
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

43

Parallel k-Means Benchmarking on a CPU-Bound

Beowulf Cluster of Raspberry Pi Nodes: An MPI-based

Scaling Analysis with CPU-Centric Performance

Evaluation

Dimitrios Papakyriakou
PhD Candidate

Department of Electronic Engineering
Hellenic Mediterranean University

Crete, Greece

Ioannis S. Barbounakis
Assistant Professor

Department of Electronic
Engineering

Hellenic Mediterranean University
Crete, Greece

ABSTRACT

This study presents an in-depth parallel benchmarking analysis

of the k-Means clustering algorithm on a Beowulf cluster

composed of Raspberry Pi 4B nodes, each equipped with 8GB

of RAM. Leveraging MPI for distributed computation, it is

systematically evaluating the algorithm’s strong scaling

behaviour using synthetic datasets of fixed size -75 million

two-dimensional points - while varying the number of MPI

processes from 2 up to 48 (with two processes per node).

The performance evaluation focuses on a detailed execution

time decomposition across five key phases: data generation,

parallel distance computation (Compute Phase),

synchronization via MPI_Allreduce (Sync Phase), centroid

updates (Update Phase), (k-Means Phase) and total runtime.

Results confirm that the Compute Phase remains the dominant

contributor to total runtime, consistently accounting for the

majority of execution time across all configurations.

Synchronization overhead increases moderately at intermediate

process counts, a typical phenomenon in distributed systems,

but remains manageable and does not offset the overall speedup

achieved through parallelization.

The Beowulf cluster demonstrates excellent scalability and

high parallel efficiency throughout the strong scaling

experiments, with total runtime reduced by nearly (10×) when

increasing from 2 to 48 MPI processes. Memory usage remains

within physical RAM limits due to careful dataset partitioning,

enabling large-scale processing on low-power ARM-based

nodes.

Overall, this work highlights the feasibility and efficiency of

CPU-centric, memory-aware distributed machine learning on

energy-efficient Raspberry Pi clusters. The proposed

benchmarking framework provides a robust and reproducible

foundation for analysing algorithmic performance, scalability,

and resource utilization in lightweight distributed

environments, aligning with contemporary trends in edge

computing and resource-constrained high-performance

computing.

Keywords

Raspberry Pi 4B, Beowulf Cluster, ARM Architecture, Parallel

Computing, CPU-Bound Workload, k-Means Clustering,

Message Passing Interface (MPI), MPICH, Memory-

Conscious Scaling, Low-Cost Clusters, Synthetic Data

Benchmarking, Execution Time Analysis, Distributed

Systems, HPC Performance Evaluation.

1. INTRODUCTION

The k-Means clustering algorithm is a widely used

unsupervised learning method that partitions data into k distinct

clusters based on feature similarity [1]. Its computational

structure which is characterized by repetitive distance

calculations and centroid updates, makes it highly amenable to

parallel execution, especially when applied to large-scale

datasets. As data volumes grow, evaluating the performance

and scalability of k-Means on distributed systems becomes

increasingly important for real-world applications ranging from

image processing to bioinformatics and recommendation

systems.

In this study, we investigate the performance characteristics of

k-Means in a Message Passing Interface (MPI) environment,

utilizing a Beowulf cluster composed of 24 Raspberry Pi 4B

nodes, each equipped with an 8GB ARM-based processor. MPI

offers a flexible model for data-parallel workloads, enabling

processes to work independently while communicating

minimal information during synchronization phases such as

centroid updates. This design aligns well with k-Means'

structure, where the bulk of the computation is spent on point-

to-centroid distance calculations, a phase that can be distributed

efficiently across CPU cores.

Our implementation leverages MPICH, a widely adopted MPI

library, to coordinate 48 parallel processes running on the

cluster. The algorithm operates on synthetic datasets of

increasing size (up to 80 million points) to assess scaling

behavior and memory usage. Performance is evaluated based

on timing decomposition across core algorithmic phases—

including data scattering, parallel computation, result

gathering, and centroid updating. Metrics such as total runtime,

CPU-bound phase dominance, and communication overhead

are analyzed to determine the effectiveness of the

parallelization strategy.

By conducting this analysis on a low-cost, ARM-based

computing environment, we aim to demonstrate the feasibility

and efficiency of scalable clustering in resource-constrained

distributed systems. The results contribute insights into the

design of memory-conscious, CPU-focused parallel algorithms

suitable for educational, experimental, and lightweight

production environments.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

44

This study focuses on the deployment and performance

analysis of the k-Means clustering benchmark on a Beowulf

cluster consisting of 24 Raspberry Pi 4 Model B nodes, each

equipped with 8GB of RAM and interconnected via Ethernet.

The objective is to investigate the scalability and execution

efficiency of ARM-based distributed systems under

computational workloads. The evaluation highlights MPI-

based parallelization, execution time decomposition, and

memory-aware workload distribution, providing insights into

the practical feasibility of low-power, cost-effective high-

performance computing (HPC) environments.

The Raspberry Pi 4 Model B (8GB RAM), illustrated in "Figure

1", serves as the fundamental building block of the cluster.

Each unit features a 64-bit quad-core ARMv8 Cortex-A72 CPU

clocked at 1.5 GHz [2], [3]. Its affordability and accessibility

were key factors in its selection as the base hardware for

constructing a high-performance computing cluster, enabling a

systematic evaluation of its capabilities in parallel processing

and distributed computing environments.

Figure 1: Single Board Computer (SBC) - Raspberry Pi 4

Model B [2], [3].

2. SYSTEM DESCRIPTION

2.1 Hardware Equipment
At the heart of this project lies a cost-efficient yet powerful

Beowulf cluster, built from 24 Raspberry Pi 4B units (8GB

RAM each), as illustrated in "Figure 2". A single Raspberry Pi

serves as the master node, orchestrating job scheduling and

resource distribution, while the remaining 23 nodes form the

computational backbone of the system, operating in parallel

under MPI-based coordination.

The cluster is neatly structured into four modular stacks, each

hosting six Raspberry Pis, and connected via Gigabit Ethernet

switches (TP-Link TL-SG1024D) that deliver up to 1 Gbps of

bandwidth per node. This setup enables efficient and scalable

inter-node communication, providing an HPC-like experience

within an ARM-based low-cost infrastructure "Figure 2".

To ensure stable power delivery, the system relies on two

industrial-grade switch-mode power supplies (60A, 5V), tuned

to 5.80V to compensate for voltage drops due to cable length

and power distribution. In terms of storage, the cluster is

equipped with high-speed NVMe SSDs: the master node hosts

a 1TB Samsung 980 PCIe 3.0 NVMe drive, while each worker

node is outfitted with a 256GB Patriot P300 NVMe M.2 SSD,

enabling fast local I/O performance and smooth handling of

large-scale synthetic data used in the benchmarks.

Figure 2: Deployment of the Beowulf Cluster with (24)

RPi-4B (8GB).

2.2 Software Environment and Toolchain

The software environment of the Beowulf cluster was carefully

designed to ensure performance, compatibility, and

reproducibility in a distributed parallel computing context.

Each of the 24 Raspberry Pi 4B nodes (8GB RAM, ARM

Cortex-A72 @ 1.5 GHz, 64-bit) was configured with a

consistent and stable system stack to support high-performance

scientific computation.

The operating system installed on all nodes was Debian

GNU/Linux 12.11 (Bookworm), the latest officially supported

64-bit distribution for Raspberry Pi devices. This version

includes Linux Kernel (6.12.25+rpt-rpi-v8), which provides

full support for the ARMv8-A architecture, multithreading, and

modern scheduling capabilities essential for CPU-bound

parallel workloads.

A critical component of the cluster’s parallel execution

framework is the Message Passing Interface (MPI). In this

project, MPICH was selected as the preferred implementation

due to its strong conformance to the MPI standard, efficiency

in distributed memory environments, and broad compatibility

with C, C++, Fortran, and Python-based MPI applications.

MPICH (originally “Message Passing Interface Chameleon”)

is recognized for its portability and high-performance design,

making it especially well-suited for low-cost, resource-

constrained clusters such as ours. While other implementations

such as OpenMPI are also available, MPICH was chosen for its

consistent behaviour and robustness on ARM-based platforms.

To support the compilation of performance-critical libraries,

the GNU Compiler Collection (GCC) with Fortran support was

installed on all nodes. The GCC Fortran compiler plays a vital

role in compiling numerically intensive routines and is widely

used in HPC environments due to its optimization capabilities

and standards compliance.

Additionally, OpenBLAS was included as the foundational

linear algebra backend. OpenBLAS is a highly optimized

implementation of the Basic Linear Algebra Subprograms

(BLAS) and provides accelerated matrix operations, which are

essential for many scientific algorithms and machine learning

tasks, including k-Means.

A defining feature of the software setup was the use of Python’s

built-in venv module to isolate the computational environment

from system-level dependencies. Each node ran a dedicated

Python 3.11 virtual environment, ensuring consistency and

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

45

reproducibility across the entire cluster. All required scientific

libraries were installed within the virtual environment using

pip, following PEP 668 compliance guidelines to avoid

interference with system-managed packages [4]. The specific

library versions used were:

- NumPy: 1.26.4

- SciPy: 1.13.0

- scikit-learn: 1.4.2

- mpi4py: 3.1.6

- psutil-7.0.0

All MPI executions were performed within the virtual

environment using mpiexec, with explicit host configuration

and core binding to ensure optimal resource utilization per

process. This containerized configuration not only guarantees

identical behaviour across all nodes but also enhances the

scientific reliability and reproducibility of experimental results.

2.3 Design
The structural layout of the Raspberry Pi (RPi) cluster is

depicted in “Figure 3”, comprising 24 Raspberry Pi 4B nodes,

each equipped with 8GB of RAM. All nodes are interconnected

through a 24-port Gigabit Ethernet switch, supporting data

transfer rates of up to 1000 Mbps, thereby facilitating high-

speed inter-node communication. Within this configuration, a

single Raspberry Pi functions as the master (head) node,

responsible for scheduling and resource coordination tasks

apart from its worker node tasks, while the remaining 23 nodes

serve as worker nodes, executing distributed computational

workloads. To ensure reliable and low-latency communication,

each node is assigned a unique static IP address, and SSH

(Secure Shell) is employed for secure communication between

master and worker nodes.

The master node is equipped with a Samsung 980 PCIe 3.0

NVMe M.2 SSD (1TB), offering theoretical write speeds up to

3000 MB/s and read speeds up to 3500 MB/s. To enhance

storage efficiency across the cluster, each worker node is fitted

with a Patriot P300 NVMe M.2 SSD (256GB), capable of

reaching write speeds up to 1100 MB/s and read speeds up to

1700 MB/s. Leveraging the Raspberry Pi 4B’s support for

external booting, all SSDs are connected via USB 3.0 ports,

which provide a theoretical maximum data throughput of 4.8

Gbps (600 MB/s). This represents a substantial upgrade from

legacy USB 2.0 connections, which are limited to 480 Mbps

(60 MB/s).

This enhanced storage architecture significantly improves the

I/O performance of the cluster. By utilizing the high-speed

capabilities of NVMe SSDs, the system achieves markedly

better data access times and overall computational

responsiveness compared to earlier microSD-based

configurations. Although the USB 3.0 interface introduces

some limitations relative to native PCIe interfaces, the

performance gains delivered by the NVMe SSDs substantially

outweigh these constraints, resulting in a measurable boost in

overall cluster efficiency during testing and benchmarking.

- MPI Process Distribution and Validation:

To validate the full utilization of the cluster’s distributed

architecture, a parallel execution test was conducted using the

classic hello_mpi.py program with 48 MPI processes,

distributed across all 24 worker nodes. The execution was

explicitly launched with the hosts flag and a list of unique

hostnames, ensuring that MPI processes were not only

launched, but effectively distributed across physical machines,

rather than being confined to a single node.

The resulting output confirms that each process was assigned

to a unique core across the cluster, with ranks distributed over

all available hosts (e.g., rpi4B-sl-01 through rpi4B-sl-23). This

demonstrates a successful and synchronized MPI deployment

in a heterogeneous ARM-based environment, where every

Raspberry Pi 4B participates in the computation.

This process-level parallelism confirms that the MPI runtime

environment is correctly configured, that passwordless SSH

and static IP addressing are functioning as intended, and that

the system can reliably execute fully distributed applications

across physical hardware nodes. The cluster thus achieves true

distributed memory parallelism, a foundational characteristic

of HPC systems “Figure 4”.

Figure 3: RPi-4B Beowulf cluster architecture diagram

[1], [2].

Figure 4: MPI Process Distribution and Validation

3. Theoretical Background: The k-Means

Clustering Algorithm

The k-Means algorithm is a widely adopted unsupervised

machine learning method that partitions a given dataset into (k)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

46

distinct, non-overlapping clusters based on similarity metrics.

Its objective is to minimize intra-cluster variance, formally

defined as the sum of squared distances between each point and

its assigned cluster centroid.

Given a set of observations 𝑋 = {𝑥1, 𝑥2, . . . 𝑥𝑛} in a M-

dimensional space, and a specified number of clusters (k), the

algorithm follows an iterative refinement process:

- Initialization step: Randomly select (k) initial centroids.

- Assignment step: Assign each point to the nearest centroid

using a distance metric, commonly the Euclidean distance.

- Update step: Recalculate centroids as the mean of the

points assigned to each cluster.

- Convergence: Repeat steps 2 and 3 until assignments no

longer change or a predefined iteration limit is reached.

Despite its simplicity, (k-Means) is computationally intensive

for large datasets, particularly during the assignment step,

which scales linearly with the numbers of data points (n),

dimensions (M), and clusters (k). As a result, it is highly suited

for parallelization in CPU-bound environments, where

independent computations (e.g., distance calculations) can be

distributed across multiple cores or nodes.

When implemented in distributed-memory systems (e.g., MPI

clusters), (k-Means) can be decomposed into distinct

communication and computation phases, allowing it to scale

efficiently in terms of both data size and computational

resources.

3.1 Methodology
In this study, we implemented a parallel k-means algorithm on

a Beowulf cluster by adopting a decentralized data generation

model. Specifically, each MPI rank independently generates a

local subset of the dataset using a deterministic random_state.

This eliminates the need for centralized data generation and

distribution via MPI_Scatter, thus reducing initialization

overhead and improving scalability.

This approach is grounded in well-established principles of

modern distributed computing and mirrors real-world practices

in the following domains:

- Big Data Analytics Pipelines: Frameworks such as

Hadoop and Spark rely on distributed storage (e.g., HDFS,

Amazon S3) and local data access patterns, where

compute nodes work on assigned data blocks without a

computational orchestrator [5],[6].

- Scalable Machine Learning Pipelines: In distributed

training, data parallelism is a dominant paradigm, as seen

in TensorFlow's Multi Worker Mirrored Strategy,

PyTorch's Distributed Data Parallel, and Horovod. These

frameworks operate on local data shards to maximize

throughput and minimize communication bottlenecks

[7],[8].

- High-Performance Computing (HPC) Clusters: Best

practices in MPI-based applications emphasize

minimizing collective operations (e.g., MPI_Scatter,

MPI_Gather) due to their poor scalability beyond a few

hundred ranks. Instead, favoring local computation and

synchronization of compact metadata (e.g., centroids)

follows established HPC design guidelines [9],[10].

- Cloud-Native Workflows: Distributed task systems like

Dask, Ray, and Kubernetes-based ML pipelines process

pre-partitioned data directly from object storage. Stateless

workers operate on data independently, echoing our

approach [11].

The scientific and practical advantages of this methodology are

twofold:

- Scalability: Local data generation prevents master node

overload and supports nearly linear scaling, as each node

generates and processes its own portion.

- Realism: The method closely mirrors production

workflows where datasets are too large to fit in memory

on a single node, especially in edge or cloud

environments.

Despite being deployed on a cost-efficient Beowulf cluster of

Raspberry Pi 4B nodes, our implementation reflects

architectural patterns used in large-scale data platforms. It thus

serves as a scientifically valid model for educational, research,

and applied systems in Big Data, HPC, and Cloud-based

Machine Learning contexts.

3.1.1 Data Generation via Decentralized

Deterministic Seeding
Contrary to traditional master-slave approaches, where the root

process generates the full dataset and scatters it across nodes,

this implementation embraces a decentralized methodology in

which each MPI process independently generates a

deterministic partition of the dataset. This is accomplished

using the [make_blobs()] function from sklearn datasets with a

fixed random_state seed and unique (n_samples_local) per

rank. As the function is deterministic, all processes produce

consistent, non-overlapping data subsets that collectively form

the global dataset. This eliminates the need for memory-

intensive MPI_Scatter operations, ensuring both memory

locality and scalability.

This design reflects real-world scenarios in Big Data Analytics,

Machine Learning Pipelines, and HPC Clusters, where data is

often either pre-sharded across compute nodes or ingested in

parallel from distributed storage systems (e.g., HDFS, S3, or

Lustre). It aligns with data-parallel paradigms common in

Apache Spark, Dask, and distributed TensorFlow training

workflows.

3.1.2 Parallel Computation and Centroid

Synchronization
Each MPI process performs local computations: calculating

Euclidean distances between its subset of data points and the

current centroids, assigning clusters, and computing partial

sums and counts. These operations constitute the Compute

Phase, which dominates the overall runtime, validating the

CPU-bound nature of the task.

After local computations, each process participates in a

collective reduction operation (MPI_Allreduce) to globally

aggregate partial centroids. The updated centroids are then

synchronized across all ranks for the next iteration. This design

eliminates centralized bottlenecks and enhances fault-tolerance

and reproducibility across iterations.

3.1.3 Execution and Environment Control
All MPI processes are launched using mpiexec with explicit

host bindings defined in a static machinefile, ensuring

distributed execution over physical nodes. Python 3.11 runs

within isolated virtual environments (venv) across all nodes,

ensuring package consistency, dependency control, and PEP

668 compliance for reproducible experiments.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

47

3.1.4 Benchmarking and Memory Profiling
We evaluate performance through multiple metrics: Data

Generation Time, Compute Time, Synchronization Time,

Centroid Update Time, and Total Execution Time, captured via

MPI_Wtime(). The system successfully handled datasets of up

to 80 million two-dimensional samples, with each float64

sample occupying 16 bytes per point. “Table 1” summarizes

the estimated memory footprint per process for various dataset

sizes.

Table 1. Estimated RAM Usage per Process (2 MPI per

RPi)

Estimated RAM Usage per Process (2 MPI used per RPi)

n_samples

Total

(millions)

n_samples

per Rank

(millions)

Memory

Usage

before

Gen

(MB)

Memory

After

Gen

(MB)

Status

20 10 ~34.8 ~162.0 Success

30 15 ~34.8 ~269.7 Success

40 20 ~34.8 ~377.6 Success

50 25 ~34.8 ~474.2

Success

60 30 ~34.8 ~569.0

Success

70 35 ~34.9 ~307.9

Success

75 37,5 ~34.8 ~326.8
Upper

limit

80 40 ~34.8 -
OOM

failed

This architecture demonstrates that even low-cost, ARM-based

devices can operate as capable components in scalable

distributed systems. By avoiding centralized memory pressure

and exploiting deterministic parallel data generation, our

methodology delivers efficient, reproducible, and scientifically

grounded results in line with best practices in contemporary

large-scale computing.

3.2 Evaluation Metrics
The performance of the fully distributed, MPI-based parallel k-

Means implementation was evaluated using five key execution

metrics, each corresponding to a critical phase in the distributed

computation pipeline “Figure 5”:

- Data Generation Phase: This metric captures the time

required for each MPI process to independently generate

its portion of the synthetic dataset locally. It reflects I/O

independence, startup latency, and the cost of distributed

initialization. By avoiding centralized data loading and

scattering, this design aligns with best practices in scalable

Big Data systems and distributed machine learning

frameworks [12], [13].

- Compute Phase: This is the core workload of the

algorithm and measures the time taken by each process to

compute Euclidean distances between local data points

and cluster centroids, assign points to the nearest cluster,

and compute partial statistics (e.g., local sums and counts).

It quantifies raw CPU performance and reflects how well

the algorithm utilizes available cores.

- Synchronization Phase: This metric reflects the time

required for the MPI_Allreduce operation that aggregates

partial centroid statistics across all ranks to compute the

global mean for each cluster. It captures communication

overhead, interconnect efficiency, and scalability of the

global synchronization step. The use of collective

reduction aligns with common practices in distributed

deep learning and high-performance computing [14], [15].

- Update Phase: After synchronization, each process

locally recalculates the new centroids using the globally

reduced statistics. This metric measures how quickly the

system converges during each iteration and evaluates the

local update efficiency and memory access latency.

- Total Runtime: This is the overall execution time from

data generation through convergence. It includes all

computational and communication phases and is used to

assess speedup, efficiency, and scaling behavior. It also

serves as the basis for strong and weak scaling

experiments.

- K-Means Phase Time: This compound metric measures

the execution time of the core iterative k-Means clustering

process across all MPI ranks. It aggregates the durations

of the Compute Phase, Synchronization Phase, and

Update Phase into a unified indicator of algorithmic

efficiency. Specifically, it reflects the end-to-end time

spent per iteration for calculating Euclidean distances,

assigning cluster labels, computing local statistics,

performing global centroid synchronization via

MPI_Allreduce, and updating centroids. This phase is

critical in assessing the convergence behavior, numerical

stability, and parallel performance of the distributed

clustering routine. In formulaic terms:

𝐾 − 𝑀𝑒𝑎𝑛𝑠 𝑇𝑖𝑚𝑒 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑇𝑖𝑚𝑒 + 𝑆𝑦𝑛𝑐 𝑇𝑖𝑚𝑒
+ 𝑈𝑝𝑑𝑎𝑡𝑒 𝑇𝑖𝑚𝑒

By isolating this metric, researchers can disentangle the cost of

the main computational loop from peripheral operations such

as data loading or initialization, enabling precise evaluation of

scalability and resource utilization in high-performance and

distributed environments.

This distributed execution model reflects the architectural

principles of modern Big Data Analytics, machine learning

pipelines, and high-performance computing [16], [17], while

demonstrating real-world feasibility on energy-efficient, low-

cost hardware platforms.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

48

Figure 5: Parallel k-Means execution model using MPI

In the cluster-wide version of the parallel k-Means

implementation (v7), each Raspberry Pi runs two MPI

processes. As the cluster scales with more nodes, the total

number of MPI processes increases accordingly (e.g., 48 MPI

ranks for 24 RPi’s).

To centralize performance reporting, (Rank 0) is designated as

the master aggregator. Each MPI rank collects its local

performance metrics—such as memory usage before and after

data generation, data generation time, k-Means compute time,

and total execution time. These values are then gathered on

Rank 0 using MPI.gather().

This allows (Rank 0) to output a cluster-wide summary,

reporting the minimum, maximum, and average values for each

metric across all participating processes. This strategy ensures

scalable monitoring without redundant output from each

process and simplifies interpretation when benchmarking the

full cluster.

3.3 Strong Scaling Methodology and

Results Analysis

The strong scaling results presented in “Table 2” demonstrate

the high scalability and operational efficiency of the Beowulf

cluster, composed of Raspberry Pi devices. The system was

evaluated with a constant workload of 75 million synthetic

samples, while progressively increasing the number of MPI

processes from 2 to 48 (with 2 MPI processes per Raspberry Pi

node).

The total execution time significantly decreased as more MPI

processes were employed. Starting from 181.83 seconds with 2

processes, the runtime dropped to just 18.09 seconds with 48

processes — indicating a 10× reduction in total runtime. This

demonstrates the cluster’s ability to effectively exploit

parallelism, even with energy-efficient, low-cost hardware.

Moreover, the compute time per process decreased sharply

from 177.98 seconds to 17.95 seconds, proving the linear

reduction of local computational load as more processes were

added. Similarly, data generation time dropped proportionally,

reflecting excellent data partitioning across nodes.

In this study, the synchronization phase refers to the

MPI_Allreduce operation a collective communication routine

that aggregates partial results, such as the sum and count of data

points per cluster, and distributes the aggregated global

centroids to all processes. As more processes participate,

synchronization time tends to grow due to the increased volume

of data exchange, the larger number of network connections,

and occasional computational imbalances across processes

This temporary communication bottleneck at moderate scales

is expected in distributed computing systems. However, despite

this increase in synchronization time, the Beowulf cluster

maintained high parallel efficiency across all tested

configurations. The cluster consistently achieved reductions in

total runtime with the addition of more MPI processes,

demonstrating that computational speedup effectively

outweighed communication overhead. This behavior aligns

with established findings in distributed machine learning and

high-performance computing systems [18], [19], [20].

Overall, these results highlight that the Beowulf cluster exhibits

strong scalability for parallel k-Means clustering, delivering

high performance per unit cost. This validates its feasibility for

distributed machine learning workloads, particularly in low-

power edge computing environments, where resource-aware

high-performance computing is increasingly crucial [21]. The

Beowulf cluster demonstrated excellent scalability, as the total

execution time consistently decreased with the addition of more

MPI processes, proving that the computational speedup

effectively outweighed the communication overhead. This

behaviour is consistent with established patterns in distributed

machine learning and high-performance computing [18], [19].

Specifically, synchronization time reached its peak at

intermediate scales (e.g., 8–16 RPi’s), a well-known

phenomenon in distributed systems where communication

overhead can temporarily dominate performance at certain

scales [20].

3.3.1 Conclusion

This study presents a detailed evaluation of a Beowulf cluster

built with Raspberry Pi devices, focusing on its strong scaling

performance for parallel k-Means clustering. The results

clearly demonstrate that, despite using energy-efficient, low-

cost hardware, the cluster can achieve substantial

computational performance and scalability.

The systematic benchmarking revealed that the total execution

time decreased consistently as more MPI processes were

employed, achieving a near 10× speedup when scaling from 2

to 48 processes on the same fixed workload. The compute time

per process dropped almost linearly, confirming effective load

balancing and parallelization.

While synchronization time increased at intermediate scales

due to higher MPI_Allreduce communication overhead—a

common behavior in distributed systems—it remained within

acceptable limits and did not hinder the overall performance

benefits. This validates the robustness and efficiency of the

MPI-based distributed computation, even in resource-

constrained environments.

Moreover, the system maintained high parallel efficiency

throughout the tests, demonstrating its ability to handle large-

scale machine learning workloads in a cost-effective manner.

The findings confirm that such Raspberry Pi clusters can be

viable alternatives for distributed machine learning tasks,

particularly for educational, research, and edge computing

purposes where power consumption, cost, and portability are

critical factors.

In conclusion, the Beowulf cluster proves to be a scalable,

efficient, and practical solution for parallel k-Means clustering,

reinforcing the potential of low-power clusters in modern high-

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

49

performance and edge computing applications. These results

align with existing research in distributed machine learning and

resource-aware computing systems, offering valuable insights

for future explorations in the field [18], [19], [20], [21].

The “Figure 6” presents the metrics results in the CLI

environment where the “Figure 7” clearly illustrates the strong

scaling behavior of the Beowulf cluster during the parallel k-

Means benchmark. As the number of MPI processes increases,

the total runtime decreases sharply, demonstrating effective

workload distribution and parallel speedup. The curve shows a

near-linear reduction in runtime up to a moderate number of

processes, followed by diminishing returns at higher scales due

to increasing synchronization overhead. Despite this, the

overall trend highlights the high scalability and efficiency of

the cluster, especially considering the low-power Raspberry Pi

hardware.

The “Figure 8” depicting k-Means Time versus the Number of

MPI Processes provides crucial insight into the strong

scalability of the core computational workload. By isolating the

time spent specifically in the iterative k-Means computations -

including distance calculations, cluster assignments,

synchronization, and centroid updates - the graph highlights

how effectively the parallel algorithm leverages additional

processes.

A decreasing trend in k-Means Time with increasing MPI

processes indicates efficient distribution of the computational

load and successful parallelization. This visualization also

helps identify potential scalability limits or diminishing returns

at higher process counts, which are typical in distributed

systems due to increasing synchronization and communication

overheads.

Overall, this graph serves as a direct indicator of computational

efficiency and scalability, validating the Beowulf cluster’s

ability to handle intensive CPU-bound workloads under strong

scaling conditions.
Figure 6: Strong Scaling Methodology: Parallel k-Means

execution in Beowulf, 2 MPI processes per RPi, 75M

datasets

 In addition to total runtime reduction, the parallel efficiency of

the Beowulf cluster was evaluated to provide deeper insights

into scalability. Parallel efficiency quantifies how effectively

the cluster utilizes additional computational resources,

normalized against a baseline configuration. Here, the baseline

was set to two MPI processes—the minimal tested

configuration—using the following formula:

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =
𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 × 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 × 100

- 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = Total Runtime for the baseline (e.g., 2 MPI

processes)

- 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = Baseline number of processes (e.g., 2)

- 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = Total Runtime at current MPI configuration

- 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = Current number of processes

For instance: for 4 MPI Processes we have:

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =
181.8288×2

112.8915 × 4
 × 100 ≈ 80.5

The above logic applies for all the MPI processes consisted in

the “Table 3”.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

50

“Table 3”, summarizes the parallel efficiency of the Beowulf

cluster for the parallel k-Means workload under strong scaling

conditions. Using the 2-process configuration as the baseline

(100%), the efficiency decreases as more processes are added -

a common pattern in strong scaling tests.

At moderate process counts (e.g., 4 processes), the system

maintains relatively high efficiency (~80.5%), indicating good

scalability in early scaling stages. However, efficiency drops

beyond 8 processes, stabilizing around 32–42% in larger

configurations. Notably, the cluster achieves its highest

efficiency at 48 processes among high counts, suggesting

effective load-balancing and relatively well-managed

communication overhead at that scale. This behavior is typical

of strong scaling in distributed systems, where increased

communication overhead gradually limits efficiency, but

balanced workloads and optimized MPI operations can still

maintain substantial parallelization benefits.

Table 3. Parallel Efficiency of Cluster

MPI
Processes

(np)

Total
Time
(sec)

Parallel
Efficiency

(%)

2 181.8288 100.0 (Baseline)

4 112.8915 80.53%

8 134.0936 33.90%

16 70.7186 32.14%

24 42.2032 35.90%

32 35.1658 32.32%

40 25.1014 36.22%

48 18.0869 41.89%

Figure 9: MPI based Parallel Efficiency of Beowulf Cluster: Strong Scaling Methodology

Table 2. MPI-based Parallel K-Means Benchmarking: Strong Scaling Methodology

MPI-based Parallel k-Means Benchmarking - (2 MPI processes per RPi)

RPi’s

MPI
Processes

(np)

Synthetic
Datasets
(millions)

Data Gen
Time (avg)

(sec)

Compute
Time (avg)

(sec)

Sync
Time (avg)

(sec)

Update
Time (avg)

(sec)

k-Means
Time (avg)

(sec)

Total

Time (avg)
(sec)

1 2 75 2.5619 177.9832 1.2826 0.001 179.267 181.8288

2 4 75 1.2939 111.5976 0.5683 0.0012 112.167 112.8915

4 8 75 1.1357 132.958 59.712 0.0018 192.672 134.0936

8 16 75 0.4095 70.3091 38.1275 0.0017 108.438 70.7186

12 24 75 0.3189 41.8843 22.2785 0.0016 64.1644 42.2032

16 32 75 0.2416 34.9242 20.2544 0.0017 55.1802 35.1658

20 40 75 0.1799 24.9214 14.8122 0.0015 39.7351 25.1014

24 48 75 0.141 17.9459 9.7645 0.0015 27.7119 18.0869

100.00%

80.53%

33.90% 32.14% 35.90% 32.32% 36.22%
41.89%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 10 20 30 40 50

P
ar

al
le

l E
ff

ic
ie

n
cy

 (
%

)

MPI Processes (np)

MPI based Parallel Efficiency of Beowulf Cluster
in k-Means Benchmarking (%)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

51

Figure 7: Parallel k-Means Benchmark - Strong Scaling Methodology: Total Runtime vs. Number of MPI Processes

(2 MPI Processes per RPi)

Figure 8: Parallel k-Means Benchmark — Strong Scaling of Core Computation Time vs. MPI Processes

(2 MPI Processes per RPi))

3.4 Weak Scaling Methodology and Results

Analysis
In parallel computing performance studies, strong and weak

scaling are complementary methodologies, each revealing

different aspects of system performance.

- Strong Scaling: measures how performance improves

when a fixed problem size is divided among more

processes. It evaluates how effectively the system reduces

runtime as more computing resources are applied to the

same workload.

- Weak Scaling: assesses how performance behaves when

the problem size grows proportionally with the number of

processes, keeping the per-process workload constant.

This reflects how well the system handles increasing

overall workloads without overloading individual

processes. Weak scaling is highly sensitive to

communication overhead. As more processes are

involved, synchronization and inter-process

communication (e.g., MPI collectives) may introduce

delays.

Unlike strong scaling, which is dominated by computation

reduction, weak scaling isolates the cost of

communication and load balancing under realistic,

increasing workloads. This is particularly valuable for

distributed systems where communication costs can

dominate at scale.

181.8288

112.8915

134.0936

70.7186

42.2032 35.1658
25.1014 18.0869

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45 50

To
ta

l r
u

n
ti

m
e

 (
se

c)

MPI Processes (np)

MPI-based Parallel k-Means Benchmarking
Total Runtime vs. Number of MPI Processes

(2 MPI processes per RPi)

179.2669

112.1671

192.6718

108.4383

64.1644
55.1802

39.7351
27.7119

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45 50

k-
M

ea
n

s
ru

n
ti

m
e

 (
se

c)

MPI Processes (np)

MPI-based Parallel k-Means Benchmarking
k-Means Runtime vs. Number of MPI Processes

(2 MPI processes per RPi)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

52

- Realistic Scenario for Growing Data-Intensive

Applications: Weak scaling mirrors many real-world

scenarios such as, machine learning with increasing

datasets, big data analytics, and distributed simulations

where problem size scales with available resources.

In this study, the weak scaling analysis allows us to assess

whether the Raspberry Pi Beowulf cluster can efficiently

accommodate increasing workloads by adding more nodes.

Strong scaling alone cannot fully evaluate a system’s

behaviour. A cluster might show excellent speedup for fixed

workloads (strong scaling) but degrades under growing

workloads due to communication limits (weak scaling).

Including both methodologies offers a complete scalability

picture:

- Strong scaling: Speedup potential under fixed workloads

- Weak scaling: Capacity to process larger workloads

effectively

For ARM-based, low-power clusters like the current Beowulf

system, weak scaling analysis is critical, because it:

- Tests whether such systems can be scalable when

deployed for distributed workloads.

- Identifies limits in energy-efficient computing scenarios

and edge deployments.

- Provides insights into the feasibility of using these clusters

for real-world, dynamically growing applications.

By incorporating weak scaling analysis alongside strong

scaling, this study offers a holistic and scientifically rigorous

assessment of the Beowulf cluster’s scalability. The additional

analysis not only validates the system’s computational

efficiency under controlled conditions but also demonstrates its

capacity to handle increasing workloads—critical for low-

power distributed systems, edge computing, and future scalable

machine learning frameworks.

The weak scaling results demonstrate the Beowulf cluster’s

ability to maintain stable performance as both the problem size

and the number of MPI processes increase proportionally, with

a fixed workload per process of approximately 1.56 million

samples (per rank).

Figure 10: Weak Scaling Methodology: Parallel k-Means

execution in Beowulf, 2 MPI processes per RPi

The key observations are the following “Table 4”, “Figure 10”.

“Figure 11”:

- Stable Total Runtime: Total execution time remained

nearly constant across all configurations, varying between

approximately 6.4 seconds (2 processes) and 17.6 seconds

(48 processes), mostly due to Sync

Time parameter. Despite scaling from 2 to 48 MPI

processes, the runtime growth was moderate, showing that

the cluster handled larger workloads effectively.

- Compute Time Consistency: Compute time scaled

moderately, reflecting increasing total workload, but

remained relatively stable per process. The variation in

compute time was minimal, indicating balanced

computational load across processes.

- Memory Efficiency: Memory usage before and after data

generation remained very stable across all runs (~35MB

before generation and ~53MB after generation per

process), proving excellent memory scalability and

efficiency “Figure 10”.

- Synchronization Overhead: Synchronization time
(MPI_Allreduce) increased with the number of processes,
as expected. For example, sync time grew from ~0.04

seconds (2–4 processes) to ~9.26 seconds (48 processes).

This increase is typical in weak scaling due to the growth

in communication complexity among MPI processes.

However, synchronization time remained within

reasonable limits, without dominating total runtime.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

53

- Overall Scalability: The system exhibited good weak

scalability, maintaining reasonable runtime while

handling larger datasets and higher process counts. The

results suggest that the cluster can sustain high throughput

for growing workloads, despite expected communication

overheads at higher process counts

3.4.1 Conclusion
Weak scaling performance reflects the cluster’s capacity to

handle larger data workloads by adding proportional resources

(RPi nodes). This is crucial for evaluating real-world

applications where both data and compute resources grow

together.

The observed synchronization behaviour aligns with expected

patterns in distributed computing, where communication

overhead rises with process count. However, the Beowulf

cluster effectively absorbed this overhead, sustaining

manageable runtimes throughout the test range.

These results validate the Beowulf cluster as a scalable, energy-

efficient platform for distributed, CPU-bound workloads like

k-Means clustering, even under increasing workload scenarios

typical of Big Data and machine learning applications “Table

4”, “Figure 11”.

Figure 11: MPI based Parallel Efficiency of Beowulf Cluster: Strong Scaling Methodology

Table 4. MPI-based Parallel K-Means Benchmarking: Weak Scaling Methodology

MPI-based Parallel k-Means Benchmarking - (2 MPI processes per RPi)

RPi’s

MPI
Processes

(np)

Synthetic
Datasets
(millions)

Data Gen
Time (avg)

(sec)

Compute
Time (avg)

(sec)

Sync
Time (avg)

(sec)

Update
Time (avg)

(sec)

k-Means
Time (avg)

(sec)

Total
Time
(avg)
(sec)

1 2 3.125 0.1304 6.2451 0.0397 0.0009 6.2857 6.4161

2 4 6.25 0.1313 7.8532 0.1125 0.0012 7.9669 7.9845

4 8 12.5 0.1827 15.2238 5.7411 0.0015 20.9664 15.4065

8 16 25 0.1523 20.1192 10.9144 0.0016 31.0352 20.2715

12 24 37,5 0.1458 18.5701 9.9543 0.0015 28.5259 18.7159

16 32 50 0.1493 15.1603 6.9731 0.0014 22.1349 15.3096

20 40 62.5 0.1383 16.3627 8.2226 0.0014 24.5867 16.501

24 48 75 0.1375 17.4298 9.2659 0.0014 26.6972 17.5673

4. FUTURE WORK
This study focused on k-Means clustering, a representative

CPU-bound algorithm. Future experiments will incorporate

additional distributed machine learning algorithms, including:

- DBSCAN (Density-Based Spatial Clustering) for density-

based unsupervised learning.

- Mini-Batch k-Means to evaluate scaling under streaming

and batch learning scenarios.

- Distributed Principal Component Analysis (PCA) for

dimensionality reduction in high-dimensional datasets.

This will broaden the benchmarking framework and evaluate

the generalizability of the current findings across different

workloads and across a wider spectrum of algorithms,

particularly those with more complex communication patterns

or iterative convergence behavior.

Furthermore, CNN training workloads will also be evaluated to

extend the analysis toward more realistic machine learning

6.4161

7.9845

15.4065

20.2715
18.7159

15.3096 16.501 17.5673

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

To
ta

l r
u

n
ti

m
e

 (
se

c)

MPI Processes (np)

MPI-based Parallel k-Means Benchmarking
Total Runtime vs. Number of MPI Processes

(2 MPI processes per RPi)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

54

scenarios. Specifically, experiments with MobileNet - a

lightweight convolutional neural network - will be conducted

using MPI-based distributed learning.

Together, these future extensions will create a comprehensive,

modular benchmarking suite capable of evaluating both CPU-

bound and communication-intensive workloads. This expanded

framework will strengthen the understanding of distributed

machine learning feasibility on low-power, ARM-based

clusters, contributing valuable insights to both High-

Performance Computing (HPC) and Edge Computing research

fields.

5. CONCLUSION
This study systematically evaluated the scalability, efficiency,

and performance of a Raspberry Pi–based Beowulf cluster

through comprehensive benchmarking of the parallel k-Means

clustering algorithm under both strong and weak scaling

methodologies.

In the strong scaling experiments, where the total problem size

was kept constant while increasing the number of MPI

processes, the cluster exhibited excellent scalability. The total

runtime decreased substantially—from over 180 seconds with

2 MPI processes to under 20 seconds with 48 processes—

demonstrating the cluster’s ability to effectively exploit

parallelism. Despite the expected increase in communication

overhead (particularly during the synchronization phase using

MPI_Allreduce), the computational speedup consistently

outweighed the associated communication costs. This is

particularly noteworthy given the low-power, ARM-based

architecture of the cluster, showcasing its potential for scalable,

energy-efficient distributed computation.

In the weak scaling experiments, where the per-process

workload remained fixed while proportionally increasing the

total dataset size along with the number of MPI processes, the

system maintained stable performance. Execution times

remained within acceptable limits as the problem size grew,

with predictable scaling trends across the cluster. These results

confirm the cluster’s ability to handle larger datasets

effectively, provided that the per-process memory footprint is

controlled. Moreover, the predictable weak scaling behaviour

reinforces the cluster’s suitability for tasks where the dataset

naturally grows with the available computational resources.

Together, the strong and weak scaling results present a holistic

view of the cluster’s capabilities:

- Strong scaling validated its ability to minimize runtime for

fixed workloads through parallelism.

- Weak scaling confirmed its capability to accommodate

larger problem sizes without significant performance

degradation.

Overall, this research demonstrates that small, cost-effective,

ARM-based Beowulf clusters can deliver robust performance

and scalability for parallel machine learning tasks, particularly

when workloads are carefully designed to leverage high

degrees of parallelism with manageable communication

overhead. These findings position such clusters as promising

solutions for resource-efficient distributed computing in edge

environments, educational HPC labs, and lightweight research

platforms.

6. ACKNOWLEDGMENTS
My sincere gratitude to Assistant Professor Ioannis S.

Barbounakis for his precious guidelines, knowledge and

contribution to the completion of this study.

7. REFERENCES
[1] Dimitrios Papakyriakou, Ioannis S. Barbounakis. Data

Mining Methods: A Review. International Journal of

Computer Applications. 183, 48 (Jan 2022), 5-19.

DOI=10.5120/ijca2022921884

[2] Raspberry Pi 4 Model B. [Online]. Available:

raspberrypi.com/products/raspberry-pi-4-model-b/.

[3] Raspberry Pi 4 Model B specifications. [Online].

Available:

https://magpi.raspberrypi.com/articles/raspberry-pi-4-

specs-benchmarks

[4] Aurelien, M. (2022). PEP 668 – Marking Python base

environments as externally managed. Python Software

Foundation. https://peps.python.org/pep-0668/

[5] J. Dean and S. Ghemawat, "MapReduce: Simplified data

processing on large clusters," Commun. ACM, vol. 51,

no. 1, pp. 107–113, Jan. 2008

[6] M. Zaharia et al., "Apache Spark: A unified engine for big

data processing," Commun. ACM, vol. 59, no. 11, pp. 56–

65, Nov. 2016

[7] A. Sergeev and M. Del Balso, "Horovod: fast and easy

distributed deep learning in TensorFlow," arXiv preprint

arXiv:1802.05799, 2018

[8] Google, "Multi Worker Mirrored Strategy Guide,"

TensorFlow Docs, 2023

[9] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:

Portable Parallel Programming with the Message

Passing Interface, 3rd ed., MIT Press, 2014

[10] J. Dongarra et al., "High-performance conjugate-gradient

benchmark: A new metric for ranking high-performance

computing systems," Int. J. High Perform. Comput. Appl.,

vol. 30, no. 1, pp. 3–10, Feb. 2016

[11] M. Rocklin, "Dask: Parallel computation with blocked

algorithms and task scheduling," Proc. 14th Python in

Science Conference, 2015

[12] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,

McCauley, M., Franklin, M. J., Shenker, S., & Stoica, I.

(2010). Spark: Cluster computing with working sets. In

Proceedings of the 2nd USENIX Conference on Hot

Topics in Cloud Computing (HotCloud'10). USENIX

Association

[13] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,

Dean, J., ... & Zheng, X. (2016). TensorFlow: A system

for large-scale machine learning. In Proceedings of the

12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI '16) (pp. 265–283). USENIX

Association

[14] Sergeev, A., & Del Balso, M. (2018). Horovod: fast and

easy distributed deep learning in TensorFlow. In

Proceedings of the 31st Conference on Neural Information

Processing Systems (NeurIPS) Workshop

[15] Thakur, R., Rabenseifner, R., & Gropp, W. (2005).

Optimization of collective communication operations in

MPICH. In Proceedings of the International Conference

on Computational Science (ICCS 2005) (pp. 49–57).

Springer

[16] Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified

data processing on large clusters. Communications of the

ACM, 51(1), 107–113.

https://doi.org/10.1145/1327452.1327492

https://peps.python.org/pep-0668/
https://doi.org/10.1145/1327452.1327492

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.32, August 2025

55

[18] Gropp, W., Lusk, E., & Skjellum, A. (2014). Using MPI:

Portable Parallel Programming with the Message-

Passing Interface. MIT press.

[19] Dongarra, J., Beckman, P., Moore, T., et al. (2021). The

International Exascale Software Project Roadmap.

International Journal of High-Performance Computing

Applications, 35(1), 3–60

[20] Kogias, E., Christou, I. T., & Triantafyllidis, G. (2020).

Distributed Machine Learning on Edge Devices: A

Survey. IEEE Access, 8, 211309–211328

[21] Mariani, L., Bartolini, A., Borghi, G., & Benini, L. (2022).

Scalable Edge Machine Learning on Raspberry Pi

Clusters. Future Generation Computer Systems, 128,

190–203

IJCATM : www.ijcaonline.org

