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ABSTRACT 

Nowadays, Robotic systems are increasingly deployed in the 

healthcare system to enable modern autonomous delivery, real-

time diagnostics, and precision in surgery. However, these 

contemporary and intelligent machines, connected into 

complex systems which introduce new cybersecurity 

challenges that can impact operational availability, data 

integrity, also threaten patient safety. This review critically 

examines the recent robotic healthcare systems' current 

landscape of cybersecurity. By utilizing the CIA security model 

(Confidentiality, Integrity, Availability) and socio-technical 

systems theory. Therefore, we organize the literature into three 

thematic domains such as: behavioral anomaly detection using 

machine learning, access control, and secure communication. 

Each one of the domains is evaluated for its integration 

potential, limitations, real-world applicability, and theoretical 

foundations. This review reveals significant research gaps in 

deployment realism, regulatory alignment, and resilience. This 

study proposes a comprehensive research direction and agenda 

to lead future work toward layered and robust ethical 

cybersecurity frameworks for clinical robotic systems and 

environments. 
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1. INTRODUCTION 
Healthcare delivery is experiencing a revolutionary shift, 

spurred by the repeatedly increasing integration of robotic 

technology [22]. These technologies and systems are 

increasingly deployed to perform monitoring patient vitals, 

automate hospital logistics, and perform high-precision 

surgical procedures with minimal human intervention. 

However, such modern technologies are typically embedded 

and network-enabled with complex, entrusted systems like 

artificial intelligence (AI) to handle sensitive medical data, 

positioning them within the broader category of cyber-physical 

systems (CPS) and uncertainties. These advanced technologies 

embody a tight coupling between real-world physical processes 

and computational logic which creates new intersections 

between human health and digital infrastructure outcomes [21]. 

Unlike traditional breaches in robotic healthcare systems or 

information technology failures can have consequences far 

beyond data loss. In this case, any Cyberattacks may lead to 

outages during critical medical interventions, incorrect dosing 

of medication, or even unauthorized surgical maneuvers. This 

type of scenario elevates cybersecurity from a purely technical 

concern into a direct impact on medical ethics, operational 

continuity and a matter of clinical safety. To address and 

understand the current state of security in this evolving field, 

this study conducted a critical thematic review of cybersecurity 

literature by highlighting and focusing on robotic healthcare 

systems. 

Furthermore, the analysis identifies three principal domains of 

concern in anomaly detection systems leveraging machine 

learning, access control architectures, and secure 

communication protocols. These domains signify the most 

rigorously examined vectors for safeguarding robotic 

technology which functions in clinical and hospital 

environments. 

This study employs two conceptual frameworks to guide its 

analysis, such as: three essential pillars for protecting digital 

systems of confidentiality, integrity, and availability, which 

well-established CIA triad, which frames security objectives 

through the lenses. The second is the socio-technical systems 

model, which emphasizes that implementation cannot be 

isolated from human and technological design, and contextual 

and organizational factors as well. These two frameworks and 

models provide a multidimensional lens for evaluating the 

integration and applicability of cybersecurity mechanisms in 

real-world clinical environments as well.  

Therefore, by critically applying literature and synthesizing 

academic research, the review aims to address, clarify the 

current weaknesses and strengths of cybersecurity strategies in 

robotic healthcare systems. This also leads to key outlines to 

propose a forward-looking agenda by highlighting research 

gaps to support the development of more operationally viable, 

ethically grounded, and resilient cybersecurity frameworks for 

clinical robotics systems. 

2. METHODOLOGY 
This paper employs critical thematic literature review synthesis 

approaches, surveys and evaluates cybersecurity issues, 

strategies within robotic healthcare environments. This review 

is grounded in a systematic literature search conducted across 

different academic databases, including PubMed, 

ScienceDirect, SpringerLink, ACM Digital Library, and IEEE 

Xplore. A defined set of keyword combinations, such as “GRU-

based anomaly detection”, “RBAC hospital access control,” 

“TLS 1.3 in robots,” and “robotic healthcare cybersecurity,” 

was used to ensure a comprehensive retrieval of relevant 

literature across interdisciplinary domains. To ensure scholarly 

rigor, only peer-reviewed publications were selected from 2015 

to 2025 written in English that were considered.  

Those studies were included if they highlighted cybersecurity 
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measures in the context of robotic systems operating in hospital 

or clinical settings. Furthermore, ensure scholarly rigor by only 

selecting peer-reviewed publications from 2015 to 2025 written 

in English that were considered. Those studies were included if 

they highlighted cybersecurity measures in the context of 

robotic systems operating in hospital or clinical settings. 

However, those studies were excluded if they did not explicitly 

engage with cybersecurity frameworks or implementations, 

offered unvalidated theoretical models, or lacked a focus on 

healthcare systems.  

Therefore, out of an initial pool exceeding 260 records, 65 

publications were selected following the title: abstract, and full-

text screening, like analyzed and classified into three different 

principal themes, such as: machine learning-based anomaly 

detection, access control mechanisms, and secure 

communication protocols. 

Those classifications were informed by the conceptual 

alignment of each research study within the CIA security triad 

model, and were examined for integration, real-world 

applicability, and feasibility with clinical practices. This 

methodology was designed and structured evaluation of a 

highly interdisciplinary domain while preserving its pertinence 

to both healthcare systems and technical challenges. 

3. SECURE COMMUNICATION IN 

ROBOTIC HEALTHCARE 

3.1 Rationale for Secure Communication 
Robotic technology platforms in hospitals rely heavily on data 

communication through network connections to both external 

(remote commands, cloud diagnostics) and internal (sensor-

actuator loops). These types of data communications on 

networks often transmit control signals and sensitive patient 

data. If tampered with or intercepted, these data 

communications can be used to: Extract sensitive patient or 

procedural information, Hijack surgical sessions, and replay 

legitimate commands (causing denial-of-service or incorrect 

operations). 

3.2 TLS 1.3 and Cryptographic Safeguards 
Transport Layer Security (TLS) is known for standard 

cryptographic protocol which directly involves securing data in 

transit, like cyber-physical systems (robotic healthcare 

environments). With its ratification in 2018, TLS 1.3 

introduced several performance and security improvements 

over its predecessors, and TLS 1.2. Additionally, it reduced the 

handshake latency through 1-RTT and 0-RTT mechanisms and 

eliminated obsolete cryptographic algorithms, such as ensuring 

forward secrecy and RSA key exchange using ephemeral 

Diffie-Hellman key exchanges as well. 

Transport Layer Security (TLS 1.3) offers crucial latency 

improvements for the surgical robotics systems, within 

research by Naylor et al. [7] and Sun et al. [1] confirming its 

viability when combined with trust anchors or even hardware 

acceleration. In addition, its adoption in robotic middleware 

such as DDS, ROS 2 remains limited, hindered by performance 

and integration constraints. Furthermore, clinical deployment 

requires further testing under legacy conditions and a real-

world network. 

3.3 Challenges and Trade-offs 
Notwithstanding the benefits of implementing TLS 1.3 for 

safeguarding communication in robotic healthcare systems, 

numerous problems remain in its execution. Latency is known 

as one of the main issues.  Although TLS 1.3 provides faster 

handshakes than its predecessors, in high-stakes situations like 

surgical robots, even small delays of 20 to 30 milliseconds 

might cause real-time operations to be disrupted.  

Furthermore, another issue lies in cryptographic key 

management. In most of the dynamic robotic systems networks, 

where nodes frequently leave or join, managing certificate 

revocation and the process of rotating encryption keys becomes 

increasingly complex. In addition to increasing administrative 

workloads, if not done perfectly, this increases the possibility 

of security breaches. Legacy compatibility is still a major 

obstacle, too. 

In this case, most of the hospital systems continuously use 

outdated software and device environments which are 

incompatible with advanced and modern cryptographic 

libraries needed for TLS 1.3. 

This type necessitates either system upgrades that are time-

consuming and may be costly, or the development of 

backwards-compatible security solutions, which might 

potentially endanger robustness. 

For robotic healthcare systems, TLS 1.3 is the most secure 

transport protocol; nonetheless. This is not always the most 

practical in latency-sensitive environments. At the same time, 

TLS 1.2 is older and continues to be extensively used in 

hospitals because of its wider device support and lower 

integration cost. In contrast, Datagram TLS (DTLS), which 

avoids connection-oriented handshakes and thus lowers 

latency, has been suggested as a lightweight substitute for 

Internet of Things-based medical equipment. IPSec offers 

integrity and strong confidentiality at the network layer but 

adds significant overhead that is inappropriate for robotic 

control in real time. 

Comparative evaluations reveal that TLS 1.3 offers integrity 

and the strongest guarantee of confidentiality, but it can disrupt 

availability when facing handshake delays or denial-of-service. 

In surgical robotics systems, disruptions of any size can 

jeopardize patient safety, making availability equally as 

important as confidentiality. As a result, selecting a 

cryptographic protocol must strike a balance between 

theoretical resilience and operational limits in clinical settings. 

4. ACCESS CONTROL MECHANISMS 

IN ROBOTIC ENVIRONMENTS 

4.1 Role-Based Access Control (RBAC) 
RBAC is a well-established approach and mature model in 

which individuals are given roles with certain rights, such as 

administrator, technician, or surgeon. This is helpful in robotic 

systems for limiting authorized physicians to high-level 

control, such as: Preventing non-technical people from 

updating software and auditing or recording user activity. 

According to Ferraiolo and Kuhn [2], RBAC's simplicity 

makes implementation easier, and it fits in nicely with 

hierarchical medical processes. 

4.2 Dynamic and Context-Aware Models 
Conventional RBAC fails to consider contextual elements like 

device state, time, or location. Recent works in RBAC involve 

several mechanisms such as emergency role escalation, geo-

fencing and temporal constraints, Attribute-Based Access 

Control (ABAC), which integrates environmental variables 

into access determinations, where RBAC permissions are 

temporarily modified under specified operational or clinical 

circumstances. Chen et al. [10] have introduced hybrid RBAC-

ABAC models for Internet of Things sensor inputs for robotic 

systems for nursing assistants, achieving a better balance 
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between usability and security. 

4.3 Threats and Limitations 
A significant danger to access control in robotic healthcare 

systems is the potential for insider misuse, frequently resulting 

from compromised credentials. Role-Based Access Control 

(RBAC) models, although proficient in allocating permissions, 

are deficient in procedures for identifying unauthorized actions 

post-access approval. Furthermore, the growing 

implementation and adoption of context-aware RBAC 

engenders considerable policy complexity. At the same time, 

administrators must take control and manage dynamic rules 

which depend on environmental variables, which can lead to 

unintended privilege escalation and configuration conflicts. 

Overall, enforcing context-aware regulations and policies in 

real time incurs additional computing complexity. This might 

cause delays in access validation during time-sensitive clinical 

processes, potentially impacting system reliability and 

affecting patient care. 

RBAC is conceptually basic and matched with medical 

hierarchies. Its rigidity frequently contrasts with emergency 

situations in which access must be granted immediately. As an 

example, during an unexpected complication, a surgeon may 

need immediate access to robotic controls, which RBAC alone 

does not allow. ABAC models highlight this by considering 

contextual characteristics such as device status, location, and 

time. However, adaptation comes at the expense of policy 

complexity and administrative burden. 

Real-world evaluations demonstrate that hybrid ABAC-RBAC 

models provide better performance and usability but are rarely 

adopted in health care systems or hospitals due to their 

maintenance difficulty and burden of ensuring policy 

correctness. Therefore, access control models are theoretically 

mature; their practical integration into robotic middleware such 

as DDS or ROS2 is still in its early stages and underdeveloped. 

5. MACHINE LEARNING FOR 

INTRUSION AND BEHAVIOR 

ANOMALY DETECTION 

5.1 ML in Cyber-Physical Systems 
Traditional signature-based intrusion detection systems (IDS) 

in robotic systems fail to detect subtle or novel threats. Machine 

learning models, particularly Gated Recurrent Units (GRUs) 

and Recurrent Neural Networks (RNNs), can model temporal 

dependencies in enabling and behavior detection of: Deviations 

in actuator-sensor cycles, Network traffic anomalies, control 

command injection. Salim et al. [4] have trained a GRU model 

on normal robotic system task sequences, which identified 

attacks with 97% accuracy and low false positives as well. 

5.2 Limitations and Deployment Concerns 
While ML-based intrusion detection systems offer significant 

promises in enhancing robotic healthcare cybersecurity, 

numerous constraints must be overcome before broad use. A 

primary concern is elucidation.  

In most current models, particularly deep neural networks, 

function as "black boxes," which makes it difficult for security 

and clinicians and auditors to defend their choices in safety-

critical scenarios. Therefore, the lack of transparency hinders 

and undermines trust in healthcare settings. Furthermore, the 

paucity of high-quality, real-world labelled datasets for robotic 

cyber-physical systems hinders successful validation and 

training.  

Unlike standard IT systems, robotic systems generate complex 

and context-sensitive data which are hard to annotate or even 

simulate. Additionally, adversarial ML represents an emerging 

threat as attackers can deliberately craft input sequences which 

cause the model to misclassify risky activity as harmless. 

Similar IoT-based healthcare studies reinforce these risks, 

highlighting privacy and intrusion vulnerabilities across 

connected medical devices [11]. It addresses the need for 

ongoing model adaptation and robust defense systems.  

In response to these challenges and complexity, researchers 

have begun developing different methods and models, like 

hybrid models, which combine ML with rule-based logic, and 

are also exploring explainable AI (XAI) frameworks, for 

example, SHAP and LIME, to improve interpretability. These 

initiatives, while promising, must be confirmed in actual 

clinical settings. 

Comparative studies demonstrate that while GRU-based 

models excel at capturing temporal dependencies in robotic 

processes, they are challenging and resource-intensive to 

retrain in dynamic environments. At the same time, RNNs offer 

the same temporal modelling, but frequently suffer from 

vanishing gradient difficulties, reducing long-term accuracy. 

CNNs, though not sequence-based, have demonstrated 

effectiveness in classifying network intrusion patterns at a 

lower computing cost. Each strategy has some advantages, but 

none of them ensures consistent distribution across diverse 

healthcare settings. 

Importantly, outcomes from laboratory simulations rarely 

translate into clinical practice. Models trained on synthetic 

datasets are very accurate (>95%), but when exposed to noisy 

hospital data, performance suffers dramatically. Furthermore, 

adversarial ML attacks expose a new vulnerability frontier in 

which attackers can delicately modify inputs to confuse 

detection systems. 

Table 1. Evaluation of GRU, RNN, and CNN models for 

robotic intrusion detection 

Algorithm Lab Hospital Hospital 

GRU 97% 75% 
 

High 

RNN 94% 70% 
 

Medium 

CNN 92% 73% 
 

Low 

 

6. RESILIENCE, ETHICS, AND 

REGULATORY CONSIDERATIONS IN 

ROBOTIC CYBERSECURITY 

6.1 Resilience Engineering in Clinical 

Robotics 
In robotic healthcare systems, resilience is the ability to 

continue critical operations in the face of system failures or 

cyber disturbances. While security efforts often focus on 

detection and prevention, the ability to operate safely and 

recover under compromised or degraded conditions remains 

undeveloped. Clinical robots must be capable of supporting 

manual intervention, maintaining critical operations, and 

isolating affected components when needed. Although Models 

like dynamic node quarantine in robotic swarms show 

potential, they are rarely used in hospital-grade systems. Recent 

work on resilient robotic swarms demonstrates adaptive 

strategies for containing failures, which could inspire clinical 
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robotics resilience [17]. Additionally, recent middleware lacks 

native support for resilience features such as failover or 

reconfiguration, regardless of the existence of supporting 

technologies like SDN. To improve resilience, recovery 

methods must be integrated as essential design features rather 

than as after-the-fact precautions. 

Due to the high financial cost, certification requirements, and 

lack of middleware support, hospitals rarely implement 

resilience engineering solutions. Many robotic systems are 

certified for modifications and static configurations to enable 

resilience characteristics can invalidate compliance. 

6.2 Ethical Dimensions: Transparency, 

Explainability, and Trust 
Cybersecurity in healthcare robotics systems poses serious 

ethical issues. Such decisions must be grounded, transparent in 

clinical and ethical reasoning, also open to post-event review. 

Opaque ML models, particularly those utilized in anomaly 

detection systems, have the potential to undermine clinician 

trust since their outputs are neither interpretable nor 

accountable [23]. According to Kesarwani et al., the lack of 

explainability is a significant obstacle to adoption. To 

guarantee that safety and trust remain key to deployment, 

ethical integration of cybersecurity in robots necessitates 

systems that are understandable, auditable, and designed with 

active physician participation. 

The contrast between the opaque requirement for explainability 

and black-box ML models depicts a basic ethical dilemma. 

Clinicians frequently avoid adopting models that they cannot 

interpret, particularly when patient safety is at risk. Reasonable 

AI methods such as LIME and SHAP offer partial solutions but 

incur additional computing expenses. It is imperative to 

thoroughly examine this trade-off between efficiency and 

interpretability to win therapeutic trust. 

6.3 Regulatory Compliance and Legal 

Frameworks 
In healthcare, robotic systems must adhere to established legal 

limitations such as GDPR [6] and HIPAA, which require health 

data protection, breach responsibility and informed consent. 

The FDA’s guidance on cybersecurity for networked medical 

devices also emphasizes continuous monitoring and patch 

management as essential safeguards [5]. At minimum, 

compliance with international security standards such as 

ISO/IEC 27001 [25] provides a structured baseline for 

assurance. However, these frameworks provide minimal advice 

for self-driving robotic systems, particularly those employing 

embedded artificial intelligence. The FDA's expanding 

cybersecurity requirements are a crucial step forward, but they 

remain vague in terms of actual enforcement in robotic agents. 

Privacy-preserving frameworks, such as those discussed by 

Hossain et al. [14], can complement encryption and access-

control approaches in mitigating risks. Scholars are advocates 

for more robotics-specific legislation, highlighting the 

necessity of ongoing integrity assurance, built-in 

authentication, and real-time legal tracking methods. 

Adoption is further restricted by regulatory framework 

conflicts. HIPAA allows exceptions for life-critical 

interventions, while GDPR emphasizes strict user consent and 

data minimization. Disputes between Cybersecurity guidelines 

tailored to individual devices have been introduced by the 

FDA; nevertheless, their implementation in robotic systems is 

unclear, also restricting adoption. This imbalance makes 

compliance more difficult and frequently deters hospitals from 

integrating modern cybersecurity. 

7. COMPARATIVE ANALYSIS OF 

CYBERSECURITY STRATEGIES 

In the domain of healthcare robotics systems, Cybersecurity 

cannot be seen as a standalone technological issue; rather, it 

necessitates a holistic approach that simultaneously addresses 

regulatory compliance, real-time responsiveness, operational 

efficiency, and confidentiality. To this end, the comparative 

framework presented below evaluates existing cybersecurity 

strategies across four different critical dimensions: (1) demands 

of real-world healthcare settings, and clinical readiness, or the 

extent to which each approach aligns with the constraints; (2) 

robustness, the transparency of system behavior and 

incorporating resilience to failures; (3)  practical deplorability,  

infrastructural demands of each method and reflecting the 

computational, and (4) security coverage, as conceptualized by 

the CIA triad (Confidentiality, Integrity, Availability). Instead 

of favoring one approach over another, this synthesis aims to 

draw attention to their complementary advantages and provide 

guidance for integrating them into a unified, multi-layered 

security architecture. 

The CIA triad is not equally covered when strategies are 

compared. Encryption protocols such as TLS 1.3 focus heavily 

on integrity and confidentiality but provide minimal assistance 

with availability in the event of a denial-of-service attack. 

Access control mechanisms reinforce availability and integrity, 

restrict users, yet they are susceptible to credential 

compromise. Although machine learning anomaly detection 

algorithms improve availability by seeing threats instantly, they 

frequently lack transparency, which erodes confidence. 

This unequal focus shows that no one approach can fully 

address every aspect of CIA. The dearth of availability-focused 

research is especially troubling because robotic systems need 

to continue operating without interruption throughout crucial 

processes. Thus, for complete protection, layered designs 

including anomaly detection, access control, and encryption are 

crucial. 

Table 2. Summary of cybersecurity strategies in robotic 

healthcare 

Strategy CIA Focus Efficiency Readiness 

TLS 1.3 Confidentiali

ty, Integrity 
Fast, medium  

setup 
 

Medium–

High 

RBAC / 

ABAC 

Integrity, 

Availability 
Lightweight.  

scalable 
 

Low–

Medium 

GRU Based 

IDS 

Integrity, 

Availability 
Costly 

slow retrain 
 

High 

Hybrid 

Detection + 

RBAC 

All three (via 

layers) 
Complex.  

moderate  

latency 
 

High 

Resilience 

Engineering 

(SDN) 

Availability Heavy. 

dynamic  

control 
 

High 

8. RESEARCH GAPS AND AGENDA 

FOR FUTURE WORK 
The swift implementation of autonomous robotic systems in 

healthcare environments has revealed numerous fundamental 

gaps in cybersecurity research and practice. While 

technological advancements such as machine learning-based 
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intrusion detection, access control, and encryption protocols 

have individually improved system robustness, these initiatives 

frequently operate in isolation and do not establish a unified 

defense strategy. To realize trustworthy, safe, and resilient 

robotic systems in clinical environments, a more forward-

looking and integrative research agenda must be adopted. 

8.1 Toward Integrated, Layered 

Architectures 
Current cybersecurity researchers in health robotics often 

threaten anomaly detection, access control, and encryption as 

isolated components. While Machine learning-based anomaly 

detection can detect and identify unusual behaviors, but 

typically lacks integration with upstream controls, limiting its 

ability to prompt timely mitigation. Similarly, RBAC enforces 

static permissions but lacks the contextual adaptability required 

in dynamic clinical environments. Furthermore, TLS 1.3 

secures data in transit; it cannot prevent misuse by 

compromised but authorized users. 

Additionally, highlighting this siloed structure requires an 

interoperable response that functions autonomously yet 

coordinates dynamically, behavioral monitoring, access 

control, and a layered architecture in which each security layer 

communicates [20]. For example, behavioral anomalies must 

trigger real-time adjustments to user privileges and encryption 

keys. Such cross-layer coordination is necessary to embrace 

and build adaptive security and resilient frameworks for robotic 

systems in clinical settings. 

8.2 The Need for Adaptive Intelligence in 

Cyber Defense 
Another noteworthy area of the research gap lies in the static 

nature of most deployed machine learning models in robotic 

intrusion detection systems (IDS). In general, these models are 

typically trained offline using historical data, which makes 

them more vulnerable to adversarial evolution and concept 

drift. In general, these models are typically trained offline using 

historical data, which makes them more vulnerable to 

adversarial evolution and concept drift. 

In dynamic hospital settings where workflows change and use 

patterns change, static models deteriorate in reliability and 

accuracy. A future-ready research direction involves federated 

learning techniques and developing online which enable 

robotic systems to continuously update their threat models 

while maintaining low-latency inference and maintaining 

privacy. Furthermore, context-aware feedback loops and 

adaptive confidence thresholds can make such systems more 

acceptable in high-stakes clinical settings and reduce false 

alarms. 

8.3 Open, Reproducible Evaluation 

Benchmarks 
An ongoing cybersecurity constraint literature for robotics is 

the absence of reproducible benchmarks and shared datasets. 

Moreover, studies of cyber threats in eHealth underline how 

these gaps undermine readiness for real-world deployments 

[18]. Without a representative testbed, standardized metrics, it 

is nearly impossible to conduct longitudinal analysis, validate 

claims, or compare approaches. 

Simulation environments which do exist are often undermining 

collaborative progress, limited in scope or proprietary. To 

mitigate this, future work must consider this by prioritizing the 

creation of annotated datasets, domain-specific, it includes 

system logs from robotics, attack signatures, and realistic 

traffic patterns of networks operating in clinical contexts. 

Additionally, open-source simulation toolkits which mimic 

multi-robot hospital workflows should become a commonplace 

fixture in experimental design. 

8.4 Embedding Human-Centered Design in 

Security Policies 
While there are numerous technical solutions, the human 

elements remain underexplored. Robotic systems must interact 

seamlessly with hospital IT staff, patients, and clinicians. 

Security engineering principles emphasize that system design 

must balance robustness with usability to avoid such failures 

[19]. If a security mechanism causes issues, delays, or lacks 

interpretability, generates excessive false positives, it is likely 

to be circumvented, disabled, or ignored. In this case, security 

is not an option; it is vital. Future research should integrate 

methods from human-computer interaction (HCI), workflow 

engineering, cognitive psychology to determine which security 

systems are structured and designed with clinical realities in 

mind. It includes studying how clinical systems mentally model 

robotic behavior, how override options are exercised, and alerts 

are perceived during security-related events [24]. 

8.5 Regulation-Aware System Engineering 
Robotic systems are handling personal data and health 

information must conform to stringent legal frameworks such 

as emerging robotic ethics policies, GDPR, and HIPAA. 

However, regulatory compliance is frequently seen as a post-

development issue, which leads to ad hoc adaptations that are 

potentially inefficient and noncompliant. 

Therefore, future systems must embody data minimization 

strategies, user consent modules, transparent decision-making, 

incorporate real-time audit trails, and be compliant-by-design. 

Additionally, collaboration with regulatory bodies and legal 

experts during system architecture planning should become 

standard practice and not only an exception. 

A recurring deficiency in the literature is the preference for 

simulation-based assessments over actual hospital 

implementations. Although few frameworks have been tested 

in clinical contexts where noise, legacy systems, and workflow 

difficulties predominate, academic research frequently show 

great performance under controlled datasets. This theory-

practice divide explains why cybersecurity frameworks have 

been sluggish to go from research to practical healthcare 

robotics. Establishing cooperative testbeds with hospitals, 

researchers, and regulators is necessary to close this gap. 

Below is a proposed architectural model (schematic) 

illustrating how encryption, resilience mechanisms, anomaly 

detection, and access control interact dynamically within an 

autonomous robotic system in a hospital setting. 

Figure 1 illustrates such a term as the Layered Cybersecurity 

Framework, conceptual model.  It emphasizes the control 

across security modules and the flow of data reinforcing 

defense-in-depth principles.
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Fig 1: Layered Cybersecurity Architecture for Healthcare Robotics 

9. CONCLUSION 
Robotic systems provide tremendous possibilities for 

healthcare, but their ethical and safe deployment hinges on 

robust cybersecurity. As these platforms become more 

responsible for sensitive clinical functions, network-integrated, 

and increasingly autonomous, the same time become potential 

targets for sophisticated cyber threats. 

This review has critically examined three core domains of 

robotic cybersecurity: behavioral anomaly detection, access 

control, and secure communication by addressing both 

unresolved vulnerabilities and technical advances. Importantly, 

the research goes beyond technical solutions to address 

regulatory compliance, ethical transparency, and resilience 

engineering. 

To promote safe clinical robotics systems, the field must adopt 

human-centered governance, adaptive intelligence, layered 

defense strategy that tightly integrates cryptographic strength, 

and multidisciplinary. Only through this convergence can we 

ensure that healthcare robotics enhances care without 

compromising accountability, trust, or safety. 
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