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ABSTRACT

In modern Simultaneous Multi-Threading (SMT) processors,
efficient management of shared resources like the rename register
file is crucial for optimizing system throughput and utilization.
The register file, being a critical shared resource, significantly
influences performance by affecting how multiple threads access
and use the available registers. When a few threads monopolize the
register file, it can lead to a degradation in overall performance.
Register capping is a method of limiting the number of rename
registers each thread is allowed to use. The method has been used
to improve performance. However, to understand the behavior of
multiple threads sharing a register file and the effect that capping
has on different combinations of programs, an analytical tool to
observe the register file’s dynamics is necessary. To address this,
this paper develops a theoretical model utilizing Markov Chain to
analyze rename register utilization in SMT systems. The model
proposed incorporates capping to examine the dynamics of register
allocation and usage patterns among concurrent threads across
different threads. By varying parameters such as cap value and
consumption rates, the model reveals insight into the behavior of
register sharing and its impact on overall system performance.
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Keywords
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1. INTRODUCTION

Simultaneous Multi-Threading (SMT) is a technique that allows
a single processor core to run multiple threads at the same time,
enhancing overall system performance. By leveraging thread-level
parallelism (TLP), SMT ensures that threads can take advantage
of otherwise idle processor resources. For instance, if one thread
is stalled while waiting for data, another thread can be executed
on the same core during the stall, effectively boosting processor
utilization. It is important to recognize that while SMT can leverage
Thread-Level Parallelism (TLP) to enhance performance by
overcoming the limitations of Instruction-Level Parallelism (ILP)
within a single thread [1} [2], it can also introduce performance
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drawbacks due to increased resource contention and lower cache
hit rates. Optimizing SMT to fully exploit TLP requires careful
resource management to minimize contention among threads.
Numerous studies have been conducted on resource-sharing
algorithms. For example, at core level, allocating threads with less
inter-thread interference to a single core can improve performance
[3]. At thread level, reseach in [4] proposes the ICOUNT policy,
which prioritizes threads with lower occupancy in pre-issue stages
during the fetch stage. DCRA, proposed in [5], is another resource
sharing algorithm for the fetch stage, adjusts resource allocation
based on memory performance, giving more resources to threads
that utilize them more efficiently. Blocking inefficient threads from
fetching to prevent them from taking up too much resources is a
method proposed in [6] to improve fair resource utilization.

The rename stage is an early phase in which resources are shared
and efficient distribution of the registers at this stage can have
a substantial impact on the overall performance of the pipeline.
Capping proposed in [7]] is a method that limits the number of
registers a thread is allowed to use. Capping prevents inefficient
threads from taking up too many resources, causing resource
contention. When resource contention occurs, inefficient threads
hog too much resources, limiting resources for efficient threads,
causing poor overall performance.

To demonstrate the existence of resource contention and its effect
on performance, a Markov Chain model is used to represent the
rename register file as a queue and introduce an inefficient thread
to the model. This model takes the instruction input and output rates
into the register file as input and calculates the percentage of time
the register file remains in each state. These percentages form the
basis for determining thread utilization and overall performance.
In addition, the model can be modified to incorporate capping,
providing insight into how capping affects performance.

2. BACKGROUND
2.1 Simultaneous Multi-Threading

Simultaneous  Multi-Threading (SMT) enhances resource
utilization in modern processors by enabling the parallel execution
of multiple independent threads, thereby improving overall
performance. By allowing multiple threads to run concurrently,
SMT leverages Thread-Level Parallelism (TLP) to maximize
resource usage, particularly when Instruction-Level Parallelism
(ILP) within a single thread is insufficient [II. Figure [I] shows



the pipeline stages of a 4-threaded system, which is based on a
conventional out-of-order superscalar processor.
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Fig. 1: Pipeline Stages in a 4-threaded SMT System

First, instructions from each thread are fetched from memory
(and cache) and placed into their respective Instruction Fetch
Queue (IFQ). After passing through the decode and register-rename
stages, they are allocated to their corresponding Re-Order Buffer
(ROB) and dispatched to the shared Issue Queue (IQ). Load/Store
instructions have their address calculation operations sent to the
IQ while their operations are also directed to individual Load
Store Queues (LSQ). Once the issuing conditions are met (i.e., all
operands are ready and the required functional unit is available),
the operations are issued to the appropriate functional units,
and their results are either written back to their destination
registers or forwarded as needed to the IQ or LSQ. Upon
computing their addresses, Load/Store instructions initiate their
memory operations. Finally, all instructions are committed from the
ROB in program order, ensuring synchronization with Load/Store
instructions in the LSQ.

SMT processors generally share key datapath components among
multiple independent threads. These shared resources may include
the physical register file, machine bandwidth, inter-stage buffers
(such as the Issue Queue), functional units, and write buffers.
By sharing resources, an SMT system can significantly reduce
hardware requirements while achieving throughput comparable to
multiple instances of superscalar processors.

Efficient allocation of shared resources among simultaneously
executing threads is critical for optimal performance in an
SMT system. Without effective distribution, a small subset of
threads can disproportionately occupy shared resources, leading to
resource starvation for other threads and affecting overall system
performance. Among these shared resources, the physical register
file plays a crucial role in eliminating register name dependencies
during the rename stage, which is the first stage in which shared
resources are utilized. An imbalanced allocation of the physical
register file can quickly become a bottleneck across pipeline stages.
Therefore, this paper focuses on optimizing the distribution of the
physical register file among multiple threads to enhance overall
system efficiency.

2.2 Physical Register File

In this section, the concept of register renaming and its
implementation is introduced. Register renaming is a crucial
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technique used to eliminate name dependencies, such as
write-after-read (WAR) and write-after-write (WAW), which
occur when registers are reused. This method has become
widely adopted in modern processors [8, 9] as it is
essential for enabling out-of-order execution. By assigning
distinct physical registers to the same architectural register
across different instructions, register renaming effectively removes
false dependencies. Consequently, later instructions can execute
out-of-order without being constrained by earlier instructions.

For example, consider the following program segment, which
contains false dependencies. Out-of-order execution is impeded by
write-after-read dependencies (e.g., between instructions « and ¢)
and write-after-write dependencies (e.g., between instructions o
and 0).

rl +«— (instruction «)
é rl (instruction /)
é rl (instruction )
rl % (instruction 9)
é rl (instruction €)

If register renaming is employed, r1 in instruction ¢ is assigned to
a different physical register, allowing § and subsequent instructions
to execute before instruction . Multi-threaded processors typically
implement a “physical” register file containing more physical
registers than the number of “architectural” registers defined
in the ISA. Whenever an instruction writes to an architectural
register, a physical register is allocated and mapped to that
architectural register. Subsequent read instructions referencing the
same architectural register retrieve their data from the most recently
assigned physical register. This mapping between architectural and
physical registers is maintained in the rename table. Consequently,
the availability of physical registers is a critical factor in system
performance. A physical register is allocated at the renaming
stage and remains occupied until the next write to the same
architectural register is committed. One way to increase register
availability is to accelerate the deallocation process. A modification
proposed in [10] expedites register deallocation process to reduce
occupation time; however, it requires software support from the
operating system. Another approach, presented in [11], delays
register allocation until the instruction reaches the commit stage.
The tradeoff of this method is the risk of an instruction failing to
find a free register at commit time, potentially causing a deadlock.
Modifying the allocation-deallocation process is challenging
without additional OS support or substantial hardware overhead.
However, improvements can still be made while preserving the
in-order allocation and deallocation mechanism. A more efficient
utilization scheme for physical registers can enhance availability
and system performance. Prior research [7|] has indicated that
competition for floating-point registers is less intense than for
integer registers. Therefore, this paper focuses exclusively on the
distribution of integer registers. The register file is shared among
threads; however, only the additional registers are truly shared after
each thread has been allocated its required number of architectural
registers. For instance, in an ISA with 32 architectural registers,
each thread is guaranteed to have at least one physical register
mapped to every architectural register. If extra registers remain
after allocating 32 registers per thread, these additional registers
are shared among all threads. Figure 2] illustrates the organization



of the register file [12] in this context. The total number of registers
(R:), the number of architectural registers per thread (R, ), and the
number of extra registers available for renaming (R, are related as
follows:

R, =R,— N xR, M

where N is the number of threads in the system.

In single-threaded systems, if a thread retains too many rename
registers for too long, execution stalls until a previously
issued instruction commits and releases a register. This issue
can be mitigated by increasing the size of the register file.
However, in multi-threaded systems, threads commit instructions
independently, leading to slower threads occupying more registers
while faster threads release them. Without making R; excessively
large, an effective distribution scheme for rename registers is
necessary to prevent slow threads from degrading overall system
performance.
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Fig. 2: Organization of a shared Physical Register File

There are many studies on improving performance by efficiently
allocating the Rename Register File. For example, the capping
technique proposed in [7] to limit the number of registers each
thread is allowed use. Capping dynamically based on run-time
behavior is implemented in [13] for optimum performance. Taking
it one step further, Reinforcement Leaning is used in [14] to adjust
the cap value of each thread for even better optimization.

To aid in the development of resource sharing algorithms, this
paper proposes a mathematical model of the Rename Register
File utilization using a Markov Chain model. The model provides
insight into the dynamics of the Rename Register File when
shared among multiple threads. The model also features capping
to mathematically show that recourse allocation improves overall
performance when there is contention.

2.3 Queuing Model

In queuing theory, there are many types of queues. The solution
to a queue can provide helpful information about the phenomena
that queue models [15]. Queuing models have many applications
in computer science, such as thread I/0 and job scheduling [16]].
Currently, there are no available queuing networks to model the
Rename Register File that has capping as a feature. To achieve
the goal, the model is build on existing work that utilizes queuing
theory to model the issue queue in an SMT CPU proposed in paper
[L7], this approach is extended to the rename stage. The issue
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queue model provides a solid framework for understanding how
instructions are scheduled and executed across multiple threads.
The model proposed will incorporate key parameters such as
instruction arrival rates, register deallocation rates, and queue
lengths to evaluate performance metrics like throughput, and
utilization. By comparing these metrics across different parameter
combinations, the model provides insights into the optimization
of resource allocation in SMT CPUs, ultimately enhancing overall
system performance. This work not only validates the applicability
of queuing theory to various stages of the CPU pipeline but
also offers a comprehensive analytical tool for CPU designers to
optimize SMT architectures.

We consider the Rename Register File (RRF) as a finite queue
and instructions enter the queue when it is renamed and leave the
queue when the register is deallocated. According to the general
hypothesis of queuing theory, the number of instructions from
a given thread sitting in the RRF can be determined with the
following parameters:

—The bandwidth of execution after an instruction has been
renamed (i.e. how many instructions can be released in a clock
cycle).

—How likely an instruction from this thread is renamed per clock
cycle.

—How likely an instruction from this thread is released per clock
cycle.

The first parameter can be derived by generalizing all the stages
after the rename stage into one execution block. The other two
parameters are program dependent. This model does not aim to
produce the results of an actual simulation, it rather aims to
analyze the general utilization trend of the RRF. Therefore, these
parameters should be chosen by the user to observe how different
combinations of programs affect the utilization of the rename of the
register.

Considering that it is possible to model the RRF as a finite queue,
Markov chain is employed to model its transitions. A Markov
chain represents a sequence of events where the probability of
transitioning to the next state depends solely on the current state.
The RRF can model it as a Markov chain with states defined by
the combination of instructions currently present in the RRF. For
example, when there are two instructions from thread zero and four
instructions from thread one, it can be said that it is state (2,4) in
the Markov chain.

A simple complete Markov chain example is shown in Figure[3] In
a graphical representation of a Markov chain, states are shown as
circles with their labels in the center, and transitions are depicted
as arrows with their probabilities indicated nearby. Following
standard methods, given the states and transition probabilities of
a Markov chain, a transition matrix can be constructed. This is
a two-dimensional matrix with a row and column for each state,
describing the transition probabilities between states. A transition
matrix provides a compact and mathematically rigorous way to
represent a Markov chain. To create a transition matrix, list all
the states and assign a row and column to each. The matrix,
typically denoted as P, contains entries P;, P; that correspond to
the probability of transitioning from state ¢ to state j in one time
step. The transition matrix P for the flow diagram in Figure 3
becomes:

0.6 0.4 0
P= 1020503 )
0 09 0.1



0.4 0.3
0.6
0.2 0.9

Fig. 3: Simple Markov Chain

In addition to being concise, a transition matrix allows us to extract
important properties of the underlying Markov chain. The main
interest is in the steady-state distribution. For a given transition
matrix P, the steady-state distribution, commonly denoted , is a
row vector that exhibits the property

P =m 3)

and importantly, each element m; represents the steady-state
probability of state ¢, which is the percentage of time the Markov
chain will be in state ¢ as it transitions indefinitely. This is obtained
by calculating the eigenvector of matrix P with an eigenvalue equal
to 1. Finding the steady-state distribution for P in Equation 1 leads
to

m=[0.27 0.55 0.18] “

This means that, in the long run, the Markov chain will spend
approximately 27% of the time in state A, 55% of the time in state
B, and 18% of the time in state C'. Given that a transition matrix P
can be derived for an RRF modeled as a queue and then extract the
steady-state distribution 7, it is possible to determine how often
the RRF will be in each state. Recall that a state of the RRF
represents a combination of instructions of each thread. Therefore,
extracting 7 informs us how frequently there will be, for example,
1 instructions from thread 1 and 2 instructions from thread 2 in
the rename register file. Further more, the consumption rate is an
approximation of how likely a thread releases a register, this action
happens at the commit stage. The IPC can be approximated if how
many registers the thread is holding is known, and what is the
probability that those registers are released. With the distribution
given by the matrix and the consumption rate, the IPC of each
thread can be calculated by multiplying the percentage of time
the machine spends in each state by the number of register each
according state holds then multiply by the consumption rate. This
allows us to observe the change in IPC as the cap value, or
consumption rate, or arrival rate changes.

3. SIMULATION ENVIRONMENT
3.1 Simulator

M-sim [18], a multi-threaded microarchitectural simulation
environment, is used as a comparison point for the proposed
model. M-sim provides all the necessary features for this study,
including models of key pipeline structures such as the Reorder
Buffer (ROB), the Issue Queue (IQ), the Load/Store Queue
(LSQ), separate integer and floating-point register files, and register
renaming. Additionally, M-sim supports the simulation of both
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single-threaded and simultaneous multi-threaded processors. The
configuration of the simulated processor is detailed in Table[T]

Table 1. : Configuration of the Simulated Processor

Parameter Configuration
Machine Width 8 wide fetch/dispatch/issue/commit
L/S Queue Size 48-entry load/store queue

ROB & IQ size
Functional Units
& Latency(total/issue)

128-entry ROB, 32-entry IQ
4 Int Add(1/1)
1 Int Mult(3/1)/Div(20/19)

2 Load/Store(1/1), 4 FP Add(2/1)
1 FP Mult(4/1)/Div(12/12)
Sqrt(24/24)
integer and floating point
as specified in the paper

Physical registers

L1 I-cache 64KB, 2-way set associative
64-byte line
L1 D-cache 64KB, 4-way set associative
64-byte line
write back, 1 cycle access latency
L2 Cache unified 512KB, 16-way set associative

64-byte line
write back, 10 cycles access latency
BTB 512 entry, 4-way set-associative
Branch Predictor bimod: 2K entry
Pipeline Structure 5-stage front-end(fetch-dispatch)
scheduling (for register file access:
2 stages, execution, write back, commit)
32-bit wide, 300 cycles access latency

Memory

3.2 Workloads

The performance of the simulated processor is evaluated using
a mix of benchmarks from the SPEC CPU2006 benchmark
suite [19]. Each program is simulated in a SimpleScalar
environment and classified based on its Instruction-Level
Parallelism (ILP) following the procedure outlined in the SimPoints
tool [20]]. The benchmarks are categorized into three ILP levels:
high, medium, and low. Table [2] presents 4-threaded workload
mixes with various ILP combinations, designed to represent diverse
computational workloads.

Table 2. : SPEC CPU2006 4-threaded Mixes

Mix Benchmarks Classification(ILP)
Low | Med | High

Mix1 libquantum, dealll, gromacs, namd 0 0 4
Mix2 soplex, leslie3d, povray, milc 0 4 0
Mix3 hmmer, sjeng, gobmk, gcc 0 4 0
Mix4 Ibm, cactusADM, xalancbmk, bzip2 4 0 0
Mix5 libquantum, dealll, gobmk, gcc 0 2 2
Mix6 gromacs, namd, soplex, leslie3d 0 2 2
Mix7 dealll, gromacs, Ibm, cactusADM 2 0 2
Mix8 libquantum, namd, xalancbmk, bzip2 2 0 2
Mix9 povray, milc, cactusADM, xalancbmk 2 2 0
Mix10 hmmer, sjeng, Ibm, bzip2 2 2 0

Table 2] provide 2-threaded mixes of different ILP combinations to
help evaluate the model later on.



Table 3. : SPEC CPU2006 2-threaded Mixes

Mix Benchmarks Classification(ILP)
Low | Med | High
Mix1 gec, bzip2 1 0 1
Mix2 dealll,xalancbmk 1 0 1
Mix3 libquantumn, sjeng 0 2 0
Mix4 hmmer, povray 0 2 0
Mix5 gobmk, sjeng 0 1 1
Mix6 | gromacs, libquantumn 0 1 1

The sum of individual threads’ IPC is a common metric to measure
the system performance in SMT processors:

N
Overall IPC = Z IPC;

=1

)
= (whatever second line)

where N denotes the number of threads that run simultaneously in
the system and IPC; denotes the IPC of each thread.

4. MOTIVATION

Previous studies [7, [12]] have demonstrated that the imbalance in
rename register distribution can be unexpectedly severe. Figure E|
illustrates the average percentage of rename registers occupied
by each thread, sampled every 50 clock cycles, in a 4-threaded
environment using workload mixes from Table 2} with a register
file size of 160.
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Fig. 4: Average Register Occupancy of Each Thread

Mixes with minimal differences among threads do not exhibit
extreme competition for registers. Figure[]also shows one standard
deviation from the average, where a larger standard deviation
signifies a greater fluctuation in the percentage of occupied
registers. On average, Mix 3, Mix 8, Mix 9, and Mix 10 experience
intense competition, as indicated by a single thread that occupies
at least 65% of the registers in at least 50% of the sampling
points. Despite the high fluctuation observed in Mix 3 and Mix
9, a single thread still dominates approximately 55% and 65% of
the registers for 84.1% of the time, respectively. This dominance
of resources can lead to significant performance degradation to the
overall system.

To prevent a situation where a single thread dominates register
usage, a capping technique was proposed [7]. This technique
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imposes a limit, referred to as the “cap value,” on the number of
rename registers a thread can use at any given time. When a thread
reaches the cap value, it is no longer allowed to rename, even if
free registers are available during its turn. These free registers are
reserved for threads that are using fewer registers. Figure 3] shows,
for all mixes in[2} the average difference in IPC between no capping
versus when capping is implemented [2} Notice that there is an
improvement in performance starting from cap value of two; This
is because, for some mixes, there is substantial improvement even
with low cap values.

% IPC Difference
N
8

5 10 15 20 25 30

Cap Value

Fig. 5: % IPC Difference vs. Cap Value

Considering existing evidence, an explanation for why capping is
effective is proposed. Threads in lower ILP classification hold on to
aregister longer than threads in higher ILP classification. However,
threads are renamed in round robin. Lower ILP threads will
continue to rename regardless of how many of their instructions
are still holding the register, resulting in higher utilization of the
RRF. Without a scheme to control, low ILP threads will slowly hog
up the majority of the registers, leaving few registers for high ILP
thread, causing them to perform poorly. Capping works because
it stops low ILP threads from reaming if they are already holding
a certain amount of registers. The next chapter will confirm this
explanation with a theoretical model.

5. SINGLE-THREADED RRF MODEL

We begin by considering a system that has instructions only from
one thread. To model this system as a Markov chain, the initial
step is to describe the state space. The state space of an RRF
Markov chain model comprises all possible combinations of RRF
occupancy. Therefore, the state space for a system with instructions
from only one thread can be described as S = {s;|i € ZN[0, Ng|}
Where N is the size of the RRF and s, represents the state when
the RRF has exactly ¢ instructions currently residing in it. This
means that the state space consists of one state for each possible
number of instructions up to N, the size of the RRF. Figure |§|
shows a graphical representation of the state space.

Fig. 6: State Space of Single Thread Model

where N is the size of the RRF and s; represents the state when
the RRF has exactly i instructions currently residing in it. This



means that the state space consists of one state for each possible
number of instructions up to N,, the size of the RRF. Figure 5
shows a graphical representation of the state space.

To complete the Markov chain model, augment the state space with
transition probabilities between each pair of states. The transitions
of interest are the changes in the number of instructions in the RRF
after each clock cycle. In each clock cycle, two events affect the
number of instructions in the RRF:

—Rename to the RRF
—Instruction released after subsequent instruction is committed

For each of these two events, derive a transition matrix. First,
derive a transition matrix C' which represents the consumption of
instructions out of the RRF in any clock cycle. Then, derive a
transition matrix A which represents the flow of instructions into
the RRF in any clock cycle. By multiplying these matrices together,
the complete transition matrix of the RRF can be derived; that is,
P=CxA.

5.1 Single-Threaded Consumption Model

The section demonstrates the construction of the consumption
matrix C' to represent the consumption of instructions from the
RRF. The number of instructions released is limited by two factors:

—The number of instructions ready to be released.
—Execution bandwidth

Instructions are renamed and hold on to that instruction until the
subsequent instruction that uses the same architectural register
commits. Therefore, at any given time, the number of instructions
that are candidates for released is probabilistically distributed based
on the expectation of how many are ready to be released.

Consider the transition from state s; to state s;. If 5 > ¢, the
transition probability should be zero during the release stage since
it is not possible to release a negative number of instructions. Thus:

Pors; =0, if i —j <0 (6)

where p,, 55 denotes the transition probability.

Next, due to the fact that the RRF cannot release more instructions
than the execution bandwidth. With F represent execution
bandwidth:

Ds;s; =0, ife —j > F @)

We now consider the case where ¢ — 7 = [F, meaning the
entire execution bandwidth is fully utilized. Let p represent the
probability that an instruction is ready to be released, and assume
that each instruction in the RRF is ready to be released. Given ¢
instructions in the RREF, the transition probability for this situation
(at least F' instructions are ready) can be calculated as:

‘ 7 ik e . .
psi,Sj:Z<k>pk(1_p) yifi—j=F )
k=F

Lastly, to take in consideration of the case where 0 < i — j < F,
meaning fewer instructions are ready to be released than execution
bandwidth. This scenario reduces to the probability that exactly
i — 7 instructions in the RRF are ready to be released given ¢
instructions in the RRF. Therefore:

Poivs; = (ifj)pi*j (1—p),if0<i—j<F (9

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.33, August 2025

For the special case when j = 0, meaning every instruction in the
RRF was released, this equation simplifies to:

Psis; = (Z) p(1=p)’=p' (10

This represents the probability of all instructions in the RRF are
ready to be released.

To summarize the transition probabilities from state s; to state s;
during the release stage:

0, ifi—j<0

<. .>p“f (1-p),
_ =]
Ps;,s; = .

i ? i—
Ek:F <k>Pk(1—P) k7
0, ift—j5>F

f0<i—j<F

ifi—j=F

1D
We can use these cases to populate a release transition matrix
(consumption matrix) for the Markov model of an RRFE.
To modify this model to implement capping, any transition where
the initial state, s;, is greater than the cap value is 0 because it is
not possible to have more registers than the cap value. Therefore
to generate transition probabilities during release stage with a cap
value of N, is :

0, ifi—j<0

<iij>p”j(lfp)j, if0<i—j<Fandi< N,
Peins; = 2;:F<;>pk(1_p)”, fioj=Fandi<N, (2

0, ifi—j>F

0, ifi> Ny

5.2 Single-Threaded Arrival Model

This section introduce the derivation the transition matrix A to
represent the arrival of new instructions into the RRF. During the
rename stage of the pipeline, instructions are decoded and renamed.
The number of instructions renamed depends on:

—The number of instructions decoded.

—The number of empty entries in the RRF

Assume that the number of instructions decoded in a random clock
cycle (i.e., the arrival rate of instructions) follows a probability
mass function (pmf) a(z). By neglecting the effect of limited
bandwidth and given a (z), the instruction arrival model can be
constructed for any state of the RRF.

Consider a system in state s;. For any state s;, a Markov chain to
be built to model the probability of transitioning from state s; to
state s; during the rename stage of the pipeline by partitioning the
range of values that 7 and j may take on.

Firstly, observe that the RRF cannot lose instructions during the
rename stage (at least O must arrive). Therefore:

Psys; =0, if j < (13)

Secondly, consider the case ¢ < j < Ng. This transition implies
that j — ¢ instructions have been renamed, but the RRF is not full.
In this scenario, the probability of transitioning to state s; is the
probability that exactly 7 — ¢ instructions are renamed. Since the
arrival of instructions is modeled by a (x) , we have:



psi,sj:a(jfi),ifi§j<NQ (14)

Thirdly, consider the case j = N¢. Transitioning from state s;
to state s; implies that enough instructions have arrived to fill the
RRF. Since this is the final case in a partition of the probability
space, the likelihood of this case is the complement of the total
likelihood of the previous cases:

Psiis; = Psisng =1 ZS alk—i),ifj=Ng (15)
Sp€
K£NG

To summarize the transition probabilities from state s; to state s;
during rename:

0, ifj <i
a0, ifi <j < Ng 6
Psisi =Y1—= S a(k—i), ifj=Ng (16)
spES
k#ENg

Suppose the instruction arrival rate into the RRF follows a Poisson
distribution with a mean A equal to 1. That is, the number of
instructions ready for rename follows the distribution:

)\ke—A e—l
alk) == =%

where a (k) is the probability of k instructions being ready rename
to the IQ in any clock cycle. By using the principles outlined above,
it is possible to systematically populate the arrival-stage transition
matrix A for the RRF’s Markov model.

To modify this model to feature capping, consider the RRF to have
the same size as the cap value (N, ). Since it is not possible to
have more register than the cap value

a7

Pesys; =0, if j > Neop (18)

Therefore to generate transition probabilities from state s; to state
s; during rename, with a cap value of N ,:

0, ifj<i
a(G—1), ifi<j < Nuy
Ps;,s; = 1- E Oé(k‘—i), lf.] :Nmp (19)
kLN
0, if 7 > Neap

5.3 Single-Threaded Complete Model

We have partitioned the RRF’s behavior during each clock cycle
into two components: the consumption model C' to represent the
instructions leaving the RRF, and the arrival model A to represent
the arrival of new instructions into the RRF. Now, to model the
change in the RRF between clock cycles by combining these two
models. Specifically, the usage of the arrival and consumption
models to comprehensively describe the behavior of the RRF
within a single Markov model.

Consider an RRF in state s; at the beginning of a clock cycle,
meaning there are currently i instructions in the RRF. During the
next clock cycle, the RRF undergoes two changes: the release
stage, followed by the rename stage. To determine the probability
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of transitioning from state s; to state s; during one clock cycle,
it is necessary to add the events needed to happen such that after
the rename stage, RRF is in stage s;. We can rewrite the transition
process as:

c A
s; — post-release stage — s; (20)

Denote the post-release stage as some arbitrary state denoted as s,,,:

5i S S D 5, 1)

The transition s; — s,,, denotes the transition from the initial state
to any arbitrary states, meaning the i*" row of the consumption

matrix. From all of these arbitrary states it is necessary to transition

to the targeted state s, 4 s;. Each arbitrary state s, can be
transitioned to target state s; by multiplying the i row by the j™*
column in the arrival matrix. Summing up all of these transitions
gives us the probability s; — s;. This operation is the same as the
dot product of the i*" row of the consumption matrix and the j*
column of the arrival matrix. Therefore, to compute the complete
model

P=CxA (22)

6. MULTI-THREADED RRF MODEL

In this chapter, a system with instructions from arbitrarily-sized
set of unique threads {1, I5, - -, IT} is considered, which means
a system with instructions from 7 different threads for some
TeN, where each I, denotes a unique thread. A system like
this one resembles a realistic SMT processor where instructions
come in from different threads. We take the simple probability
models derived in Chapter Four and show that by using the joint
probabilities of instructions from each thread, it is possible to
develop a model of RRF with multiple number of threads.

6.1 State Space And Matrix Representation

We define the state space and the assignment of a state to an RRF
that can contain instructions from multiple threads. In a system with
T threads, the RRF at any given clock cycle can be characterized by
the number of instructions from each thread. Let n; be the number
of instructions of thread I; currently residing in the RRF. A state
can be denoted as a T-tuples (ny,ns,...,ny). The collection of
all possible T-tuples, the state space of the system, which can be
denote as:

S = {(nl,n27...,nT> [n:€ [0, Ng] ﬂZ,Znt < NQ} (23)
¢

where T is the number of unique threads and N is the size of
the RRF. Each state is denoted as a list of integers n; with 0 <
ny < Ng. In addition, there are only N, registers total; therefore
the sum of these integers cannot be larger than N¢g. A graphical
representation of the state space of a two-thread model with N =
3 is presented in Figure[7]

Using the theory of permutation and combination, the number of
states for a system with T threads and an RRF size of N, is:

_ (T'+ Ng)!

= 24
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this reveals the size of the state space to be of exponential of T
and Ng. When the number of threads and number of registers in
the RRF increase, state space of the model increases exponentially
of T and Ng. Therefore, it is computationally expensive to study
four-threaded environments where the RRF has to be bigger to
accommodate all threads. The subsequent subchapters present a
general model for any arbitrary number of threads and registers.
However, the configuration of the model that is used for analysis is
a two threads and RREF size of 32 registers.

To model a multi-thread system, utilize transition matrices to
represent the usage of the RRF and its transitions during both the
arrival and consumption stages of the pipeline. Previously, when
dealing with a single thread, matrices of size |S| x |S| are used ,
where S is the state space and S = Ng+1. Each state s had its own
row and column, with the entry P; ; representing the probability of
the transition s; — s; . In the multi thread scenario, following
a similar approach, but states are now lists of integers rather than
integers. For each model, use a transition matrix of size |S| x |S|.
Each state (nq,na,...,nr) is mapped to an index and assigned
one row and one column in the matrix. Each element of the matrix
P, ig,...ip) (31, 42,....57) TEPresents the probability of the transition
from state (1,12, ...,47) to state (j1, ja, ..., jr).

6.2 Multi-Threaded Consumption Model

First part of the model is to derive a model for the release stage
and build a transition matrix C' to describe the probabilities of
RRF transition when registers are released. Chapter Five present
the equation to compute the probability of transition for an RRF
with instructions from one thread when instructions are released
in one clock cycle based on the current state of the RRF and
the consumption rate. This equation can be used as a marginal
probability and show that the transition probability in a system
with instructions from an arbitrary number of unique threads can
be derived from the joint probability of instructions from all threads
described in the single-threaded model.

Let us consider a transition from state (2,1) to state (1,0). Given
that the execution bandwidth F is 2 and (i1—j1 ) + (i2—j2) = 2, this
transition utilize the entire bandwidth and will have the probability
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equal to the sum of probabilities of having at least (1,1) instructions
have been in the RRF long enough to be released but only (1,1) are
executed and ready to be released. (n1,n2) depicts a combination
of ny instructions from thread /; and no instructions from thread
I5. Given that there is an execution bandwidth, there are three cases
to consider.

6.2.1 Case., (it — ji:) > F.
In this case, the number of registers being released is greater than
the execution bandwidth. It is not possible to release more than the
execution bandwidth, therefore:

p (si =N si) -0 (25)

6.2.2 Case), (it — j:) < F.

Let us look at these states in more details. Suppose the RRF is in
some state s; = (i1, 42,..., i) transitioning to destination state
sj = (j1, 2, .., jr). For this transition to occur, for each thread
t the RRF releases ¢; — j; instructions. Therefore, the transition
probability of this case is the joint probability of the independent
events that is each thread ¢ releases ¢; — j; instructions. This results
in:

T
C
p(si %) =TT0, 26)
t=1
[t

where p; is the probability in the consumption matrix in
the singlel—’threaded RRF model for thread ¢. For example, in a
three-threaded system with threads {I1, >, I3} with execution
bandwidth of 10, the probability of transitioning from state (5, 6,
7) to state (2, 3, 4) is given by:

Cls.6.1),(2.3.0) = Chg - CEL - CF) 27

s s

Thus this case can be calculated with:

T
_ [t]
Corsy = [1C0 28)
t=1

6.2.3 Case) ., (it — j:) = F.

This case exhausts the execution bandwidth. In the single-threaded
model, this is the transition where ¢ — j = F which is the
probability that at least ¢ — j instructions are ready to be released.
Only on thread is using the entire execution bandwidth. However,
in the multi-threaded model, multiple threads share the execution
bandwidth, resulting in various instances where the execution
bandwidth becomes fully utilized. For example, an RRF size of
and an execution bandwidth of 2, if the initial state is (2,3), states
0,1), (1,1), (2,1) take up the entire execution bandwidth. These
states are called Boundary States. Figure [8| shows the available
states if the initial state is (2,3) with red states being non-reachable
states because they hold more registers in either thread than the
starting state and the gray states being non-reachable states due to
the execution bandwidth.

Looking at the example provided earlier where the RRF transitions
from state (2,1) to state (1,0), this probability can be derived from
the cases where at least two instructions are ready to be released
and the combination of the first two instructions to be released is
one from thread /; and one from thread I5.

We first derive the probability that at least two instructions are
ready to be released by subtracting the probability that fewer than
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two instructions are ready to be released from 1. To achieve this,
iterate over the destination states that satisfies » ., (i — j;) < F
(which is 2 in this case), where (i1,1i2) is (2,1) and sum all their
probabilities. If the probability of at least two instructions are ready
to be released is denoted as p(27), and let S* represent the set of
all reachable states that are not boundary states:

p(2H)=1->"»p ((2, 1S Sk) (29)

spES*

where each term p ((2, 1) S sk) are available from the previous

case since those events do not lead to a boundary state.

After obtaining p (27), another probability needed to be considered
is the probability of reaching only reaching state (1,0). This means
that one of the first two instructions is from thread I; and the
other is from thread I5. The total number of combinations can be

calculated as (11T11!)! = 2, each with a probability of

P} - P! (30)

2
where Pr, and Pp, represents the probability that an instruction
ready to be released is from thread I; and I, respectively. This
probability can be computed from the consumption rate of that
thread as follows:

_ P1 P2

= , P, =
pr+p2’ 7 prdp2

Putting the two parts together, it is possible to calculate the

probability of the transition to a boundary state in the example of
(2,1) — (1,0) with

€1V

Pr,

1+1)!
1= Y w21 S s) %P}l-a@ (32)

speS*
This equation can be generalized for transition from arbitrary state
s; = (i1,42,...,47) to arbitrary state s; = (j1, jo, . . ., jr) Where

> (6 —jy) = Fas:
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(33)

1= (5% s) % [Hp?;]

s €S* t=1

where n; = i; — j; depicts the number of instructions from thread
I, that are ready to be released and S* is the set of all reachable
states:

S*_S\{<1’L1,n2,...,nT>Zni_F} (34)

6.3 Multi-Threaded Arrival Model

Similar to the state space definition in the consumption model, for

- A .
the transition s; — s; to occur during the rename stage, there are
two conditions to consider.

6.3.1 Case ., j. < Ng.

This case is when the RRF is not full at the end of the rename
stage and is simple to derive. Similar to the consumption matrix,
the transition probability is the joint probability of the independent
events that j; — ¢, instructions from each thread ¢ are renamed to
the RRF:

T
A
p (st s) =TTt (35)
t=1

where pgtt]’jt is the probability in the arrival matrix in the
single-threaded RRF model for thread ¢. Thus the entires in the

arrival matrix for the muli-thread model where ), j; < N follow

t
Ags, = HAEt]J.t (36)

t=1

6.3.2 Case),j: = Ng.

This case is similar to the case >, (iy —j:) = F in the
consumption matrix. The RRF is filled up during the rename stage,
creating boundary states and is more complex to derive. Unlike the
consumption matrix where the boundary states may be different for
each starting state, all starting states have the same boundary states
due to the hard limit on how many instructions can be in the RRF
regardless of how many instructions are currently in the starting
state. For example, with RRF of size 3 and there are 2 threads
like presented in Figure 6, states (0,3),(1,2),(2,1), and (3,0)
are boundary states for any arbitrary starting state. Let us look at
the transition from state (0,0) to (2,1). The probability can be
derived from the events where at least three instructions are ready
to be renamed and the combination of the first two instructions to
be renamed is two from thread I; and one from thread /.

Similar to how the consumption matrix is derived, first calculate the
probability that at least three instructions are ready to be renamed
using the same formula

p(3Y)=1->"» ((0,0> S Sk) (37)

s, €S*



where S* represents the set of all states that >, j; < Ng which
are non-boundary states and p ((07 0) A s k) is the pobability of

reaching those states.

Then, calculate the probability of reaching only reaching state
(2,1). This means that two of the first three instructions are from
thread I; and the other is from thread I5. The total number of
combinations can be calculated as (2;11'), = 3, each with a
probability of .

P? - P, 38)

i
where Pr, and Pp, represents the probability that an instruction
ready to be renamed is from thread [; and I, respectively. This

probability can be computed from the arrival rate of that thread as
follows:

M, N
T A 12_A1+>\2
Putting the two parts together, it is possible to calculate the

probability of the transition to a boundary state in the example of
{(0,0) — (2,1) with

P, (39)

2+ 1!
spES* o

This equation can be generalized for transition from arbitrary state

s; = (i1, 12, ..., i) to arbitrary state s; = (j1, jo, ..., jr) where
>.jt=Ngas:
P<Sli>81 th—NQ> =
t
(41)

o i [

spES*

where ny; = i; — j; depicts the number of instructions from thread
I; that are ready to be renamed and S* is the set of all reachable
states:

S* _S\{<n17n27"'anT>

Z n; = No } (42)

6.4 Register Capping Modification

This section discuss the modifications needed to introduce capping
into the multi-threaded model. For the consumption matrix,
boundary states occur when the RRF release as many as the
execution bandwidth allows. It is unrelated to the size of the RRF
therefore the transition probabilities to boundary states are not
affected when the number of registers each thread is allowed to
use is capped. Capping can be implemented into the consumption
matrix by setting the transition probabilities to and from states that
have the sum of instructions from all the threads equal to zero like
o)

plsi S 5;)=0,if > it > Negyor 3 _jo > Nogy  (43)
t t
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However, because the multi-thread consumption matrix is derived
from the sing-thread consumption matrix and all of the states that
utilize more than the cap has already been taken care of in the
single-threaded matrix, it is not necessary to do this step. For the
arrival matrix, boundary states occur when the RRF becomes full
during the rename stage or when any thread reaches its cap value.
The set of boundary states are directly affected if there is a limit
to how many instructions each thread is allowed to use, therefore it
is necessary need to make modifications to the arrival matrix. Let
Nqp represents the cap value, T' represents number of threads, and
Ng represents the size of the RRF. Boundary state is now defined
as a state where either the RRF is full or one or multiple threads
reach the cap value. Let us first calculate the transition probability
to non-boundary states. Similar to the non-capping model, the
transition probability of non-boundary state is the joint probability
of the independent events that j; — ¢, instructions from each thread
t are renamed to the RRF. For all states where ), j; < Ng and
Vi, t€]0,T] : j: < N, cap transition probabilities can be calculated
as

T
p (si 4 sj) = Hpgtt]’jt (44)
t=1

where pgt] i, is the probability in the arrival matrix in the

single-threéded RRF model for thread ¢. To get the probability of
all the remaining states, there are two cases to consider. The first
case is when the RRF is not full even if all the threads occupy as
much as the cap value N, - T' < Ng. To derive the arrival matrix
for this case is quite simple. The transition probability is the joint
probability of the independent events that j; — 4, instructions from
each thread ¢ are renamed to the RRF. Transition probabilities can
be calculated as

T
A
p (si — sj) = I |p£i]yjt (45)
t=1

where p[.t]

i..j, 1s the probability in the arrival matrix in the
single-threaded RRF model for thread ¢. Due to the fact that the
RREF is not full, the entire matrix can be calculated using the above
formula.

The second case features states where the RRF is full N, - T' >
Ng. This case is more complex to derive and requires a process
called Absorption. Absorption is when the transition to a state that
is possible when there is no capping but not possible when capping
is applied due to over occupation gets absorbed by transitions to
states lower occupation. For example, consider a model with RRF
of size 5 (Ng = 5), 2 threads total (I'" = 2), cap value of 3
(N¢ap = 3), and arrival rate A and \» when capping is not applied
and when capping is applied. Figure [O]shows all the states available
to state (0,0) when capping is implemented with green states
as reachable states and red states as non-reachable states. When
capping is not applied, state (1,4) is possible because there are 5
instructions in the RRF total. However, when capping is applied,
this state is no longer possible because the second thread occupies
more than 3 registers. The transition probability to this state needs
to be absorbed by the two immediate transitions to states with lower
occupancy, namely (0,4) and (1, 3). The absorption starts with the
transition to impossible states with the highest occupancy down to
first possible state. In case of this example, the absorption stops at
state (1, 3), however absorption needs to be applied to transitions to
state (0, 4) again until it reaches a possible state. (1, 4) is absorbed
by multiplying its transition probability by the probability that the

10
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next instruction is coming from thread I; (pz,) add add this product
to the state where there is one less instruction from thread I;. The
probability that the next instruction is coming from thread I, is
presented above

At
25:1 Ak

Assuming an initial state (0, 0), the absorption of transitioning to
(1,4) is as follows:

Pr, = (46)

p (10,00 % (0,4)) =p ((0,0) % (0,4)) +

\ (47)

(0,00 2 (1,3)) =p* ((0,0) & (1,3)
(o0 ) (o0 S0m)e

((0,0) A, 4)) : MTZAZ

A . - e .
where p*(s; — s;) is the transition probability before absorption

during that specific absorption process and p(s; EiN s;) is the
new transition probability after absorption. The absorption of the
transition to state (0,4) is different because there is only one
immediate state with lower occupancy, (0, 3) . For such states, the
absorption is simply

A . A
p (10,002 (0,3)) =p" (10,0) % (0,3)) +
(49)
A Az
p(0.0) % 0.9)-
Figure [T0] provides a visualization of the absorptions mentioned

above.

The absorption equation can be generalized for absorption of an
. . . A .
arbitrary transition p ((zl, Qo ..y ir) = (41,72, - - ,]T>) where

Jjs—1>0, Vo €[0,T] as:
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. . A . . .
p(<217127-~~7ZT> — <.71 - 17.72,"'7.]T>) =

« . . A . . .
p (<Z157427 s 7ZT> — <]1 - 17]27 s 7.]T>)

o DAL . A
+p(<Z17127"'7ZT>-><.]17.]27"'7.7T>)'Til
Zk:l)\k
.. Ly A, .
p(<217127~'-7ZT>_><]17]2_1>"'7]T>):
e . VA, .
P (<217127~~71T>%<‘717.72_1:~~7.7T>>
£ (o rin) S o)) -
15,025 .--,0T 15J2y -5 JT =T .
Zk:l/\k
.. . A .. .
p (i, osir) & (1o jr = 1)) =
e . LA, .
p ((7/177'27"'771T>H<]17‘727"‘7JT_1>)
.. A . AT
+p(<117127»~«71T>_><]17J27'~‘7]T>)'Ti
Ek:lAk

Using this absorption process it is possible to derive the arrival
matrix for the multi-threaded case with capping by following these
steps:

(1) Generate arrival matrix for multi thread without capping.

(2) Gather the non-reachable boundary states (states that occupy
more than cap value).

(3) Apply the absorption process on boundary states that are
non-reachable due to capping recursively until possible states
are reached

When all the non-reachable states have been absorbed by reachable
states, the states that the algorithm stops at are the new boundary
states.

6.5 Complete Multi-Threaded Model

After modifications to apply capping, it is possible to combine the
matrices to complete the model using P = C' x A. P represents
the clock-to-clock transition of the RRFE.

Using P, it is possble to use the steady state to examine the IPC
as well as the occupancy of each thread. The consumption rate (p)
can be multiplied with how likely a state is to release a register to
approximate the IPC. To calculate the rate of release of each thread,
by multiplying each element in each row of the matrix where j, >
i, for that thread by the number of registers that state releases (j; —
1) for that thread and add them all up. Then multiply by how many
percentage of time the steady state spends in that state to get an
approximation of the IPC. Observe this IPC as the cap value is
varied to study the effect capping has on performance.

For the sake of simplicity and computation cost, this paper studies
a 2-threaded model with No = 32 and arrival rates of \; =
A2 = 4. Ng is chosen to be 32 because it is enough registers for 2
threads to run properly but not too many where they are redundant.
A1 = Ao = 4 is a high arrival rate compared to the consumption
rate (0.01 < p < 0.7) so that the RRF is more likely to be
fully utilized. The sections analyzes three different combinations of

11
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consumption rates, (p; = 0.3, p2 = 0.5),(p; = 0.2,p2 = 0.7),
and (p; = 0.01,p2 = 0.5) and vary the cap value from 0 to 32
to analyze the changes in occupation and effect of capping. Figure
[[T]shows the occupation of the thread with lower consumption rate
across different cap values. As the difference in the consumption
rates increases, the occupation of the slow thread dominates. In the
case of (p; = 0.01, p2 = 0.5) the slow thread occupies as much as
28 out of 32 registers.
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Fig. 11: Cap Value vs. Occupancy of Slow Thread in Model when Ng =
32

This trend demonstrates the starvation effect when a slow thread
holds on to too many resources. As the cap value increases, the
slow thread continues to rename while still holding on to registers,
causing a high occupancy. When a slow thread consumes most
of the resources, the fast thread does not have enough space to
execute, resulting in a negative effect on the IPC.

Compared with the simulation results of M-Sim, it can be observe
that there is a similar behavior in the occupancy of slow threads,
except for the case (py = 0.2,p2 = 0.7). Figure shows
the occupation of the thread with lower consumption rate across
different cap values of Mix 3, Mix 5, and Mix 1. Mix 3 consists
of two threads with the same ILP classification, representing the
case where consumption rates are similar, comparable to case
(p1 = 0.3, p2 = 0.5). Similarly, Mix 5 is comparable to the case
(p1 = 0.2,p2 = 0.7) where one thread is in the medium ILP

classification and the other is in the high ILP classification. Finally,
Mix 1 is comparable to case (p; = 0.01,p; = 0.5) where the
difference in consumption rates is the greatest.

30 o = Mix3
— e Mix 5
o wmmmans Mix1
e
7
20 V2
e
3 Ve
§ L
3 Ve
8 7
10 e
7
/‘/
J
0
0 10 20 30

Cap Value

Fig. 12: Cap Value vs. Occupancy of Slow Thread in Simulation when
Ng =32

The theoretical model provides a similar trend to the actual
simulation in two of the cases that are examined, (p1 = 0.2, p2 =
0.7), and (p; = 0.01,p, = 0.5), with a few differences. When
the cap value is less than half of the rename register file, the model
and simulation show that the occupancy increases linearly with the
cap value. However, the model predicts that when the cap value is
greater than half of the register file, the occupancy does not increase
at the same rate. In actual simulation, the occupancy continues to
increase at the same rate until the very last few cap values. This
shows that while the model shows the starvation effect of the slower
thread, the model fails to predict the magnitude of starvation. For
example, in the case (p; = 0.01, p = 0.5) the slower thread only
holds 28 registers on average at the highest cap value, while Mix 1
holds 31 registers on average.

In the case (p; = 0.2, p2 = 0.7), the model provides a different
trend from Mix 3. There are other factors in the pipeline besides
the rename stage that lead to both threads in Mix 3 to require only
a maximum of 6 registers on average despite the fact that there
are more registers to use. The model fails to reflect cases like this
because of its nature of modeling only the rename stage. With

12



an arrival rate higher than the consumption rate, the threads will
always try to use all the registers available.
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Fig. 13: Cap Value vs. Occupancy of Slow Thread in Model when Ng =
16

When keeping all parameters the same and decrease Ng = 16 to
show more competition, the trend of the model and the simulation
has some differences to the configuration where No = 32.
Looking at figures [T3]and[T4] the model predicts that the trend for
case (p1 = 0.2,p2 = 0.7) is closer to the trend of Mix 5. The
model still fails to predict the magnitude of starvation in the case
(p1 = 0.01, p2 = 0.5). It appears that there is a limit of how many
registers a thread can take despite being allowed to use more. In
the simulation, a thread can take up to almost if not all registers on
average if there is not a cap to limit it. This is a limitation of the
model that can be addressed in future revisions. Despite lowering
N to foster more competition, Mix 3 still only uses as many as six
registers per thread, further confirming that occupancy is affected
by other parts of the pipeline. When each thread only uses up to 6
registers and there are 16 registers available, there is no competition
to be had between each thread.
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Fig. 14: Cap Value vs. Occupancy of Slow Thread in Simulation when
Ng =16

We again reduce Ng = 10 to foster competition even for Mix
3, where the maximum occupancy of both threads is 13 in other
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configurations, to see if the model can mimic the simulation’s
behavior. However, figures[I6]and[T5]show that the simulation still
does not show competition between threads in Mix 3. Both threads
in Mix 3 take up less registers than they do when allowed more
registers like in other comparison configurations.
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Fig. 15: Cap Value vs. Occupancy of Slow Thread in Simulation when
Ng =10
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Fig. 16: Cap Value vs. Occupancy of Slow Thread in Model when Ng =
16

When there is a limit on the number of registers that each thread
can use with capping, the IPC improves as shown in Figure[T7} The
total IPC starts low because with a low cap value, neither thread can
perform well. As the cap value increases, the IPC increases as there
are more registers to use. However, when the cap value is too high,
the slow thread dominates in utilization and causes the total IPC
to decrease. This trend matches the trend in the simulation shown
in Figure [I8] The case (p; = 0.01,p2 = 0.5) and Mix 5 show
the highest competition between threads; therefore, the total IPC
is higher when the cap value is around half the size of Ng and
dramatically decreases as the cap value approaches Ng. The case
(p1 = 0.3,p2 = 0.5) and Mix 5 have threads that are similar in
performance, therefore, the total IPC increases with the cap value
until it reaches a peak and then decreases slightly at higher cap
values. The model predicts that case (p; = 0.2,p2 = 0.7) has

13
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Fig. 17: Cap Value vs. Total IPC in Model when Ng = 32

an IPC trend similar to case (p; = 0.3,p2 = 0.5) due to the
small difference in performance between each thread, however, in
simulation, because the total register usage at maximum is lower
than the registers available, the IPC hits a plateau once the cap value
reaches the number of registers each thread uses at its most.
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Fig. 18: Cap Value vs. Total IPC in Simulation when Ng = 32

Figure[T9shows that at the cap value where the total IPC peaks, the
first two cases (p; = 0.3,p2 = 0.5) and (p; = 0.2, py = 0.7)
do not show much improvement over the absence of capping.
They are not very far in terms of consumption rate relative to
each other. However, in cases where the difference in consumption
rate is considerable, for example, (p; = 0.01,p2 = 0.5), the
improvement is substantial.

Observations of the model confirm that slow threads hurt overall
performance by taking up too many registers, starving the fast
threads. The higher the difference between the consumption rates,
the more performance can be gained by employing capping. The
following chapters derive a capping algorithm that adjusts the cap
value based on how the threads perform compared to each other.

7. CONCLUSION

This research presents a theoretical model of the Rename Register
File using queuing theory. The model features the utilization of
the RRF in a multi-thread environment when capping is applied.
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Analysis of the model provides a better understanding of the
phenomena that occur in the RRF. Although not complex enough to
simulate actual program behavior, it mimics the behavior of an RRF
model under different consumption rate combinations and capping
values. As there are other stages that the model cannot take into
account.

To better model the behavior of an actual RRF, the model needs
to take into consideration of other inputs such as cache miss,
instruction type, ALU type, and other parameters of a CPU. The
stock Markov Chain is limited by one type of incoming rate and
one type of out-going rate. In order to simulate the RRF better,
there needs to be further modifications to the Markov Chain.
Further more, the formulae in this paper requires intensive
calculations when there are many registers and threads.
Optimization is needed to model larger CPU’s with more
threads and registers.
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