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ABSTRACT 

Melanoma poses a significant global health threat, where early 

and accurate detection is crucial for improving patient survival 

rates. However, the visual diagnosis of skin lesions is often 

subjective and challenging due to the high similarity between 

benign moles and early-stage melanoma. This paper addresses 

this challenge by developing and evaluating a robust automated 

system for distinguishing between benign moles and melanoma 

using machine learning and deep learning techniques. A key 

aspect of the methodology was a hybrid feature engineering 

approach, combining clinically inspired ABCDE rule metrics 

with textural features from Local Binary Patterns (LBP) and 

color statistics. Several classification models were 

systematically evaluated, including traditional machine 

learning algorithms (Support Vector Machine, K-Nearest 

Neighbors, and Random Forest) and deep learning 

architectures (MobileNetV2 and AlexNet) on the Melanoma 

Skin Cancer Dataset. The experimental results demonstrated 

the superiority of the proposed AlexNet model over all other 

models tested, which achieved an outstanding classification 

accuracy of 95.2% and an Area Under the ROC Curve (AUC) 

of 0.99. Further, the contribution of this paper is extended to a 

practical application. The "Smart Skin Analyzer" desktop 

application and a "Melanoma Detector" Android application 

were developed to translate the research into a tangible tool, 

aiming to achieve the goal of raising awareness and facilitating 

early melanoma detection.   
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1. INTRODUCTION 
Melanoma stands as one of the most perilous and rapidly 

spreading forms of cancer globally [1]. This aggressive 

malignancy primarily originates from the abnormal 

proliferation of skin cells. While spontaneous development is 

common, several critical factors significantly elevate an 

individual's susceptibility, including a family history of 

melanoma, smoking, alcohol usage, excessive and unprotected 

exposure to ultraviolet radiation, and so on. Clinically, these 

skin lesions are broadly categorized as either benign or 

malignant. Moles [2] [3], a common manifestation on the skin, 

are typically benign growths, yet a subset can tragically 

transform into malignant tumors. Despite advancements in 

dermatology, radical clinical detection of melanoma remains 

notably challenging, often leading to diagnostic complexities 

due to its varied appearances and subtle early indicators. This 

inherent difficulty underscores the urgent need for more precise 

and objective diagnostic tools to improve early intervention and 

patient outcomes.  

Over the past few decades, computer-aided diagnosis systems 

have diversified significantly. In order to detect cancer, 

traditional computer vision algorithms are mostly employed as 

classifiers to extract a wide number of features, such as shape, 

size, color, and texture. Artificial intelligence (AI) [4] is now 

capable of handling these issues. In order to identify cancer 

cells, the medical industry uses the most approved deep 

learning architectures, including recurrent neural networks 

(RNN), convolutional neural networks (CNN), and deep neural 

networks (DNN) [5]. Skin cancer can also be successfully 

classified using these models. 

This work introduces a robust methodological framework for 

automated melanoma diagnosis, meticulously evaluating 

distinct approaches in parallel. The processed data is used to 

explore two primary diagnostic paradigms. The segmented 

images are fed into traditional machine learning classifiers such 

as SVM, KNN, and RF. In a parallel pathway, state-of-the-art 

deep learning architectures, including MobileNet and AlexNet, 

are directly employed as end-to-end classifiers, leveraging their 

inherent ability to learn intricate features from the processed 

images. The performance of all these independently developed 

models is then rigorously assessed. A significant contribution 

of this study lies in selecting the best-performing model as the 

foundation for developing a practical and accessible web-based 

system and a mobile application. This ultimately aims to 

provide a deployable solution for enhanced skin cancer 

detection, capitalizing on the most effective algorithmic 

approach identified. 

The remaining sections of the paper are divided as follows: The 

second section focuses on studies related to melanoma and 

presents the most important problems and contributions of each 

study. This is followed by section 3 on the research 

methodology and its details. The most important results 

obtained, along with the necessary interpretations, are 

presented in the fourth section. Finally, the research 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.32, August 2025 

17 

conclusions and the most important recommendations are 

presented in Section 5. 

2. LITERATURE REVIEW 
Melanoma, a highly aggressive form of skin cancer, is 

characterized by the formation of malignant tumors on the skin. 

Dermatological photographs are instrumental in its detection. 

Leveraging high-performance imaging in conjunction with 

machine learning has proven highly effective in identifying 

skin cancer with remarkable efficiency [6]. 

Mohammad and Esraa [7] used 13 deep transfer learning 

models to facilitate the early and efficient identification of 

melanoma. While the system achieved accuracy for specific 

cancer types, the overall classification accuracy stood at 82.9%, 

a result attributed to factors such as dataset imbalance, limited 

image representation in certain categories, and the large 

number of classes. These factors likely contributed to the 

overall accuracy, suggesting areas for future improvement in 

dataset collection, balancing techniques, or more advanced 

model architectures designed to handle such complexities. 

Another study by Ghadah [8] aimed to enhance precision in the 

diagnosis of skin cancer, particularly melanoma, from 

dermoscopic images using deep learning techniques and 

classifying skin lesions into seven distinct types. The core of 

the classification system utilizes a Convolutional Neural 

Network (CNN), specifically a modified version of ResNet-50. 

The paper explicitly mentions using an unequal sample of 

seven kinds of skin cancer from the HAM10000 dataset. This 

is a significant problem in medical image classification, where 

some lesion types are much rarer than others. 

In the realm of dermatological diagnostics, a notable 

contribution by Walaa et al. [9] presents a deep learning-based 

approach for skin cancer detection using skin lesion images. 

This study leverages the power of convolutional neural 

networks (CNNs) to analyze visual characteristics within 

dermoscopic and clinical images, aiming to enhance the 

accuracy and efficiency of diagnosing various forms of skin 

cancer, including melanoma. The research, like many deep 

learning applications, inherently faces challenges related to the 

need for extensive, high-quality, and diverse annotated datasets 

to prevent bias and ensure robust generalization across varied 

patient populations and image acquisition conditions. 

In the same context, Tembhurne et al.[10]   present a novel 

proposal of merging machine learning and deep learning 

techniques to develop the skin cancer detection system. The 

deep learning model uses state-of-the-art neural networks to 

extract features directly from images, while the machine 

learning component processes features obtained through 

techniques like Contourlet Transform and Local Binary Pattern 

Histogram. Recognizing that meaningful feature extraction is 

crucial for any image classification problem, the designed 

model achieves a higher accuracy of 93% by effectively 

combining these manually engineered and automatically 

derived features. Despite the high accuracy, the remaining 

errors can be extremely critical in a cancer diagnosis context. 

Nambisan et al. [11] developed a system fusing U-Net++ deep 

learning segmentation of irregular networks with classical 

hand-crafted features for melanoma diagnosis, using an 

annotated database. While achieving a recall and accuracy 

increase over deep learning-only models, key challenges 

include the reliance on limited manually annotated data, which 

impacts generalization. Moreover, features of the identified 

irregular networks were analyzed using the random forest 

classifier, linear SVM, RBF SVM, decision trees, and neural 

networks. Fusing these features with the deep learning results 

for a set of 1000 images of melanomas and benign lesions 

showed an improvement in the area under the curve for 

melanoma identification. 

Another challenge of melanoma detection using the 

methodology of ensemble learning in the context of deep neural 

networks to improve predictive performance is presented by 

Mamun et al.  [12]. Specifically, the authors focus on 

combining multiple pre-trained, state-of-the-art deep learning 

models (e.g., Inception, ResNet, VGG). The core methodology 

typically involves training these individual models on a 

common dataset, extracting their learned representations or 

predictions, and then fusing these outputs through various 

strategies such as weighted averaging, stacking, or majority 

voting to arrive at a final, more robust prediction. A key 

problem addressed by the research is the inherent limitations of 

single deep learning models, which, despite their power, can 

suffer from sensitivity to initial conditions, local optima, and 

less diverse feature learning. 

A hybrid model amalgamating the strengths of two renowned 

convolutional neural networks (CNNs), VGG16 and ResNet50,  

presented by Ghosh et al. [13]. The research also highlighted 

the critical importance of comprehensive data preprocessing, 

detailing techniques like image resizing, color normalization, 

and segmentation to ensure the quality and dependability of the 

data used for training. Fundamentally, this study underscores 

the significant potential of artificial intelligence (AI) and deep 

learning (DL) in transforming skin cancer diagnostics, offering 

valuable perspectives on their wider applicability across 

various medical fields. 

Ghosh et al. [14] develop a skin cancer detection system by 

extracting diverse image features using DCNN, Capsule 

Networks (Caps-Net), and Vision Transformer (ViT) 

frameworks. These extracted features then feed into an 

ensemble model comprising five machine learning algorithms: 

Random Forest, XGBoost, Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), and Logistic Regression. This 

ensemble, which operates on a majority voting mechanism, 

significantly boosts overall performance. Notably, the resulting 

lightweight ensemble model achieves 91.6% accuracy on the 

melanoma skin cancer dataset. 

Another interesting investigation by Nguyen et al. [15] delves 

into the application of machine learning techniques for 

enhancing skin cancer detection, particularly melanoma. The 

study rigorously evaluated various models, with CNNs 

consistently emerging as the most effective in distinguishing 

between malignant and benign lesions, achieving an accuracy 

score of 92.10%. While traditional machine learning 

algorithms such as RF and SVM also demonstrated strong 

performance, offering viable alternatives where model 

interpretability is paramount. The study acknowledges that 

despite CNNs presenting the most promising results, their 

successful integration into clinical practice necessitates 

overcoming challenges related to interpretability, dataset 

variability, and ensuring robust real-world generalization. 

A comprehensive overview study of the state-of-the-art in 

applying AI to melanoma diagnostics was given by Hoda and 

Ali [16] Ahmed and Amina. their work included over than 30 

studies published between 2016 and 2024 The methodology 

employed by the reviewed studies primarily revolves around 

deep learning architectures, particularly Convolutional Neural 

Networks (CNNs) such as DenseNet and other deep CNN 

variants, often leveraging large, publicly available dermoscopy 

image datasets like HAM10000 and ISIC for training and 
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validation. Despite the promising advancements, the review 

highlights several recurrent problems in the field. These 

include challenges related to data diversity and accessibility. 

Computational resource requirements for training and 

deploying these sophisticated models also present a practical 

challenge. 

To sum up, previous studies have demonstrated the 

transformative potential of deep learning, particularly CNNs 

and hybrid approaches, in improving the accuracy of melanoma 

detection. Notwithstanding the notable advancements, issues 

with dataset imbalance, restricted generalizability as a result of 

data diversity, and the requirement for interpretable models still 

exist. This emphasizes the ongoing need for sound approaches 

that strike a balance between clinical relevance, real-world 

applicability, and performance. 

3. The Proposed Methodology 
The detection of skin lesions (moles vs. melanoma) goes 

through various phases: image acquisition, preprocessing of 

data, feature extraction, and classification. Figure 4.1 illustrates 

the structure of the proposed system. 

3.1 Image Acquisition 
The Melanoma Skin Cancer Dataset [17] is a publicly available 

resource widely used in research involving skin cancer 

detection. Therefore, it was chosen in this paper to conduct 

experiments. The Benign lesion images consist of 600, and the 

Malignant lesion images consist of 600.  

3.2 Preprocessing 
In computer vision-based melanoma diagnosis systems, the 

image preprocessing step is essential since it aims to improve 

the quality of skin images before further analysis. Pre-

processing essentially identifies the lesion in subsequent 

procedures by removing anything undesired except the lesion. 

Artifacts are low contrast, and hairs, veins, and other things are 

undesirable [18]. Several techniques were employed on the 

images in this research to further enhance performance in 

subsequent stages, which will be presented in the following 

sections. 

3.2.1 Hair Removal 
To remove hair, convert the color image to grayscale. Next, a 

morphological operation is applied with a large kernel (17x17) 

to highlight dark hair regions against the lighter skin. A binary 

threshold identifies these hair regions, creating a mask. Finally, 

the cv2.inpaint function is used to remove the identified hair by 

interpolating surrounding pixel values, effectively "filling in" 

the hair areas and producing a cleaner image. Figure 2 presents 

an image after removing hair. 

 

Fig 2: Removing hair process, a: original image b: image 

after removing hair. 

3.2.2 Contrast Enhancement 
Contrast Limited Adaptive Histogram Equalization (CLAHE) 

was applied to address uneven lighting and poor image 

contrast. CLAHE adaptively enhances local contrast by 

operating on small image tiles [19], thereby improving the 

visualization of subtle lesion structures like pigmentation 

networks and streaks without over-enhancing noise. 

3.2.3 Denoising 
To banish the distracting random noise that often sneaks in 

during image capture, we first unleash a Gaussian blur filter 

(specifically, cv2.GaussianBlur). With a delicate 3x3 kernel, 

this aims to perform a subtle smoothing operation designed to 

quiet the noise without sacrificing critical image features. After 

this precise noise reduction, every image undergoes a uniform 

transformation, meticulously resizing to 128x128 pixels using 

cv2.resize. Figure 3 illustrates the image after these operations. 

 
Fig 1: The framework of the proposed system 
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Fig 3: Contrast Enhancement process, a: input image b: 

Enhanced image 

3.2.4 Data Augmentation 
To dramatically boost the diversity and size of our training data 

without hogging extra storage, Dynamic data augmentation 

was utilized [20]. This smart approach dynamically creates 

new, transformed versions of the original images as the model 

learns. The model sees a constantly fresh stream of variations, 

which greatly improves its ability to generalize to new, unseen 

images and slashes the risk of overfitting. The specific 

transformations used in this work include rotation, horizontal 

and vertical shifts, zooming, and horizontal flipping. 

3.3 Image Segmentation 
The image segmentation stage is performed to precisely 

delineate the region of interest (ROI) of the skin lesion from the 

surrounding healthy skin. The K-Means and Fuzzy C-Means 

methods have been utilized in this paper. The K-means 

clustering method provides unsupervised image segmentation. 

It groups pixels into (N) clusters (often 2 for 

foreground/background) by color proximity to centroids. The 

image is reshaped and clustered, and the resulting cluster labels 

form the segmentation mask. In the same context, K-Means, 

Fuzzy C-Means (FCM) methods allow pixels to belong to 

multiple clusters simultaneously with varying degrees of 

membership. Figure 4 illustrates the difference between the 

original image and the image following the segmentation 

process. 

 

Fig 4: The segmentation process, a: input image. 

b:segmented image 

3.4 Feature Extraction 
Once images are preprocessed and segmented, a rich collection 

of quantitative features is extracted to characterize the skin 

lesions by various algorithms. This involves the capture of 

traditional dermatological indicators, intricate textural patterns, 

and comprehensive color statistics. In this paper, the clinical 

ABCDE rule (Asymmetry, Border irregularity, Color variation, 

Diameter, and Circularity) [21] was translated into 

computational features to support melanoma detection. 

Specifically, asymmetry was calculated by mirroring the 

lesion, border irregularity was quantified using Canny edge 

detection, color variation was determined by pixel intensity 

standard deviation, diameter was derived from the largest 

contour's area, and circularity was computed using a shape 

regularity formula. 

Also, Local Binary Patterns (LBP), color statistics, DCT, and 

DWT were chosen as effective techniques due to their strong 

ability to highlight subtle texture differences, which are critical 

for distinguishing malignant melanomas from benign nevi. To 

complement these, advanced deep learning approaches were 

also employed; features were extracted using pre-trained 

Vision Transformer (ViT) and Xception models, followed by 

Principal Component Analysis (PCA) for dimensionality 

reduction and optimal feature representation. 

3.5 Classification Algorithms 
Several classification models were systematically evaluated to 

distinguish between benign moles and melanoma. Both 

traditional machine learning algorithms and deep learning 

architectures were considered. 

To distinguish between cancerous and non-cancerous skin 

lesions, both traditional and deep machine learning models 

were utilized in this study. For the traditional approaches, 

SVM, KNN, and RF were applied, with extracted features 

directly feeding into these classifiers. Additionally, deep 

learning models, specifically MobileNetV2 and AlexNet, were 

employed to leverage their advanced feature learning 

capabilities. The results of the proposed methods are tabulated 

in the next section. 

4. DISCUSSIONS AND RESULTS 
The skin cancer images have been collected from Kaggle [17]. 

To identify the most effective classification model, a variety of 

experiments were conducted. This approach began with 

establishing baselines using traditional machine learning 

algorithms, including SVM, KNN, and Random Forest. Then,  

MobileNetV2 and  AlexNet have been applied as classifiers. 

This systematic approach allowed for a clear comparison of 

different classification paradigms. To provide a high-level 

overview of the final outcomes, Table 1 summarizes the 

performance metrics of all five models tested. 

Table 1. Performance Metrics of Tested Models 

Model SV

M 

KNN RF Mobile

NetV2 

AlexNet 

Input 

Image Size 
96x96 96x96 256x256 256x256 128x128 

Feature 

Extraction 

ViT 

+ 

Xcep

tion 

+ 

PCA 

ViT + 

Xcepti

on+ 

PCA 

DCT, 
DWT, 

LBP 

DCT, 

DWT, 
LBP and 

Rule 

ABCED 

combined

_features 

ABCED, 

LBP, 
Color   

Stats 

Accuracy 0.91 0.71 0.86 0.92 0.95 

Precision 0.91 0.80 0.86 0.92 0.96 

Recall 0.91 0.71 0.84 0.92 0.95 

F1-Score 0.91 0.69 0.85 0.91 0.95 

AUC 0.97 0.84 0.94 0.97 0.99 
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From Table 1, it is noted that the AlexNet model achieved the 

highest scores across all key metrics. Before the chosen 

AlexNet model is thoroughly examined, the detailed results for 

each of the benchmark models will be illustrated in the ensuing 

sections. 

In the initial experiment, the SVM model, leveraging feature 

vectors extracted using ViT and Xception architectures 

followed by PCA, served as an effective baseline, achieving a 

remarkable overall accuracy of 91% along with strong 

precision (0.91), recall (0.91), F1-score (0.91), and an AUC of 

0.97. In contrast, the KNN method, utilizing the same feature 

extraction approach, yielded a lower accuracy of 71%, 

suggesting that its distance-based classification struggled with 

the complex feature space. The Random Forest (RF) classifier 

was then employed to assess the efficacy of ensemble learning 

with handcrafted features (DCT, DWT, LBP). This model 

achieved an improved overall accuracy of 86%, indicating the 

value of ensemble methods in capturing diverse patterns. 

In the two most recent experiments, the deep machine learning 

techniques have been implemented. The MobileNetV2 model, 

employed through transfer learning and trained on handcrafted 

features combined with the computational ABCDE rule, 

achieved a high accuracy of 92%, surpassing all traditional 

machine learning methods. Finally, the AlexNet architecture, 

benefiting from a comprehensive set of combined features 

including ABCDE, LBP, and Color Statistics, demonstrated 

superior performance, yielding an impressive overall accuracy 

of 95.2% and an AUC of 0.99, confirming its exceptional 

capability in melanoma detection. 

To validate the results of all experiments, various metrics were 

used in this paper to check the performance of the techniques 

used. Specifically, the confusion was used. All performance 

tests showed that the last experiment, in which a trained 

AlexNet model was used, was the best experiment. Figures 5, 

6, 7, 8, and 9 illustrate the confusion matrix for these 

methodologies. 

 

Fig 5: The confusion matrix of SVM  

 
Fig 6: The confusion matrix of KNN  

 

Fig 7: The confusion matrix of RF 

 

Fig 8: The confusion matrix of MobileNet 

 

Fig 9: The confusion matrix of AlexNet 
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Fig 10: The ROC curve. 1:SVM  2:KNN  3: RF  

4:MobileNet   5: AlexNet   

Moreover, to assess and compare the accuracy of the 

algorithms, the ROC curve was plotted as shown in Figure 10. 

It is noted unequivocally that the AlexNet model exhibits the 

most robust performance, evidenced by its ROC curve 

demonstrating the highest Area Under the Curve (AUC) of 

0.99. This exceptionally high AUC value signifies AlexNet's 

superior ability to effectively distinguish between melanoma 

and benign lesions across all possible classification thresholds, 

outperforming all other benchmark models. In comparison, 

while the SVM and MobileNetV2 models also showed strong 

discriminative capabilities with AUC values of 0.97 and 0.97, 

respectively, their curves lie slightly below that of AlexNet, 

indicating a marginally less optimal balance between 

sensitivity and specificity. The Random Forest model, with an 

AUC of 0.94, demonstrates a good performance, whereas the 

KNN model, having the lowest AUC of 0.84, suggests 

relatively weaker discriminative power compared to the other 

approaches. 

4.1 Comparison with previous approaches 
To contextualize the findings of the paper within the current 

research landscape, a comparative analysis was performed 

against the recent work by Güneş and Dönmez [22]. The work 

presents an ideal benchmark due to its contemporary nature and 

focus on the same classification problem. To facilitate a clear 

comparison, Table 5.2 summarizes the key methodological 

differences and performance outcomes between our model and 

the best-performing model reported by Güneş.  

 

 

Table 2. The Performance Comparison Of The Proposed 

Approach With Previous Study 

Feature / 

Metric 

Güneş 

[53] 
Our Proposed  

Key 

Difference & 

Implication 

Model 

Architecture 

Custom 

CNN (4 

Convoluti

onal 

Layers) 

AlexNet 

(Established 

Architecture) 

Our model 

uses a 

deeper, more 

complex 

architecture 

known for 

robust feature 

extraction. 

Feature 

Engineering 

End-to-

End Deep 

Feature 

Learning 

Hybrid 

Approach 

ABCDE 

Clinical Rules, 

LBP Textural 

Features, Color 

Statistics 

Our model is 

enriched with 

explicit, 

medically-

relevant 

features, 

providing 

richer context 

than implicit 

learning 

alone. 

Input Image 

Size 
64x64 

pixels 
128x128 pixels 

Higher 

resolution 

allows our 

model to 

capture more 

detailed 

features. 

Accuracy 91.32% 95.2% 

Our model 

achieves a 

4% absolute 

improvement 

in accuracy, a 

substantial 

gain. 

Sensitivity 

(Recall) 
91.9% 95.0% 

Our model is 

significantly 

more 

effective at 

identifying 

malignant 

cases. 

F1-Score 92.0% 95.0% 

The higher 

F1-score 

indicates a 

better 

balance and 

superior 

overall 

performance. 

AUC 
Not 

Reported 
0.99 

Our model 

demonstrates 

near-perfect 

class 

separability. 

 

As shown in Table 2, the proposed system surpasses the 

benchmark across all reported metrics. The most significant 

factor contributing to this performance gap is our hybrid feature 

engineering methodology. While the benchmark study 

effectively showed that increasing CNN depth improves 

performance, it relied solely on the network's ability to learn 

features implicitly. In contrast, it explicitly injects high-level, 
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domain-specific knowledge into the learning process. This 

fusion of handcrafted and deep-learned features provides the 

AlexNet architecture with a much richer and more 

discriminative input. Consequently, the 4% absolute 

improvement in accuracy and, more critically, the increase in 

sensitivity, underscore the value of our methodological 

choices.  

The study's contribution extends beyond model development to 

practical application. A user-friendly prototype, the "Smart 

Skin Analyzer" desktop application, and a "Melanoma 

Detector" Android application were developed to translate the 

research into a tangible tool. 

5. CONCLUSIONS  
This paper embarked on a critical mission to engineer an 

advanced, automated system for melanoma detection using 

dermoscopic images. Leveraging a meticulously preprocessed, 

balanced dataset of 6,000 images, various machine learning and 

deep learning paradigms have been rigorously benchmarked. 

The comprehensive experimental analysis of this proposed 

model demonstrated the superiority of the proposed AlexNet 

model, which achieved an exceptional 95.2% overall accuracy 

and a remarkable Area Under the ROC Curve (AUC) of 0.99.  

Furthermore, the evolution of this prototype into a 

comprehensive, multi-platform ecosystem featuring the 

"Melanoma Detector" Android mobile application and a 

supporting web platform represents a monumental stride 

towards democratizing early melanoma screening. By 

meticulously integrating the optimized AlexNet model and the 

full preprocessing pipeline directly onto mobile devices via 

Flutter and opencv_dart 

While acknowledging limitations such as reliance on a single 

public dataset, this work lays a robust foundation for future 

endeavors. Subsequent efforts will focus on enhancing model 

robustness in real-world conditions, boosting interpretability 

with LIME and SHAP, ensuring scalable and secure integration 

into healthcare systems, and rigorously pursuing prospective 

clinical trials and regulatory approvals. 
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