Precision F1-

Score 

ROC 

AUC 

NPV TP TN FP FN Time 

(s) 

Logistic 

Regression 

0.8912 0.8989 0.8721 0.9512 0.9243 0.9575 0.7676 192 75 12 24 1.59 

ANN 

(MLP) 

0.8912 0.8850 0.9066 0.9645 0.9230 0.9571 0.7529 189 78 9 27 23.06 

SVM 0.9044 0.9267 0.8491 0.9440 0.9352 0.9548 0.8122 198 73 14 18 20.03 

XGBoost 0.9209 0.9637 0.8146 0.9338 0.9485 0.9503 0.8850 206 70 17 10 23.10 

Gradient 

Boosting 

0.8945 0.9359 0.7916 0.9232 0.9295 0.9444 0.8195 200 68 19 16 104.34 

Random 

Forest 

0.8747 0.9452 0.6997 0.8921 0.9179 0.9418 0.8208 202 60 27 14 94.65 

LightGBM 0.9077 0.9452 0.8146 0.9324 0.9387 0.9267 0.8433 202 70 17 14 15.22 

Among all models, XGBoost emerged as the top performer 

with a sensitivity of 0.9637, the highest across all models. This 

metric is particularly critical in CAD diagnosis, where false 

negatives can lead to missed interventions. Furthermore, its F1-

Score (0.9485) and ROC AUC (0.9503) indicate a strong 

balance between recall and precision. Importantly, XGBoost 

also maintained high NPV (0.8850), suggesting confidence in 

ruling out CAD when predictions are negative. 

Although models like Random Forest and LightGBM also 

achieved high sensitivity, their trade-off in specificity and 

overall balance made them less suitable as the final choice. 

Logistic Regression and ANN maintained strong precision, but 

fell short in terms of sensitivity compared to XGBoost. 

6.1 ROC Curve Analysis for All Models 
The Receiver Operating Characteristic (ROC) curve provides a 

threshold-independent assessment of classifier performance. 

Figure 3 displays the ROC curves of all tuned models, with 

XGBoost achieving a strong area under the curve (AUC) of 

0.9503. Although Logistic Regression (0.9575) and MLP 

(0.9571) showed slightly higher AUC values, their 

performance in terms of recall and F1-score was lower than that 

of XGBoost. 

In medical diagnostics, the ROC AUC is especially valuable as 

it measures a model’s ability to distinguish between classes at 

various threshold levels, offering a global evaluation of 

sensitivity-specificity trade-offs [25]. 

 

Figure 3. ROC Curves for All Tuned Models 

6.2  Benchmark Comparison with Naji et al. 

(2024) 
The performance of the best-performing model (XGBoost) was 

compared against the benchmark metrics reported by Naji et al. 

(2024) [7], who used an artificial neural network trained on 

LASSO-selected features. Table 2 summarizes this head-to-

head comparison. 
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Table 2. Comparison of the Best Model (XGBoost) with 

Naji et al. (2024) 

Metric 

 The Best 

Model 

(XGBoost) 

Naji et 

al. 

(ANN) 

Comparison 

Accuracy 0.9209 0.9038 Better (+0.0171) 

Sensitivity 0.9637 0.9443 Better (+0.0194) 

Specificity 0.8146 0.8027 Better (+0.0119) 

Precision 0.9338 0.9251 Better (+0.0087) 

F1-Score 0.9485 0.9336 Better (+0.0149) 

ROC 

AUC 
0.9503 0.9246  Better (+0.0257) 

NPV 0.8850 0.8595 Better (+0.0255) 

 

6.3 Confusion Matrix Analysis for Final 

Model 
To visualize the XGBoost model's diagnostic behavior, its 

confusion matrix is presented in Figure 4. This visual 

summarizes how well the model distinguishes between CAD-

positive and CAD-negative patients using a fixed decision 

threshold (optimized for F1-score). 

The model correctly identified 206 out of 216 CAD-positive 

patients and 70 out of 87 CAD-negative patients. With only 10 

false negatives and 17 false positives, the confusion matrix 

supports the high sensitivity and balanced precision–recall 

tradeoff that XGBoost achieved during training. 

Confusion matrices offer a threshold-specific view that is 

particularly useful for clinical decision-making, where false 

negatives can have serious implications [26]. 

 

Figure  4. Confusion Matrix of Final XGBoost Model 

7. SHAP-BASED EXPLAINABILITY 

7.1 Global feature importance in CAD 

prediction 
Interpretability is a critical factor in the adoption of machine 

learning models in clinical environments, especially for life-

threatening conditions like Coronary Artery Disease (CAD). 

To provide transparency and support clinical trust, the study 

employed SHAP (SHapley Additive exPlanations), a model-

agnostic interpretability method grounded in cooperative game 

theory [27]. SHAP values reveal how much each feature 

contributes to a prediction, both at the global and individual 

level. 

 

Figure 5. SHAP summary bar plot showing average 

importance of top features. 

As seen in Figure 5, the most influential feature was Typical 

Chest Pain. Its dominance in the model is aligned with clinical 

reality, where chest pain remains the most common presenting 

symptom of CAD. Following this, EF-TTE (Ejection Fraction 

from echocardiography) was the second most important 

feature, underscoring the relevance of left ventricular function 

in determining cardiac risk. Other high-ranking features 

included Diabetes Mellitus (DM), Triglyceride (TG) levels, 

and Regional Wall Motion Abnormality (RWMA) all 

medically validated cardiovascular risk indicators [11]. 

7.2 Direction and strength of individual 

predictions 
While the bar plot provides an overview of feature importance, 

it does not reveal how each feature influences predictions for 

individual patients. This is illustrated by the SHAP beeswarm 

plot, where each point represents a patient. The x-axis shows 

whether the feature increases or decreases CAD prediction 

probability, and color denotes the actual feature value (red = 

high, blue = low). 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.33, August 2025 

43 

 

Figure  6. SHAP beeswarm plot showing direction and 

density of feature contributions. 

In Figure 6, patients with high Typical Chest Pain (red) values 

overwhelmingly push the model toward predicting CAD. 

Similarly, low values of EF-TTE (blue), indicating reduced 

cardiac function, also increase the likelihood of a positive 

prediction. These patterns reinforce the clinical validity of the 

model's logic and enhance trust in its decision-making process. 

7.3 Typical Chest Pain: A dominant clinical 

indicator  
To further explore the role of top features, SHAP dependence 

plots were examined. Figure 7 focuses on Typical Chest Pain, 

a binary symptom recorded as 1 for presence and 0 for absence. 

Patients with a value of 1 showed significantly higher SHAP 

scores, confirming the model’s strong reliance on this symptom 

for CAD prediction. The clear distinction in SHAP values 

across the binary states highlights chest pain as the most 

decisive input factor. 

Figure 7. SHAP dependence plot showing the effect of 

Typical Chest Pain on CAD prediction. 

7.4 EF-TTE: Interpreting cardiac efficiency 

in predictions 
Figure  8 illustrates the relationship between EF-TTE values 

and CAD risk. As EF-TTE decreases, the SHAP value sharply 

rises suggesting that patients with reduced ejection fraction are 

at a significantly higher risk of CAD as per the model. This 

relationship reflects real-world clinical practices where left 

ventricular dysfunction is a red flag in cardiac diagnostics. The 

smooth nonlinear pattern also The smooth, nonlinear pattern of 

the model shows its capacity to broadly apply risk beyond strict 

requirements. 

 

Figure 8 Shows the SHAP dependency plot and the effect 

of  EFTTE on CAD prediction. 

8. CONCLUSION AND FUTURE WORK 
This research presents a machine learning pipeline integrating 

clinical knowledge with algorithmic accuracy to facilitate 

earlier identification of Coronary Artery Disease (CAD). 

Aggressive preprocessing was undertaken, and relevant clinical 

features created, whereby the key variables were selected using 

RFECV and RFE on the Z-Alizadeh Sani data. Seven machine-

learning models were trained using a 5-fold cross-validation 

framework employing SMOTE resampling to counteract class 

imbalance. The performance of those models was evaluated 

upon several metrics, including sensitivity, specificity, ROC 

AUC, F1-score et cetera. 

XGBoost scored a sensitivity of 0.9637 and an ROC AUC of 

0.9503, confidently outperforming the best similar contenders, 

and set a bar that was raised even further above that established 

by Naji et al. (2024). There must be very high sensitivity in 

medical diagnosis because false negatives can be detrimental to 

a patient's prognosis. The high NPV of the model will 

contribute to its reliability in a clinical setting to diagnose 

disease.  

Finally, an SHAP analysis was performed for internal 

relationship exploration of final optimized model. The SHAP 

visualization shows that the most impactful parameters in the 

model-predicted predictions are diabetes mellitus, triglyceride 

levels, EF-TTE, and normal chest discomfort. These findings 

correlate with clinical studies that studied the relationship 

between machine learning outputs and functional cardiology 

practice. 
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Findings indicate that, when correctly applied for example, 

through optimal feature selection, balancing classes, and 

provision for explainability machine learning stands to provide 

not just excellent predictive accuracy, but also clarity of 

understanding and clinical relevance, in the diagnosis of 

coronary artery disease (CAD). It would thus create a 

wonderful intersection between data science and healthcare, 

where decision support systems provide credible yet 

comprehensible systems. 

Future studies should develop new approaches for the 

implementation of attention-based deep learning models to 

incorporate sequential EGG or imaging data. Plus, it should 

cross-link to the population-based electronic health records and 

test the model in prospective clinical databases. Lastly, 

integrating the models' outcomes with current clinical decision 

support systems might add significant boosts to their impact in 

the hospital environments. 
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