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ABSTRACT 

Timely and accurate identification of crop diseases is vital for 

improving food security and farmer livelihoods, particularly in 

low-resource agricultural settings. This study presents a low-

cost, smartphone-compatible plant disease diagnosis system 

designed specifically for Zimbabwean farmers. The system 

integrates transfer learning with the MobileNetV2 architecture 

and leverages a hybrid dataset composed of curated 

PlantVillage images and 400 crowdsourced leaf images 

collected from smallholder farmers in Zimbabwe. Following 

preprocessing and augmentation, the data was used to train a 

lightweight convolutional neural network via a two-stage 

transfer learning approach. The model achieved a test accuracy 

of 91.0%, with strong precision, recall, and F1-scores across six 

classes. A web-based prototype was developed using Streamlit 

and deployed via Ngrok, allowing real-time disease prediction 

through browser-based image uploads, simulating field use on 

mobile devices. Compared with previous studies, this work 

demonstrates competitive accuracy while emphasizing 

practical deployability and contextual relevance. The inclusion 

of locally sourced images significantly improved real-world 

performance. The approach empowers Zimbabwean farmers 

with rapid, accurate, and actionable plant disease diagnosis, 

supporting sustainable agriculture and food security. 
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1. INTRODUCTION 
Plant diseases represent a significant challenge to agricultural 

productivity worldwide, particularly in developing countries 

like Zimbabwe where smallholder farmers rely heavily on crop 

yields for food security and income [1]. Moreover, agriculture 

forms the backbone of Zimbabwe’s economy, employing over 

70% of the population and contributing approximately 17% to 

the national GDP [2]. Smallholder farmers, who cultivate crops 

such as maize, tobacco, and tomatoes on limited land, are 

particularly vulnerable to plant diseases, which cause 

significant yield losses estimated at 20–40% annually [3]. These 

diseases exacerbate food insecurity, economic hardship and 

threatening livelihoods and progress toward Sustainable 

Development Goal 2 (Zero Hunger).  

Early and accurate diagnosis of plant diseases is critical to 

mitigating crop losses and ensuring sustainable agricultural 

practices. However, traditional methods of disease 

identification—such as expert field inspections and laboratory 

analysis—are often inaccessible to many farmers due to cost, 

limited availability of specialists, limited infrastructure, 

logistical challenges and delayed results [4]. These constraints 

highlight the urgent need for affordable, rapid, and scalable 

diagnostic solutions tailored to local contexts. Also, with 

Zimbabwe’s rural smartphone penetration reaching 97.5% in 

2023 [5][6], there is untapped potential to leverage mobile 

technology for affordable, scalable plant disease diagnosis. 

Recent advances in artificial intelligence (AI), especially deep 

learning techniques like convolutional neural networks 

(CNNs), have demonstrated remarkable success in image-

based plant disease detection [7] [8]. By training models on large 

datasets of diseased and healthy plant images, AI systems can 

identify disease symptoms with high accuracy and speed, even 

under varying environmental conditions [9]. Transfer learning, 

which adapts pre-trained models to new, domain-specific 

datasets, further enhances the feasibility of deploying these 

systems in resource-constrained settings by reducing the need 

for extensive labeled data [8] [10]. 

Simultaneously, the widespread adoption of smartphones in 

Zimbabwe provides an accessible platform to deliver these AI-

powered diagnostic tools directly to farmers. Even low-cost 

smartphones are now capable of running lightweight machine 

learning models, enabling farmers to access smart solutions 

without needing expensive hardware. This opportunity opens 

the door to delivering AI-driven plant disease diagnosis 

through mobile platforms, even in offline rural settings. 

Therefore, this article proposes a low-cost, smartphone-

compatible, web-based plant disease diagnosis system for 

Zimbabwean farmers that leverages transfer learning and 

crowdsourced image data. The approach leverages 

crowdsourced leaf image data and transfer learning to build an 

accurate yet computationally efficient diagnostic model. By 

integrating crowdsourced data collection, the platform also 

supports continuous model refinement and adaptation to local 

disease patterns, ensuring sustained relevance and 

effectiveness [11]. The system empowers farmers with timely, 

accurate disease identification and treatment recommendations, 

facilitating proactive crop management and improved 

agricultural productivity. 

Several recent studies and projects underscore the potential of 

such web-based AI systems. For example, a web-based tomato 

plant disease detection system using CNNs demonstrated 

accurate and timely diagnosis through an intuitive interface 

accessible on smartphones, helping farmers mitigate crop 

losses and promote sustainable farming practices [12]. Similarly, 

AI-powered platforms combining disease detection with real-

time advisory chatbots have enhanced user engagement and 

decision-making support in agriculture [13]. These precedents 

validate the approach of combining transfer learning, 

crowdsourced data, and web technologies to address plant 

disease challenges in low-resource environments. 
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In summary, this work aims to develop and deploy a scalable, 

user-friendly, web-based plant disease diagnostic tool tailored 

to the needs of Zimbabwean farmers, harnessing the power of 

transfer learning and community-driven data to improve 

disease management and food security.  

2. LITERATURE REVIEW 

2.1 Advances in AI-Based Plant Disease 

Diagnosis 

Advancements in deep learning have enabled image-based 

classification to outperform traditional feature engineering 

techniques. Also, the application of artificial intelligence has 

revolutionized plant disease diagnosis by enabling automated, 

accurate, and scalable solutions. Convolutional Neural 

Networks (CNNs) have emerged as the backbone of image-

based plant disease detection, capable of learning complex 

visual patterns from large datasets with minimal human 

intervention [4]. Mohanty et al. [9] demonstrated the efficacy of 

convolutional neural networks (CNNs) for plant disease 

detection, achieving over 99% accuracy using the PlantVillage 

dataset. Similar studies by Too et al. [14] and Brahimi et al. [15] 

reported high classification performance on tomato and cassava 

diseases using CNN architectures like AlexNet, VGG16, and 

ResNet. 

Despite promising results, most of these models are trained and 

tested under controlled conditions, which often limits 

generalization in real-world farm environments. Furthermore, 

high computational requirements and lack of internet 

connectivity pose deployment challenges in rural areas of 

developing countries. Transfer learning, wherein models pre-

trained on extensive image datasets are fine-tuned for specific 

plant diseases, has further reduced the computational and data 

requirements, making these technologies more accessible for 

deployment in low-resource settings [16] [17] [18]. 

2.2 Transfer Learning and Its Impact 

Transfer learning mitigates data scarcity by repurposing 

knowledge from models trained on large datasets such as 

ImageNet. PlantCLEF2022, etc. Transfer learning has proven 

effective for plant disease recognition in scenarios with limited 

labeled data. For example, recent studies have demonstrated 

that dual transfer learning strategies, using models pre-trained 

on plant-related datasets like PlantCLEF2022, can achieve high 

accuracy even with few training samples [16]. In cassava disease 

detection, transfer learning enabled CNNs to reach up to 98% 

accuracy for certain diseases using field images, highlighting 

its potential for rapid and affordable deployment in sub-

Saharan Africa [17]. Also, lightweight CNNs like MobileNetV2, 

EfficientNet-Lite, and NASNet-Mobile have proven suitable 

for edge devices, achieving high accuracy with reduced latency 

and memory usage [10] [19]. Lu et al. [20] demonstrated the 

feasibility of MobileNetV2 for real-time plant disease 

classification on Android smartphones, reinforcing its 

applicability in resource-limited settings. These findings 

indicates that transfer learning helps in accelerating the 

development of robust diagnostic models adaptable to diverse 

crops and environments. 

2.3 Crowdsourced Image Data for Model 

Training 

A major challenge in developing effective AI models is the 

acquisition of diverse, high-quality training data. 

Crowdsourcing is a practical solution, allowing non-experts—

such as farmers and extension workers—to contribute 

annotated images of diseased plants [11]. It is a powerful way to 

build diverse and locally relevant datasets as farmers can 

contribute images using mobile platforms, improving model 

performance through real-world samples [21]. 

Wiesner-Hanks et al. developed and implemented an 

Innovative two-step method, where experts provide initial 

annotations and non-experts refine them, resulting in large, 

reliable datasets with minimal expert input. This approach not 

only democratizes data collection but also enhances model 

performance by capturing real-world variability in plant 

disease symptoms [11]. 

2.4 Web and Mobile Platforms for 

Diagnosis 
While early research focused on mobile apps, recent efforts 

have shifted toward web-based platforms that are accessible via 

smartphone browsers, further lowering barriers for end users 
[4]. The mPD-App, for example, is a web application leveraging 

CNNs to deliver user-friendly, accurate plant disease diagnosis 

for farmers in Sub-Saharan Africa [4]. Similarly, the 

PlantVillage project demonstrated that deep learning models 

could be compressed to run efficiently on smartphones, 

enabling real-time, in-field diagnosis with accuracy rates 

exceeding 99% under controlled conditions. These platforms 

often integrate treatment recommendations, closing the loop 

between disease identification and actionable advice. 

2.5 Challenges and Research Gaps 
Despite these advances, several challenges remain. Image 

acquisition under field conditions introduces variability in 

lighting, background, and image quality, which can impact 

model performance [18]. Most studies have focused on leaf 

symptoms, with less attention given to diseases manifesting on 

other plant parts [18]. Additionally, while crowdsourcing 

expands datasets, ensuring annotation quality and managing 

data privacy are ongoing concerns. Finally, many existing 

systems are tailored to specific crops or regions, highlighting 

the need for adaptable, locally relevant solutions for countries 

like Zimbabwe. 

The literature demonstrates that combining transfer learning, 

crowdsourced image data, and web-based delivery platforms 

provides a promising pathway for low-cost, scalable plant 

disease diagnosis. These approaches have already shown 

substantial benefits in accuracy, usability, and accessibility, 

particularly in resource-constrained agricultural settings. 

However, continued research is needed to address challenges 

in data diversity, model generalizability, and user engagement 

to fully realize the potential of these technologies for 

Zimbabwean farmers. 

3. MATERIALS AND METHODS 

3.1 System Overview 
This study presents a web-based, mobile-enabled system for 

plant disease diagnosis that leverages transfer learning and 

crowdsourced image data. The system is designed to be 

accessible to Zimbabwean farmers via any internet-enabled 

smartphone or computer browser, eliminating the need for a 

dedicated mobile application and thus reducing deployment 

barriers. The system leverages a combination of publicly 

available datasets and crowdsourced images to train a 

lightweight convolutional neural network (CNN), with the 

ultimate goal of deploying the model on resource-constrained 

devices like low-cost smartphones. The development process 

involved the following stages: 

1. Data Collection and Preprocessing 

2. Model Selection and Transfer Learning 
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3. Model Training and Evaluation 

4. Prototype Deployment via Web-Based Interface 

3.2 Data Collection and Crowdsourcing 
A diverse dataset of plant leaf images was compiled, consisting 

of both diseased and healthy samples across 6 classes 

("Tomato___Healthy","Tomato___Early_blight","Cassava___

Mosaic", "Maize___Rust", "Tobacco___Mosaic", and 

“Tobacco___Healthy). The primary dataset used was the 

PlantVillage dataset [22], which contains over 54,000 labeled 

images across 14 crop species and 26 diseases (figure 1). This 

dataset provides high-quality, diverse samples captured in 

controlled lighting and background conditions. The dataset was 

curated to include various crops relevant to Zimbabwean 

agriculture, such as maize, tomato, and pepper. To improve 

localization and real-world applicability, additional images 

were collected from Zimbabwean farmers through social media 

(WhatsApp groups) and agricultural co-operatives. These 

images included metadata such as crop type, suspected disease, 

and location (where available). A total of 400 usable images 

were annotated by an agronomist in collaboration with 

university extension services. A total of 5851 images is in the 

combined dataset after merging PlantVillage and crowdsourced 

data and they are summarized in table 1. 

3.3 Data Processing 
Prior to model training, all images underwent a standardized 

preprocessing pipeline. Images were resized to a uniform 

dimension of 224 × 224 pixels to ensure compatibility with the 

CNN input requirements and Pixel values were normalized to 

[0, 1] pixel values to improve model convergence. Techniques 

such as random rotation, zoom, flipping, and brightness 

adjustment were applied to increase dataset diversity and model 

robustness, particularly for underrepresented disease classes. A 

70:15:15 train-validation-test split was applied to ensure fair 

performance evaluation. 

3.4 Model Architecture and Transfer 

Learning 
The technical workflow diagram (see figure 2) illustrates a 

process starting with data collection from both the public 

PlantVillage dataset and crowdsourced images from 

Zimbabwean farmers, followed by the organization and 

preprocessing of this combined dataset. The workflow 

continues with transfer learning-based model development, 

where a pretrained EfficientNetB4 or MobileNetV2 model is 

fine-tuned on the prepared training data, incorporating data 

augmentation and validation for robust performance. The 

trained model is then saved and deployed in a mobile-friendly 

web application using Streamlit and Ngrok, enabling farmers 

to upload leaf images and receive instant disease diagnoses and 

treatment recommendations. User feedback and further 

crowdsourced data can be integrated to continually improve the 

model, ensuring local relevance and practical usability for 

smallholder farmers in Zimbabwe. 

The transfer learning pipeline was built using the TensorFlow 

and Keras frameworks. The base model, MobileNetV2, was 

loaded with pre-trained ImageNet weights and configured with 

the include_top=False argument to remove the default 

classification head. Initially, the base layers were frozen to 

preserve the learned low-level features, and a custom 

classification head was added, consisting of a global average 

pooling layer, a dense ReLU-activated layer with 256 units, a 

dropout layer (dropout rate 0.5), and a final softmax layer 

corresponding to the number of target classes. 

Training was conducted in two phases. In the first phase, only 

the custom classification head was trained while keeping the 

base MobileNetV2 layers frozen. This initial training was run 

for 15 epochs using the Adam optimizer with a learning rate of 

0.0001 and categorical cross-entropy as the loss function. In the 

second phase, the top 30% of the MobileNetV2 base layers 

were unfrozen and fine-tuned jointly with the head for an 

additional 10 epochs at a reduced learning rate of 0.00001. This 

two-stage training strategy helped in preserving the generalized 

features from ImageNet while allowing the model to specialize 

for plant disease classification. 

Model training and evaluation were carried out on Google 

Colab using a Tesla T4 GPU accelerator, with Python 3.10 and 

TensorFlow 2.13. The training dataset was split into 70% for 

training, 15% for validation, and 15% for testing. The model 

achieved optimal performance in terms of validation accuracy 

and minimized overfitting, making it suitable for eventual 

deployment on low-cost Android smartphones using 

TensorFlow Lite for offline inference. 

Table 1. Composition of the combined dataset used in the 

study, showing the distribution of images per class from 

PlantVillage and crowdsourced field data. 

Class 
PlantVillage 

Images 

Crowdsou

rced 

Images 

Total 

Tomato___

Healthy 
1,040 80 1,120 

Tomato____

Early_blight 
990 65 1,055 

Cassava___

Mosaic 
850 60 910 

Maize_____

Rust 
900 65 965 

Tobacco___

Mosaic 
720 60 780 

Tobacco___

Healthy 
951 70 1,021 

Total 5,451 400 5,851 

 

3.5 Web Platform Development 
The trained model was deployed as a backend service 

accessible via a web interface. The web platform was designed 

to be mobile-friendly and intuitive, allowing users to: 

• Upload or capture plant leaf images using their 

smartphone browser. 

• Receive real-time diagnosis results, including disease 

identification and confidence scores. 

• Access tailored treatment recommendations for 

detected diseases. 

The system architecture follows a hierarchical input-process-

output (HIPO) model, where user actions (image upload) 

initiate backend processing (image analysis and classification) 

and results are returned to the user interface. 
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Fig 1: Snapshot of plant disease dataset 
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Fig 2: Model Architecture 

 

Figure 3(a): Mobile view of the plant disease diagnosis web app 
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Figure 3(b): Sample prediction and confidence level 

 

Figure 4: Training and validation accuracy over the 25 epochs 
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Figure 5: Confusion Matrix 

Table 2. Summary of the evaluating metrics 

Metric Score 

Accuracy 91.00% 

Precision (macro avg) 91.80% 

Recall (macro avg) 92.70% 

F1 Score (macro avg) 92.10% 

 

Table 3. Comparison with previous studies 

Study Model Dataset Type Accuracy Deployment 

Ramcharan et al. (2017) 

– Cassava* 

CNN from scratch Curated lab images (cassava) 98.00% No 

Mohanty et al. (2016) 

– PlantVillage 

AlexNet, 

GoogLeNet 

PlantVillage only (38 classes) ~99.3% No (desktop only) 

Xu et al. (2022) – Few-shot 

Plant Disease 

ResNet18 + TL Small field dataset + 

transfer learning 

89.70% Partial (TF Lite) 

Wiesner-Hanks et al. (2020) 

– Maize (USA) 

MobileNet Annotated field images of maize 85–89% Yes (Android App) 

This study (2025) MobileNetV2 

+ TL 

Mixed PlantVillage + 400 

crowdsourced (Zim) 

91.00% Yes (Streamlit 

+ Ngrok) 

 

4. RESULTS AND DISCUSSION 
To make the model accessible to users without deep technical 

skills, a web-based prototype was developed using Streamlit, a 

lightweight Python framework ideal for rapid application 

deployment. Ngrok was integrated to expose the Streamlit app 

to the internet. This enabled stakeholders and farmers to 

remotely test the model in real-time using only a browser and a 

smartphone. Ngrok provided an effective interim solution for 
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model access and remote testing, particularly during the 

prototyping phase. The total model size was kept under 10 MB 

by using MobileNetV2 and optimizing the output layers. This 

makes the model suitable for Web deployment using Streamlit 

(tested and functional) and Mobile deployment using 

TensorFlow. The Streamlit prototype performed inference in 

real-time on typical laptop hardware and allowed users to 

upload images and receive disease predictions with confidence 

scores. 

The web interface features a straightforward and user-friendly 

design that facilitates seamless interaction between users and 

the model. The system was deployed on a local server 

environment, with its implementation demonstrated in Figure 

3. 

The final trained model was evaluated on a held-out test set 

comprising mixed-quality images from both the PlantVillage 

dataset and the crowdsourced Zimbabwean samples. To assess 

the diagnostic model's effectiveness, evaluation tests were 

conducted using the validation dataset, measuring performance 

through key metrics including accuracy, precision, F1-score, 

and recall. These are summarized in table 2. 

Accuracy is the ratio of the total number of instances correctly 

diagnosed to the total amount of data in the analysis. The 

accuracy of the plant disease diagnosis was computed using the 

formula in Equation (1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹 𝑃 + 𝐹 𝑁)
                    (1) 

Figure 4 shows the training and validation accuracy over the 25 

epochs. The plant disease diagnosis model achieved an overall 

accuracy of 91%, demonstrating its ability to effectively and 

correctly detect plant diseases. The gap between training and 

validation accuracy remained small throughout training, 

indicating minimal overfitting and good model generalization. 

The precision of the model was computed using the formula in 

Equation (2). The precision shows the ratio of correctly 

predicted positive observation for each class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹 𝑃)
                    (2) 

The model has an overall precision rate of 91.80%. This 

indicates that the model was effective in correctly diagnosing 

plant diseases. 

Recall quantifies the percentage of accurately identified 

positive cases from the total number of actual positive 

instances. The model achieved an overall recall rate of 92.70%, 

demonstrating the model's exceptional capability to correctly 

identify plant diseases when they are genuinely present. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)
                    (3) 

The model's F1-score was calculated by determining the 

weighted average of both precision and recall values, as 

detailed in Equation (4). 

𝐹1 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
        (4) 

The results demonstrate that the model generalizes well to both 

high-quality curated images and real-world field samples, 

despite variations in lighting, background, and image 

resolution. 

As shown in Figure 5, the confusion matrix indicates high 

classification accuracy across most categories. 

To assess the performance and novelty of this work, the results 

were compared with those reported in recent peer-reviewed 

plant disease classification studies that used deep learning 

techniques. The comparison (table 3) focused on accuracy, 

dataset characteristics, model architecture, and deployment 

feasibility. 

5. CONCLUSION 
This study successfully developed and evaluated a low-cost, 

smartphone-based, web-enabled plant disease diagnosis system 

tailored for Zimbabwean farmers. A Streamlit-based web 

interface was deployed and tested using Ngrok, allowing real-

time predictions from any internet-enabled device. This 

interface serves as a proof-of-concept for future mobile 

deployment, where farmers could diagnose plant diseases in the 

field without needing access to high-speed internet or technical 

knowledge. 

By leveraging transfer learning with MobileNetV2 and 

integrating both the PlantVillage dataset and 400 crowdsourced 

images from local farmers, the system achieved a validation 

accuracy of 91%, demonstrating strong performance even 

under real-world, variable field conditions. This is a notable 

improvement in practical relevance compared to previous 

studies that relied primarily on controlled, laboratory-acquired 

datasets. 

The inclusion of crowdsourced data not only enhanced the 

model’s robustness and local adaptability but also fostered 

community engagement and continuous improvement of the 

diagnostic tool. The two-phase transfer learning strategy—

initially training a custom classification head followed by 

selective fine-tuning of the base model—proved effective in 

balancing generalization and specialization for plant disease 

recognition. 

The use of transfer learning significantly reduced the 

computational and data requirements, making it feasible to 

train an accurate model even in a resource-constrained setting. 

Furthermore, the integration of real-world images enhanced the 

model’s robustness, ensuring it could generalize beyond clean 

laboratory data. 

Deployment as a web-based, mobile-friendly application 

(using Streamlit and Ngrok) ensures accessibility for 

Zimbabwean farmers, even those with low-cost smartphones 

and limited technical expertise. The platform delivers rapid, 

accurate disease diagnosis and actionable treatment 

recommendations, empowering smallholder farmers to make 

informed decisions and reduce crop losses. 

When compared to prior research, this study stands out for its 

focus on local relevance, real-world validation, and user 

accessibility. While earlier works reported higher accuracies on 

controlled datasets, their generalizability to field conditions 

was limited. By contrast, this work demonstrates that 

integrating crowdsourced data and lightweight transfer learning 

architectures can bridge the gap between laboratory 

performance and field utility. 

Future work should focus on expanding the crowdsourced 

dataset, incorporating additional crops and disease classes, and 

piloting the system in more diverse field settings. Further, 

integrating user feedback, enhancing offline capabilities, and 

addressing data privacy will be crucial for sustainable adoption 

and impact. 
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