
International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.32, August 2025 

43 

Parallel k-Means Benchmarking on a CPU-Bound 

Beowulf Cluster of Raspberry Pi Nodes: An MPI-based 

Scaling Analysis with CPU-Centric Performance 

Evaluation 

Dimitrios Papakyriakou 
PhD Candidate  

Department of Electronic Engineering 
Hellenic Mediterranean University 

Crete, Greece 

Ioannis S. Barbounakis  
Assistant Professor 

Department of Electronic  
Engineering 

Hellenic Mediterranean University 
Crete, Greece 

ABSTRACT 

This study presents an in-depth parallel benchmarking analysis 

of the k-Means clustering algorithm on a Beowulf cluster 

composed of Raspberry Pi 4B nodes, each equipped with 8GB 

of RAM. Leveraging MPI for distributed computation, it is 

systematically evaluating the algorithm’s strong scaling 

behaviour using synthetic datasets of fixed size -75 million 

two-dimensional points - while varying the number of MPI 

processes from 2 up to 48 (with two processes per node). 

The performance evaluation focuses on a detailed execution 

time decomposition across five key phases: data generation, 

parallel distance computation (Compute Phase), 

synchronization via MPI_Allreduce (Sync Phase), centroid 

updates (Update Phase), (k-Means Phase) and total runtime. 

Results confirm that the Compute Phase remains the dominant 

contributor to total runtime, consistently accounting for the 

majority of execution time across all configurations. 

Synchronization overhead increases moderately at intermediate 

process counts, a typical phenomenon in distributed systems, 

but remains manageable and does not offset the overall speedup 

achieved through parallelization. 

The Beowulf cluster demonstrates excellent scalability and 

high parallel efficiency throughout the strong scaling 

experiments, with total runtime reduced by nearly (10×) when 

increasing from 2 to 48 MPI processes. Memory usage remains 

within physical RAM limits due to careful dataset partitioning, 

enabling large-scale processing on low-power ARM-based 

nodes. 

Overall, this work highlights the feasibility and efficiency of 

CPU-centric, memory-aware distributed machine learning on 

energy-efficient Raspberry Pi clusters. The proposed 

benchmarking framework provides a robust and reproducible 

foundation for analysing algorithmic performance, scalability, 

and resource utilization in lightweight distributed 

environments, aligning with contemporary trends in edge 

computing and resource-constrained high-performance 

computing. 
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1. INTRODUCTION 

The k-Means clustering algorithm is a widely used 

unsupervised learning method that partitions data into k distinct 

clusters based on feature similarity [1]. Its computational 

structure which is characterized by repetitive distance 

calculations and centroid updates, makes it highly amenable to 

parallel execution, especially when applied to large-scale 

datasets. As data volumes grow, evaluating the performance 

and scalability of k-Means on distributed systems becomes 

increasingly important for real-world applications ranging from 

image processing to bioinformatics and recommendation 

systems. 

In this study, we investigate the performance characteristics of 

k-Means in a Message Passing Interface (MPI) environment, 

utilizing a Beowulf cluster composed of 24 Raspberry Pi 4B 

nodes, each equipped with an 8GB ARM-based processor. MPI 

offers a flexible model for data-parallel workloads, enabling 

processes to work independently while communicating 

minimal information during synchronization phases such as 

centroid updates. This design aligns well with k-Means' 

structure, where the bulk of the computation is spent on point-

to-centroid distance calculations, a phase that can be distributed 

efficiently across CPU cores. 

Our implementation leverages MPICH, a widely adopted MPI 

library, to coordinate 48 parallel processes running on the 

cluster. The algorithm operates on synthetic datasets of 

increasing size (up to 80 million points) to assess scaling 

behavior and memory usage. Performance is evaluated based 

on timing decomposition across core algorithmic phases—

including data scattering, parallel computation, result 

gathering, and centroid updating. Metrics such as total runtime, 

CPU-bound phase dominance, and communication overhead 

are analyzed to determine the effectiveness of the 

parallelization strategy. 

By conducting this analysis on a low-cost, ARM-based 

computing environment, we aim to demonstrate the feasibility 

and efficiency of scalable clustering in resource-constrained 

distributed systems. The results contribute insights into the 

design of memory-conscious, CPU-focused parallel algorithms 

suitable for educational, experimental, and lightweight 

production environments. 
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This study focuses on the deployment and performance 

analysis of the k-Means clustering benchmark on a Beowulf 

cluster consisting of 24 Raspberry Pi 4 Model B nodes, each 

equipped with 8GB of RAM and interconnected via Ethernet. 

The objective is to investigate the scalability and execution 

efficiency of ARM-based distributed systems under 

computational workloads. The evaluation highlights MPI-

based parallelization, execution time decomposition, and 

memory-aware workload distribution, providing insights into 

the practical feasibility of low-power, cost-effective high-

performance computing (HPC) environments. 

The Raspberry Pi 4 Model B (8GB RAM), illustrated in "Figure 

1", serves as the fundamental building block of the cluster. 

Each unit features a 64-bit quad-core ARMv8 Cortex-A72 CPU 

clocked at 1.5 GHz [2], [3]. Its affordability and accessibility 

were key factors in its selection as the base hardware for 

constructing a high-performance computing cluster, enabling a 

systematic evaluation of its capabilities in parallel processing 

and distributed computing environments. 

 

Figure 1: Single Board Computer (SBC) - Raspberry Pi 4 

Model B [2], [3]. 

2. SYSTEM DESCRIPTION 

2.1 Hardware Equipment 
At the heart of this project lies a cost-efficient yet powerful 

Beowulf cluster, built from 24 Raspberry Pi 4B units (8GB 

RAM each), as illustrated in "Figure 2". A single Raspberry Pi 

serves as the master node, orchestrating job scheduling and 

resource distribution, while the remaining 23 nodes form the 

computational backbone of the system, operating in parallel 

under MPI-based coordination. 

The cluster is neatly structured into four modular stacks, each 

hosting six Raspberry Pis, and connected via Gigabit Ethernet 

switches (TP-Link TL-SG1024D) that deliver up to 1 Gbps of 

bandwidth per node. This setup enables efficient and scalable 

inter-node communication, providing an HPC-like experience 

within an ARM-based low-cost infrastructure "Figure 2". 

To ensure stable power delivery, the system relies on two 

industrial-grade switch-mode power supplies (60A, 5V), tuned 

to 5.80V to compensate for voltage drops due to cable length 

and power distribution. In terms of storage, the cluster is 

equipped with high-speed NVMe SSDs: the master node hosts 

a 1TB Samsung 980 PCIe 3.0 NVMe drive, while each worker 

node is outfitted with a 256GB Patriot P300 NVMe M.2 SSD, 

enabling fast local I/O performance and smooth handling of 

large-scale synthetic data used in the benchmarks. 

 

 

Figure 2: Deployment of the Beowulf Cluster with (24) 

RPi-4B (8GB). 

2.2 Software Environment and Toolchain 

The software environment of the Beowulf cluster was carefully 

designed to ensure performance, compatibility, and 

reproducibility in a distributed parallel computing context. 

Each of the 24 Raspberry Pi 4B nodes (8GB RAM, ARM 

Cortex-A72 @ 1.5 GHz, 64-bit) was configured with a 

consistent and stable system stack to support high-performance 

scientific computation. 

The operating system installed on all nodes was Debian 

GNU/Linux 12.11 (Bookworm), the latest officially supported 

64-bit distribution for Raspberry Pi devices. This version 

includes Linux Kernel (6.12.25+rpt-rpi-v8), which provides 

full support for the ARMv8-A architecture, multithreading, and 

modern scheduling capabilities essential for CPU-bound 

parallel workloads. 

A critical component of the cluster’s parallel execution 

framework is the Message Passing Interface (MPI). In this 

project, MPICH was selected as the preferred implementation 

due to its strong conformance to the MPI standard, efficiency 

in distributed memory environments, and broad compatibility 

with C, C++, Fortran, and Python-based MPI applications. 

MPICH (originally “Message Passing Interface Chameleon”) 

is recognized for its portability and high-performance design, 

making it especially well-suited for low-cost, resource-

constrained clusters such as ours. While other implementations 

such as OpenMPI are also available, MPICH was chosen for its 

consistent behaviour and robustness on ARM-based platforms. 

To support the compilation of performance-critical libraries, 

the GNU Compiler Collection (GCC) with Fortran support was 

installed on all nodes. The GCC Fortran compiler plays a vital 

role in compiling numerically intensive routines and is widely 

used in HPC environments due to its optimization capabilities 

and standards compliance. 

Additionally, OpenBLAS was included as the foundational 

linear algebra backend. OpenBLAS is a highly optimized 

implementation of the Basic Linear Algebra Subprograms 

(BLAS) and provides accelerated matrix operations, which are 

essential for many scientific algorithms and machine learning 

tasks, including k-Means. 

A defining feature of the software setup was the use of Python’s 

built-in venv module to isolate the computational environment 

from system-level dependencies. Each node ran a dedicated 

Python 3.11 virtual environment, ensuring consistency and 
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reproducibility across the entire cluster. All required scientific 

libraries were installed within the virtual environment using 

pip, following PEP 668 compliance guidelines to avoid 

interference with system-managed packages [4]. The specific 

library versions used were: 

- NumPy: 1.26.4 

- SciPy: 1.13.0 

- scikit-learn: 1.4.2 

- mpi4py: 3.1.6 

- psutil-7.0.0 

All MPI executions were performed within the virtual 

environment using mpiexec, with explicit host configuration 

and core binding to ensure optimal resource utilization per 

process. This containerized configuration not only guarantees 

identical behaviour across all nodes but also enhances the 

scientific reliability and reproducibility of experimental results. 

2.3 Design 
The structural layout of the Raspberry Pi (RPi) cluster is 

depicted in “Figure 3”, comprising 24 Raspberry Pi 4B nodes, 

each equipped with 8GB of RAM. All nodes are interconnected 

through a 24-port Gigabit Ethernet switch, supporting data 

transfer rates of up to 1000 Mbps, thereby facilitating high-

speed inter-node communication. Within this configuration, a 

single Raspberry Pi functions as the master (head) node, 

responsible for scheduling and resource coordination tasks 

apart from its worker node tasks, while the remaining 23 nodes 

serve as worker nodes, executing distributed computational 

workloads. To ensure reliable and low-latency communication, 

each node is assigned a unique static IP address, and SSH 

(Secure Shell) is employed for secure communication between 

master and worker nodes. 

The master node is equipped with a Samsung 980 PCIe 3.0 

NVMe M.2 SSD (1TB), offering theoretical write speeds up to 

3000 MB/s and read speeds up to 3500 MB/s. To enhance 

storage efficiency across the cluster, each worker node is fitted 

with a Patriot P300 NVMe M.2 SSD (256GB), capable of 

reaching write speeds up to 1100 MB/s and read speeds up to 

1700 MB/s. Leveraging the Raspberry Pi 4B’s support for 

external booting, all SSDs are connected via USB 3.0 ports, 

which provide a theoretical maximum data throughput of 4.8 

Gbps (600 MB/s). This represents a substantial upgrade from 

legacy USB 2.0 connections, which are limited to 480 Mbps 

(60 MB/s). 

This enhanced storage architecture significantly improves the 

I/O performance of the cluster. By utilizing the high-speed 

capabilities of NVMe SSDs, the system achieves markedly 

better data access times and overall computational 

responsiveness compared to earlier microSD-based 

configurations. Although the USB 3.0 interface introduces 

some limitations relative to native PCIe interfaces, the 

performance gains delivered by the NVMe SSDs substantially 

outweigh these constraints, resulting in a measurable boost in 

overall cluster efficiency during testing and benchmarking. 

- MPI Process Distribution and Validation: 

To validate the full utilization of the cluster’s distributed 

architecture, a parallel execution test was conducted using the 

classic hello_mpi.py program with 48 MPI processes, 

distributed across all 24 worker nodes. The execution was 

explicitly launched with the hosts flag and a list of unique 

hostnames, ensuring that MPI processes were not only 

launched, but effectively distributed across physical machines, 

rather than being confined to a single node. 

The resulting output confirms that each process was assigned 

to a unique core across the cluster, with ranks distributed over 

all available hosts (e.g., rpi4B-sl-01 through rpi4B-sl-23). This 

demonstrates a successful and synchronized MPI deployment 

in a heterogeneous ARM-based environment, where every 

Raspberry Pi 4B participates in the computation. 

This process-level parallelism confirms that the MPI runtime 

environment is correctly configured, that passwordless SSH 

and static IP addressing are functioning as intended, and that 

the system can reliably execute fully distributed applications 

across physical hardware nodes. The cluster thus achieves true 

distributed memory parallelism, a foundational characteristic 

of HPC systems “Figure 4”. 

 

Figure 3: RPi-4B Beowulf cluster architecture diagram 

[1], [2]. 

 
Figure 4: MPI Process Distribution and Validation 

3. Theoretical Background: The k-Means 

Clustering Algorithm  

The k-Means algorithm is a widely adopted unsupervised 

machine learning method that partitions a given dataset into (k) 
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distinct, non-overlapping clusters based on similarity metrics. 

Its objective is to minimize intra-cluster variance, formally 

defined as the sum of squared distances between each point and 

its assigned cluster centroid. 

Given a set of observations 𝑋 = {𝑥1, 𝑥2, . . . 𝑥𝑛} in a M-

dimensional space, and a specified number of clusters (k), the 

algorithm follows an iterative refinement process: 

- Initialization step: Randomly select (k) initial centroids. 

- Assignment step: Assign each point to the nearest centroid 

using a distance metric, commonly the Euclidean distance. 

- Update step: Recalculate centroids as the mean of the 

points assigned to each cluster. 

- Convergence: Repeat steps 2 and 3 until assignments no 

longer change or a predefined iteration limit is reached. 

Despite its simplicity, (k-Means) is computationally intensive 

for large datasets, particularly during the assignment step, 

which scales linearly with the numbers of data points (n), 

dimensions (M), and clusters (k). As a result, it is highly suited 

for parallelization in CPU-bound environments, where 

independent computations (e.g., distance calculations) can be 

distributed across multiple cores or nodes. 

When implemented in distributed-memory systems (e.g., MPI 

clusters), (k-Means) can be decomposed into distinct 

communication and computation phases, allowing it to scale 

efficiently in terms of both data size and computational 

resources. 

3.1 Methodology 
In this study, we implemented a parallel k-means algorithm on 

a Beowulf cluster by adopting a decentralized data generation 

model. Specifically, each MPI rank independently generates a 

local subset of the dataset using a deterministic random_state. 

This eliminates the need for centralized data generation and 

distribution via MPI_Scatter, thus reducing initialization 

overhead and improving scalability. 

This approach is grounded in well-established principles of 

modern distributed computing and mirrors real-world practices 

in the following domains: 

- Big Data Analytics Pipelines: Frameworks such as 

Hadoop and Spark rely on distributed storage (e.g., HDFS, 

Amazon S3) and local data access patterns, where 

compute nodes work on assigned data blocks without a 

computational orchestrator [5],[6]. 

 

- Scalable Machine Learning Pipelines: In distributed 

training, data parallelism is a dominant paradigm, as seen 

in TensorFlow's Multi Worker Mirrored Strategy, 

PyTorch's Distributed Data Parallel, and Horovod. These 

frameworks operate on local data shards to maximize 

throughput and minimize communication bottlenecks 

[7],[8]. 

- High-Performance Computing (HPC) Clusters: Best 

practices in MPI-based applications emphasize 

minimizing collective operations (e.g., MPI_Scatter, 

MPI_Gather) due to their poor scalability beyond a few 

hundred ranks. Instead, favoring local computation and 

synchronization of compact metadata (e.g., centroids) 

follows established HPC design guidelines [9],[10]. 

 

- Cloud-Native Workflows: Distributed task systems like 

Dask, Ray, and Kubernetes-based ML pipelines process 

pre-partitioned data directly from object storage. Stateless 

workers operate on data independently, echoing our 

approach [11]. 

The scientific and practical advantages of this methodology are 

twofold: 

- Scalability: Local data generation prevents master node 

overload and supports nearly linear scaling, as each node 

generates and processes its own portion. 

 

- Realism: The method closely mirrors production 

workflows where datasets are too large to fit in memory 

on a single node, especially in edge or cloud 

environments. 

Despite being deployed on a cost-efficient Beowulf cluster of 

Raspberry Pi 4B nodes, our implementation reflects 

architectural patterns used in large-scale data platforms. It thus 

serves as a scientifically valid model for educational, research, 

and applied systems in Big Data, HPC, and Cloud-based 

Machine Learning contexts. 

3.1.1 Data Generation via Decentralized 

Deterministic Seeding 
Contrary to traditional master-slave approaches, where the root 

process generates the full dataset and scatters it across nodes, 

this implementation embraces a decentralized methodology in 

which each MPI process independently generates a 

deterministic partition of the dataset. This is accomplished 

using the [make_blobs()] function from sklearn datasets with a 

fixed random_state seed and unique (n_samples_local) per 

rank. As the function is deterministic, all processes produce 

consistent, non-overlapping data subsets that collectively form 

the global dataset. This eliminates the need for memory-

intensive MPI_Scatter operations, ensuring both memory 

locality and scalability. 

This design reflects real-world scenarios in Big Data Analytics, 

Machine Learning Pipelines, and HPC Clusters, where data is 

often either pre-sharded across compute nodes or ingested in 

parallel from distributed storage systems (e.g., HDFS, S3, or 

Lustre). It aligns with data-parallel paradigms common in 

Apache Spark, Dask, and distributed TensorFlow training 

workflows. 

3.1.2 Parallel Computation and Centroid 

Synchronization 
Each MPI process performs local computations: calculating 

Euclidean distances between its subset of data points and the 

current centroids, assigning clusters, and computing partial 

sums and counts. These operations constitute the Compute 

Phase, which dominates the overall runtime, validating the 

CPU-bound nature of the task. 

After local computations, each process participates in a 

collective reduction operation (MPI_Allreduce) to globally 

aggregate partial centroids. The updated centroids are then 

synchronized across all ranks for the next iteration. This design 

eliminates centralized bottlenecks and enhances fault-tolerance 

and reproducibility across iterations. 

3.1.3 Execution and Environment Control 
All MPI processes are launched using mpiexec with explicit 

host bindings defined in a static machinefile, ensuring 

distributed execution over physical nodes. Python 3.11 runs 

within isolated virtual environments (venv) across all nodes, 

ensuring package consistency, dependency control, and PEP 

668 compliance for reproducible experiments. 
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3.1.4 Benchmarking and Memory Profiling 
We evaluate performance through multiple metrics: Data 

Generation Time, Compute Time, Synchronization Time, 

Centroid Update Time, and Total Execution Time, captured via 

MPI_Wtime(). The system successfully handled datasets of up 

to 80 million two-dimensional samples, with each float64 

sample occupying 16 bytes per point. “Table 1” summarizes 

the estimated memory footprint per process for various dataset 

sizes.  

Table 1. Estimated RAM Usage per Process (2 MPI per 

RPi) 

Estimated RAM Usage per Process (2 MPI used per RPi) 

n_samples 

Total 

(millions) 

n_samples 

per Rank 

(millions) 

Memory 

Usage  

before 

Gen 

(MB) 

Memory 

After 

Gen 

(MB) 

 

Status 

20 10 ~34.8 ~162.0 Success 

30 15 ~34.8 ~269.7 Success 

40 20 ~34.8 ~377.6 Success 

50 25 ~34.8 ~474.2 
 

Success 

60 30 ~34.8 ~569.0 
 

Success 

70 35 ~34.9 ~307.9 
 

Success 

75 37,5 ~34.8 ~326.8 
Upper 

limit 

80 40 ~34.8 - 
OOM  

failed 

This architecture demonstrates that even low-cost, ARM-based 

devices can operate as capable components in scalable 

distributed systems. By avoiding centralized memory pressure 

and exploiting deterministic parallel data generation, our 

methodology delivers efficient, reproducible, and scientifically 

grounded results in line with best practices in contemporary 

large-scale computing. 

3.2 Evaluation Metrics  
The performance of the fully distributed, MPI-based parallel k-

Means implementation was evaluated using five key execution 

metrics, each corresponding to a critical phase in the distributed 

computation pipeline “Figure 5”: 

- Data Generation Phase: This metric captures the time 

required for each MPI process to independently generate 

its portion of the synthetic dataset locally. It reflects I/O 

independence, startup latency, and the cost of distributed 

initialization. By avoiding centralized data loading and 

scattering, this design aligns with best practices in scalable 

Big Data systems and distributed machine learning 

frameworks [12], [13].  

 

- Compute Phase: This is the core workload of the 

algorithm and measures the time taken by each process to 

compute Euclidean distances between local data points 

and cluster centroids, assign points to the nearest cluster, 

and compute partial statistics (e.g., local sums and counts). 

It quantifies raw CPU performance and reflects how well 

the algorithm utilizes available cores. 

 

- Synchronization Phase: This metric reflects the time 

required for the MPI_Allreduce operation that aggregates 

partial centroid statistics across all ranks to compute the 

global mean for each cluster. It captures communication 

overhead, interconnect efficiency, and scalability of the 

global synchronization step. The use of collective 

reduction aligns with common practices in distributed 

deep learning and high-performance computing [14], [15]. 

 

- Update Phase: After synchronization, each process 

locally recalculates the new centroids using the globally 

reduced statistics. This metric measures how quickly the 

system converges during each iteration and evaluates the 

local update efficiency and memory access latency. 

 

- Total Runtime: This is the overall execution time from 

data generation through convergence. It includes all 

computational and communication phases and is used to 

assess speedup, efficiency, and scaling behavior. It also 

serves as the basis for strong and weak scaling 

experiments. 

 

- K-Means Phase Time: This compound metric measures 

the execution time of the core iterative k-Means clustering 

process across all MPI ranks. It aggregates the durations 

of the Compute Phase, Synchronization Phase, and 

Update Phase into a unified indicator of algorithmic 

efficiency. Specifically, it reflects the end-to-end time 

spent per iteration for calculating Euclidean distances, 

assigning cluster labels, computing local statistics, 

performing global centroid synchronization via 

MPI_Allreduce, and updating centroids. This phase is 

critical in assessing the convergence behavior, numerical 

stability, and parallel performance of the distributed 

clustering routine. In formulaic terms: 

 

𝐾 − 𝑀𝑒𝑎𝑛𝑠 𝑇𝑖𝑚𝑒 =  𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑇𝑖𝑚𝑒 +  𝑆𝑦𝑛𝑐 𝑇𝑖𝑚𝑒 
+  𝑈𝑝𝑑𝑎𝑡𝑒 𝑇𝑖𝑚𝑒 

By isolating this metric, researchers can disentangle the cost of 

the main computational loop from peripheral operations such 

as data loading or initialization, enabling precise evaluation of 

scalability and resource utilization in high-performance and 

distributed environments. 

This distributed execution model reflects the architectural 

principles of modern Big Data Analytics, machine learning 

pipelines, and high-performance computing [16], [17], while 

demonstrating real-world feasibility on energy-efficient, low-

cost hardware platforms. 
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Figure 5: Parallel k-Means execution model using MPI 

In the cluster-wide version of the parallel k-Means 

implementation (v7), each Raspberry Pi runs two MPI 

processes. As the cluster scales with more nodes, the total 

number of MPI processes increases accordingly (e.g., 48 MPI 

ranks for 24 RPi’s). 

To centralize performance reporting, (Rank 0) is designated as 

the master aggregator. Each MPI rank collects its local 

performance metrics—such as memory usage before and after 

data generation, data generation time, k-Means compute time, 

and total execution time. These values are then gathered on 

Rank 0 using MPI.gather(). 

This allows (Rank 0) to output a cluster-wide summary, 

reporting the minimum, maximum, and average values for each 

metric across all participating processes. This strategy ensures 

scalable monitoring without redundant output from each 

process and simplifies interpretation when benchmarking the 

full cluster. 

3.3 Strong Scaling Methodology and 

Results Analysis  

The strong scaling results presented in “Table 2” demonstrate 

the high scalability and operational efficiency of the Beowulf 

cluster, composed of Raspberry Pi devices. The system was 

evaluated with a constant workload of 75 million synthetic 

samples, while progressively increasing the number of MPI 

processes from 2 to 48 (with 2 MPI processes per Raspberry Pi 

node). 

The total execution time significantly decreased as more MPI 

processes were employed. Starting from 181.83 seconds with 2 

processes, the runtime dropped to just 18.09 seconds with 48 

processes — indicating a 10× reduction in total runtime. This 

demonstrates the cluster’s ability to effectively exploit 

parallelism, even with energy-efficient, low-cost hardware. 

Moreover, the compute time per process decreased sharply 

from 177.98 seconds to 17.95 seconds, proving the linear 

reduction of local computational load as more processes were 

added. Similarly, data generation time dropped proportionally, 

reflecting excellent data partitioning across nodes. 

In this study, the synchronization phase refers to the 

MPI_Allreduce operation a collective communication routine 

that aggregates partial results, such as the sum and count of data 

points per cluster, and distributes the aggregated global 

centroids to all processes. As more processes participate, 

synchronization time tends to grow due to the increased volume 

of data exchange, the larger number of network connections, 

and occasional computational imbalances across processes 

This temporary communication bottleneck at moderate scales 

is expected in distributed computing systems. However, despite 

this increase in synchronization time, the Beowulf cluster 

maintained high parallel efficiency across all tested 

configurations. The cluster consistently achieved reductions in 

total runtime with the addition of more MPI processes, 

demonstrating that computational speedup effectively 

outweighed communication overhead. This behavior aligns 

with established findings in distributed machine learning and 

high-performance computing systems [18], [19], [20]. 

Overall, these results highlight that the Beowulf cluster exhibits 

strong scalability for parallel k-Means clustering, delivering 

high performance per unit cost. This validates its feasibility for 

distributed machine learning workloads, particularly in low-

power edge computing environments, where resource-aware 

high-performance computing is increasingly crucial [21]. The 

Beowulf cluster demonstrated excellent scalability, as the total 

execution time consistently decreased with the addition of more 

MPI processes, proving that the computational speedup 

effectively outweighed the communication overhead. This 

behaviour is consistent with established patterns in distributed 

machine learning and high-performance computing [18], [19]. 

Specifically, synchronization time reached its peak at 

intermediate scales (e.g., 8–16 RPi’s), a well-known 

phenomenon in distributed systems where communication 

overhead can temporarily dominate performance at certain 

scales [20]. 

3.3.1 Conclusion 

This study presents a detailed evaluation of a Beowulf cluster 

built with Raspberry Pi devices, focusing on its strong scaling 

performance for parallel k-Means clustering. The results 

clearly demonstrate that, despite using energy-efficient, low-

cost hardware, the cluster can achieve substantial 

computational performance and scalability. 

The systematic benchmarking revealed that the total execution 

time decreased consistently as more MPI processes were 

employed, achieving a near 10× speedup when scaling from 2 

to 48 processes on the same fixed workload. The compute time 

per process dropped almost linearly, confirming effective load 

balancing and parallelization. 

While synchronization time increased at intermediate scales 

due to higher MPI_Allreduce communication overhead—a 

common behavior in distributed systems—it remained within 

acceptable limits and did not hinder the overall performance 

benefits. This validates the robustness and efficiency of the 

MPI-based distributed computation, even in resource-

constrained environments. 

Moreover, the system maintained high parallel efficiency 

throughout the tests, demonstrating its ability to handle large-

scale machine learning workloads in a cost-effective manner. 

The findings confirm that such Raspberry Pi clusters can be 

viable alternatives for distributed machine learning tasks, 

particularly for educational, research, and edge computing 

purposes where power consumption, cost, and portability are 

critical factors. 

In conclusion, the Beowulf cluster proves to be a scalable, 

efficient, and practical solution for parallel k-Means clustering, 

reinforcing the potential of low-power clusters in modern high-
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performance and edge computing applications. These results 

align with existing research in distributed machine learning and 

resource-aware computing systems, offering valuable insights 

for future explorations in the field [18], [19], [20], [21]. 

The “Figure 6” presents the metrics results in the CLI 

environment where the “Figure 7” clearly illustrates the strong 

scaling behavior of the Beowulf cluster during the parallel k-

Means benchmark. As the number of MPI processes increases, 

the total runtime decreases sharply, demonstrating effective 

workload distribution and parallel speedup. The curve shows a 

near-linear reduction in runtime up to a moderate number of 

processes, followed by diminishing returns at higher scales due 

to increasing synchronization overhead. Despite this, the 

overall trend highlights the high scalability and efficiency of 

the cluster, especially considering the low-power Raspberry Pi 

hardware. 

The “Figure 8” depicting k-Means Time versus the Number of 

MPI Processes provides crucial insight into the strong 

scalability of the core computational workload. By isolating the 

time spent specifically in the iterative k-Means computations - 

including distance calculations, cluster assignments, 

synchronization, and centroid updates - the graph highlights 

how effectively the parallel algorithm leverages additional 

processes. 

A decreasing trend in k-Means Time with increasing MPI 

processes indicates efficient distribution of the computational 

load and successful parallelization. This visualization also 

helps identify potential scalability limits or diminishing returns 

at higher process counts, which are typical in distributed 

systems due to increasing synchronization and communication 

overheads. 

Overall, this graph serves as a direct indicator of computational 

efficiency and scalability, validating the Beowulf cluster’s 

ability to handle intensive CPU-bound workloads under strong 

scaling conditions.   
Figure 6: Strong Scaling Methodology: Parallel k-Means 

execution in Beowulf, 2 MPI processes per RPi, 75M 

datasets 

 In addition to total runtime reduction, the parallel efficiency of 

the Beowulf cluster was evaluated to provide deeper insights 

into scalability. Parallel efficiency quantifies how effectively 

the cluster utilizes additional computational resources, 

normalized against a baseline configuration. Here, the baseline 

was set to two MPI processes—the minimal tested 

configuration—using the following formula: 

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =  
𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  × 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡  ×  𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 × 100 

 

- 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  = Total Runtime for the baseline (e.g., 2 MPI 

processes) 

- 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  = Baseline number of processes (e.g., 2) 

- 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = Total Runtime at current MPI configuration 

- 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡  = Current number of processes 

 

For instance:  for 4 MPI Processes we have:  

 

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =  
181.8288×2

112.8915  × 4 
 × 100 ≈ 80.5  

 

The above logic applies for all the MPI processes consisted in 

the “Table 3”. 
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“Table 3”, summarizes the parallel efficiency of the Beowulf 

cluster for the parallel k-Means workload under strong scaling 

conditions. Using the 2-process configuration as the baseline 

(100%), the efficiency decreases as more processes are added - 

a common pattern in strong scaling tests. 

At moderate process counts (e.g., 4 processes), the system 

maintains relatively high efficiency (~80.5%), indicating good 

scalability in early scaling stages. However, efficiency drops 

beyond 8 processes, stabilizing around 32–42% in larger 

configurations. Notably, the cluster achieves its highest 

efficiency at 48 processes among high counts, suggesting 

effective load-balancing and relatively well-managed 

communication overhead at that scale. This behavior is typical 

of strong scaling in distributed systems, where increased 

communication overhead gradually limits efficiency, but 

balanced workloads and optimized MPI operations can still 

maintain substantial parallelization benefits. 

 

Table 3. Parallel Efficiency of Cluster 

MPI 
Processes 

(np) 

Total  
Time  
(sec) 

Parallel 
Efficiency  

(%) 

2 181.8288 100.0 (Baseline) 

4 112.8915 80.53% 

8 134.0936 33.90% 

16 70.7186 32.14% 

24 42.2032 35.90% 

32 35.1658 32.32% 

40 25.1014 36.22% 

48 18.0869 41.89% 

 

 

 

 

Figure 9: MPI based Parallel Efficiency of Beowulf Cluster: Strong Scaling Methodology 

Table 2. MPI-based Parallel K-Means Benchmarking: Strong Scaling Methodology 

MPI-based Parallel k-Means Benchmarking - (2 MPI processes per RPi) 

RPi’s 

MPI 
Processes 

(np) 

Synthetic 
Datasets 
(millions) 

Data Gen  
Time (avg) 

(sec) 

Compute  
Time (avg) 

(sec) 

Sync  
Time (avg) 

(sec) 

Update  
Time (avg) 

(sec) 

k-Means 
Time (avg) 

(sec) 

Total  

Time (avg) 
(sec) 

1 2 75 2.5619 177.9832 1.2826 0.001 179.267 181.8288 

2 4 75 1.2939 111.5976 0.5683 0.0012 112.167 112.8915 

4 8 75 1.1357 132.958 59.712 0.0018 192.672 134.0936 

8 16 75 0.4095 70.3091 38.1275 0.0017 108.438 70.7186 

12 24 75 0.3189 41.8843 22.2785 0.0016 64.1644 42.2032 

16 32 75 0.2416 34.9242 20.2544 0.0017 55.1802 35.1658 

20 40 75 0.1799 24.9214 14.8122 0.0015 39.7351 25.1014 

24 48 75 0.141 17.9459 9.7645 0.0015 27.7119 18.0869 

100.00%
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Figure 7: Parallel k-Means Benchmark - Strong Scaling Methodology: Total Runtime vs. Number of MPI Processes  

(2 MPI Processes per RPi)  

 

 
Figure 8: Parallel k-Means Benchmark — Strong Scaling of Core Computation Time vs. MPI Processes  

(2 MPI Processes per RPi)) 

3.4 Weak Scaling Methodology and Results 

Analysis    
In parallel computing performance studies, strong and weak 

scaling are complementary methodologies, each revealing 

different aspects of system performance.  

- Strong Scaling: measures how performance improves 

when a fixed problem size is divided among more 

processes. It evaluates how effectively the system reduces 

runtime as more computing resources are applied to the 

same workload. 

- Weak Scaling: assesses how performance behaves when 

the problem size grows proportionally with the number of 

processes, keeping the per-process workload constant. 

This reflects how well the system handles increasing 

overall workloads without overloading individual 

processes. Weak scaling is highly sensitive to 

communication overhead. As more processes are 

involved, synchronization and inter-process 

communication (e.g., MPI collectives) may introduce 

delays. 

Unlike strong scaling, which is dominated by computation 

reduction, weak scaling isolates the cost of 

communication and load balancing under realistic, 

increasing workloads. This is particularly valuable for 

distributed systems where communication costs can 

dominate at scale. 

181.8288

112.8915

134.0936

70.7186

42.2032 35.1658
25.1014 18.0869

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45 50

To
ta

l r
u

n
ti

m
e

 (
se

c)

MPI Processes (np)

MPI-based Parallel k-Means Benchmarking
Total Runtime vs. Number of MPI Processes 

(2 MPI processes per RPi)

179.2669

112.1671

192.6718

108.4383

64.1644
55.1802

39.7351
27.7119

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45 50

k-
M

ea
n

s 
ru

n
ti

m
e

 (
se

c)

MPI Processes (np)

MPI-based Parallel k-Means Benchmarking
k-Means Runtime vs. Number of MPI Processes

(2 MPI processes per RPi)



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.32, August 2025 

52 

- Realistic Scenario for Growing Data-Intensive 

Applications: Weak scaling mirrors many real-world 

scenarios such as, machine learning with increasing 

datasets, big data analytics, and distributed simulations 

where problem size scales with available resources. 

In this study, the weak scaling analysis allows us to assess 

whether the Raspberry Pi Beowulf cluster can efficiently 

accommodate increasing workloads by adding more nodes. 

Strong scaling alone cannot fully evaluate a system’s 

behaviour. A cluster might show excellent speedup for fixed 

workloads (strong scaling) but degrades under growing 

workloads due to communication limits (weak scaling). 

Including both methodologies offers a complete scalability 

picture: 

- Strong scaling:  Speedup potential under fixed workloads 

- Weak scaling: Capacity to process larger workloads 

effectively 

For ARM-based, low-power clusters like the current Beowulf 

system, weak scaling analysis is critical, because it: 

- Tests whether such systems can be scalable when 

deployed for distributed workloads. 

- Identifies limits in energy-efficient computing scenarios 

and edge deployments. 

- Provides insights into the feasibility of using these clusters 

for real-world, dynamically growing applications. 

By incorporating weak scaling analysis alongside strong 

scaling, this study offers a holistic and scientifically rigorous 

assessment of the Beowulf cluster’s scalability. The additional 

analysis not only validates the system’s computational 

efficiency under controlled conditions but also demonstrates its 

capacity to handle increasing workloads—critical for low-

power distributed systems, edge computing, and future scalable 

machine learning frameworks.  

The weak scaling results demonstrate the Beowulf cluster’s 

ability to maintain stable performance as both the problem size 

and the number of MPI processes increase proportionally, with 

a fixed workload per process of approximately 1.56 million 

samples (per rank). 

 

Figure 10: Weak Scaling Methodology: Parallel k-Means 

execution in Beowulf, 2 MPI processes per RPi 

The key observations are the following “Table 4”, “Figure 10”. 

“Figure 11”: 

- Stable Total Runtime: Total execution time remained 

nearly constant across all configurations, varying between 

approximately 6.4 seconds (2 processes) and 17.6 seconds 

(48 processes), mostly due to Sync  

Time parameter. Despite scaling from 2 to 48 MPI 

processes, the runtime growth was moderate, showing that 

the cluster handled larger workloads effectively. 

- Compute Time Consistency: Compute time scaled 

moderately, reflecting increasing total workload, but 

remained relatively stable per process. The variation in 

compute time was minimal, indicating balanced 

computational load across processes. 

- Memory Efficiency: Memory usage before and after data 

generation remained very stable across all runs (~35MB 

before generation and ~53MB after generation per 

process), proving excellent memory scalability and 

efficiency “Figure 10”. 

- Synchronization Overhead: Synchronization time 
(MPI_Allreduce) increased with the number of processes, 
as expected. For example, sync time grew from ~0.04 

seconds (2–4 processes) to ~9.26 seconds (48 processes). 

This increase is typical in weak scaling due to the growth 

in communication complexity among MPI processes. 

However, synchronization time remained within 

reasonable limits, without dominating total runtime. 
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- Overall Scalability: The system exhibited good weak 

scalability, maintaining reasonable runtime while 

handling larger datasets and higher process counts. The 

results suggest that the cluster can sustain high throughput 

for growing workloads, despite expected communication 

overheads at higher process counts 

3.4.1 Conclusion 
Weak scaling performance reflects the cluster’s capacity to 

handle larger data workloads by adding proportional resources 

(RPi nodes). This is crucial for evaluating real-world 

applications where both data and compute resources grow 

together. 

The observed synchronization behaviour aligns with expected 

patterns in distributed computing, where communication 

overhead rises with process count. However, the Beowulf 

cluster effectively absorbed this overhead, sustaining 

manageable runtimes throughout the test range. 

These results validate the Beowulf cluster as a scalable, energy-

efficient platform for distributed, CPU-bound workloads like 

k-Means clustering, even under increasing workload scenarios 

typical of Big Data and machine learning applications “Table 

4”, “Figure 11”. 

 

Figure 11: MPI based Parallel Efficiency of Beowulf Cluster: Strong Scaling Methodology 

Table 4. MPI-based Parallel K-Means Benchmarking: Weak Scaling Methodology 

MPI-based Parallel k-Means Benchmarking - (2 MPI processes per RPi) 

RPi’s 

MPI 
Processes 

(np) 

Synthetic 
Datasets 
(millions) 

Data Gen  
Time (avg) 

(sec) 

Compute  
Time (avg) 

(sec) 

Sync  
Time (avg) 

(sec) 

Update  
Time (avg) 

(sec) 

k-Means 
Time (avg) 

(sec) 

Total  
Time 
(avg) 
(sec) 

1 2 3.125 0.1304 6.2451 0.0397 0.0009 6.2857 6.4161 

2 4 6.25 0.1313 7.8532 0.1125 0.0012 7.9669 7.9845 

4 8 12.5 0.1827 15.2238 5.7411 0.0015 20.9664 15.4065 

8 16 25 0.1523 20.1192 10.9144 0.0016 31.0352 20.2715 

12 24 37,5 0.1458 18.5701 9.9543 0.0015 28.5259 18.7159 

16 32 50 0.1493 15.1603 6.9731 0.0014 22.1349 15.3096 

20 40 62.5 0.1383 16.3627 8.2226 0.0014 24.5867 16.501 

24 48 75 0.1375 17.4298 9.2659 0.0014 26.6972 17.5673 

4. FUTURE WORK 
This study focused on k-Means clustering, a representative 

CPU-bound algorithm. Future experiments will incorporate 

additional distributed machine learning algorithms, including: 

- DBSCAN (Density-Based Spatial Clustering) for density-

based unsupervised learning. 

- Mini-Batch k-Means to evaluate scaling under streaming 

and batch learning scenarios. 

- Distributed Principal Component Analysis (PCA) for 

dimensionality reduction in high-dimensional datasets. 

This will broaden the benchmarking framework and evaluate 

the generalizability of the current findings across different 

workloads and across a wider spectrum of algorithms, 

particularly those with more complex communication patterns 

or iterative convergence behavior. 

Furthermore, CNN training workloads will also be evaluated to 

extend the analysis toward more realistic machine learning 
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scenarios. Specifically, experiments with MobileNet - a 

lightweight convolutional neural network - will be conducted 

using MPI-based distributed learning. 

Together, these future extensions will create a comprehensive, 

modular benchmarking suite capable of evaluating both CPU-

bound and communication-intensive workloads. This expanded 

framework will strengthen the understanding of distributed 

machine learning feasibility on low-power, ARM-based 

clusters, contributing valuable insights to both High-

Performance Computing (HPC) and Edge Computing research 

fields. 

5. CONCLUSION 
This study systematically evaluated the scalability, efficiency, 

and performance of a Raspberry Pi–based Beowulf cluster 

through comprehensive benchmarking of the parallel k-Means 

clustering algorithm under both strong and weak scaling 

methodologies. 

In the strong scaling experiments, where the total problem size 

was kept constant while increasing the number of MPI 

processes, the cluster exhibited excellent scalability. The total 

runtime decreased substantially—from over 180 seconds with 

2 MPI processes to under 20 seconds with 48 processes—

demonstrating the cluster’s ability to effectively exploit 

parallelism. Despite the expected increase in communication 

overhead (particularly during the synchronization phase using 

MPI_Allreduce), the computational speedup consistently 

outweighed the associated communication costs. This is 

particularly noteworthy given the low-power, ARM-based 

architecture of the cluster, showcasing its potential for scalable, 

energy-efficient distributed computation. 

In the weak scaling experiments, where the per-process 

workload remained fixed while proportionally increasing the 

total dataset size along with the number of MPI processes, the 

system maintained stable performance. Execution times 

remained within acceptable limits as the problem size grew, 

with predictable scaling trends across the cluster. These results 

confirm the cluster’s ability to handle larger datasets 

effectively, provided that the per-process memory footprint is 

controlled. Moreover, the predictable weak scaling behaviour 

reinforces the cluster’s suitability for tasks where the dataset 

naturally grows with the available computational resources. 

Together, the strong and weak scaling results present a holistic 

view of the cluster’s capabilities: 

- Strong scaling validated its ability to minimize runtime for 

fixed workloads through parallelism. 

 

- Weak scaling confirmed its capability to accommodate 

larger problem sizes without significant performance 

degradation. 

Overall, this research demonstrates that small, cost-effective, 

ARM-based Beowulf clusters can deliver robust performance 

and scalability for parallel machine learning tasks, particularly 

when workloads are carefully designed to leverage high 

degrees of parallelism with manageable communication 

overhead. These findings position such clusters as promising 

solutions for resource-efficient distributed computing in edge 

environments, educational HPC labs, and lightweight research 

platforms. 

6. ACKNOWLEDGMENTS 
My sincere gratitude to Assistant Professor Ioannis S. 

Barbounakis for his precious guidelines, knowledge and 

contribution to the completion of this study.  

7. REFERENCES 
[1] Dimitrios Papakyriakou, Ioannis S. Barbounakis. Data 

Mining Methods: A Review. International Journal of 

Computer Applications. 183, 48 (Jan 2022), 5-19. 

DOI=10.5120/ijca2022921884 

[2] Raspberry Pi 4 Model B. [Online]. Available: 

raspberrypi.com/products/raspberry-pi-4-model-b/. 

[3] Raspberry Pi 4 Model B specifications. [Online]. 

Available: 

https://magpi.raspberrypi.com/articles/raspberry-pi-4-

specs-benchmarks 

[4] Aurelien, M. (2022). PEP 668 – Marking Python base 

environments as externally managed. Python Software 

Foundation. https://peps.python.org/pep-0668/ 

[5] J. Dean and S. Ghemawat, "MapReduce: Simplified data 

processing on large clusters," Commun. ACM, vol. 51, 

no. 1, pp. 107–113, Jan. 2008 

[6] M. Zaharia et al., "Apache Spark: A unified engine for big 

data processing," Commun. ACM, vol. 59, no. 11, pp. 56–

65, Nov. 2016 

[7] A. Sergeev and M. Del Balso, "Horovod: fast and easy 

distributed deep learning in TensorFlow," arXiv preprint 

arXiv:1802.05799, 2018 

[8] Google, "Multi Worker Mirrored Strategy Guide," 

TensorFlow Docs, 2023 

[9] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: 

Portable Parallel Programming with the Message 

Passing Interface, 3rd ed., MIT Press, 2014 

[10] J. Dongarra et al., "High-performance conjugate-gradient 

benchmark: A new metric for ranking high-performance 

computing systems," Int. J. High Perform. Comput. Appl., 

vol. 30, no. 1, pp. 3–10, Feb. 2016 

[11] M. Rocklin, "Dask: Parallel computation with blocked 

algorithms and task scheduling," Proc. 14th Python in 

Science Conference, 2015 

[12] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., 

McCauley, M., Franklin, M. J., Shenker, S., & Stoica, I. 

(2010). Spark: Cluster computing with working sets. In 

Proceedings of the 2nd USENIX Conference on Hot 

Topics in Cloud Computing (HotCloud'10). USENIX 

Association 

[13] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., 

Dean, J., ... & Zheng, X. (2016). TensorFlow: A system 

for large-scale machine learning. In Proceedings of the 

12th USENIX Symposium on Operating Systems Design 

and Implementation (OSDI '16) (pp. 265–283). USENIX 

Association 

[14] Sergeev, A., & Del Balso, M. (2018). Horovod: fast and 

easy distributed deep learning in TensorFlow. In 

Proceedings of the 31st Conference on Neural Information 

Processing Systems (NeurIPS) Workshop 

[15] Thakur, R., Rabenseifner, R., & Gropp, W. (2005). 

Optimization of collective communication operations in 

MPICH. In Proceedings of the International Conference 

on Computational Science (ICCS 2005) (pp. 49–57). 

Springer 

[16] Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified 

data processing on large clusters. Communications of the 

ACM, 51(1), 107–113. 

https://doi.org/10.1145/1327452.1327492 

https://peps.python.org/pep-0668/
https://doi.org/10.1145/1327452.1327492


International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.32, August 2025 

55 

[18] Gropp, W., Lusk, E., & Skjellum, A. (2014). Using MPI: 

Portable Parallel Programming with the Message-

Passing Interface. MIT press. 

[19] Dongarra, J., Beckman, P., Moore, T., et al. (2021). The 

International Exascale Software Project Roadmap. 

International Journal of High-Performance Computing 

Applications, 35(1), 3–60 

[20] Kogias, E., Christou, I. T., & Triantafyllidis, G. (2020). 

Distributed Machine Learning on Edge Devices: A 

Survey. IEEE Access, 8, 211309–211328 

[21] Mariani, L., Bartolini, A., Borghi, G., & Benini, L. (2022). 

Scalable Edge Machine Learning on Raspberry Pi 

Clusters. Future Generation Computer Systems, 128, 

190–203

 

IJCATM : www.ijcaonline.org 


