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ABSTRACT 
Image captioning, an interrelated task between computer vision 

and natural language processing, used to generate descriptive 

textual captions for given images. This paper presents an 

optimized deep learning-based Image Captioning System (ICS) 

that employs a Vision Transformer (ViT) as an image feature 

extractor and a Long Short-Term Memory (LSTM) neural 

network as the language decoder. To further enhance model 

performance, it incorporate the Lightning Search Algorithm 

(LSA), a nature-inspired metaheuristic algorithm, to 

automatically tune critical hyperparameters, including learning 

rate, dropout rate, and LSTM units. This automated 

optimization strategy improves both the quality of generated 

captions and the training performance. The proposed system is 

trained and evaluated on the Flickr30k dataset, achieving 

competitive performance across standard metrics such as 

BLEU, METEOR, and ROUGE. The results demonstrate that 

combining transformer-based vision encoders with recurrent 

language decoders, along with dynamic hyperparameter tuning 

algorithms, leads to more accurate and proficient image 

descriptions. This work contributes to the advancement of 

hybrid deep learning frameworks for image captioning tasks. 
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1. INTRODUCTION 

Over the past few years, the exponential growth of digital 

images across various platforms, including social media, 

satellite systems, healthcare imaging, and real-time 

surveillance, has made it necessary to create intelligent systems 

that can comprehend and describe visual content. Image 

captioning—a significant task at the intersection of Computer 

Vision (CV) and Natural Language Processing (NLP)—

automatically generates meaningful textual descriptions for 

images, thus facilitating applications in assistive technology, 

content-based retrieval, robotics, and remote sensing analysis 

[1], [2][3]. 

Earlier image captioning systems were built on handcrafted 

features or template-based rules that lacked flexibility, 

semantic richness, and the ability to scale across domains. With 

the advent of deep learning, encoder-decoder frameworks—

particularly those combining Convolutional Neural Networks 

(CNNs) with Recurrent Neural Networks (RNNs) or Long 

Short-Term Memory (LSTM) networks—have shown 

remarkable progress. These models could learn hierarchical 

visual features and generate coherent sentence sequences, 

achieving competitive scores on benchmark dataset such as 

Flickr30k [4], [5]. 

However, CNN-based encoders are inherently limited in 

modeling global spatial context and long-range dependencies, 

especially in complex scenes or aerial imagery. The drawback 

becomes important in such applications as remote sensing, 

where high-altitude imagery comprises macro-level and micro-

level patterns in space. The best way to beat these challenges is 

the introduction of Vision Transformers (ViTs) that strongly 

compete with the self-attention capabilities that are used to 

capture relationships in the full image [6], [7]. Combined with 

sequence modeling models such as LSTM, ViT-LSTM bridges 

the gap between global attention and temporal modeling by 

having the advantage of ViTs and the benefit of LSTMs with 

hybrid ViT-LSTM models outperforming both models in 

context comprehension and linguistic expressiveness [8]. 

However, learning such models involves careful 

hyperparameter tuning (e.g. learning rate, dropout, size of 

hidden layer), which is currently often carried out by human 

experts, and is thus also quite likely to have sub-optimal 

hyperparameters. Such a bottleneck has prompted the 

application of meta-heuristic optimization such as Genetic 

Algorithms (GA), Particle Swarm Optimization (PSO) and, of 

late, the Lightning Search Algorithm (LSA) [9]. Based upon the 

electrical branching characteristics of natural lightning, LSA is 

an effective method to sample high-dimensional parameter 

space and, therefore, converges more rapidly and with greater 

confidence in optimization of neural models [9],[10]. 

Simultaneously, many recent innovations have emerged in 

image captioning. Semantic attention mechanisms have 

improved image-text alignment by selectively focusing on 

context-relevant features[11], [12]. Scene graph-based methods 

extract relational structure among image objects to enhance 

caption diversity [13]. In OCR-rich datasets like TextCaps, 

multimodal Transformers using CLIP and visual-textual fusion 

have proven highly effective [14]. In remote sensing 

applications, dual-branch transformer encoders, graph 

convolution modules, and multi-level attention fusion are used 

to model complex spatial dependencies and attribute 

relations[15], [16], [17]. 

Moreover, reinforcement learning and non-auto regressive 

generation methods have been proposed to balance diversity, 

accuracy, and training efficiency [18].  POS-guided and 

linguistically informed captioning approaches offer further 

improvements in grammaticality and human-likeness of 
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generated descriptions, especially for domains requiring 

structured language [19], [20]. 

Despite these advances, critical challenges persist—such as 

generating semantically grounded captions, achieving 

robustness to occlusion, and adapting to multi-domain 

generalization [21], [22], [23].  

The proposed LSA-tuned ViT-LSTM image captioning 

framework addresses these challenges by combining the spatial 

precision of Transformers, the temporal fluency of LSTMs, and 

the optimization strength of LSA. Results from experiments on 

Flickr30k demonstrate that the model often surpasses baseline 

methodologies in metrics includes ROUGE, METEOR, and 

BLEU., while producing more informative, context-aware, and 

diverse captions[24]. 

2. RELATED WORK  

Recent advancements in image captioning have been fueled by 

the synergy of deep neural architectures, attention mechanisms, 

semantic modeling, and optimization techniques. In order to 

contextualize ViT-LSTM image captioning system with the 

Lightning Search Algorithm (LSA) is proposed, The previous 

research papers are examined and  they can be divided into four 

main categories: linguistic-semantic enhancements, 

transformer and attention-based architectures, optimization-

based frameworks, and remote sensing-specific captioning. 

2.1. Optimization-Based Captioning 

Frameworks 

To overcome the manual trial-and-error method of 

hyperparameter tuning. Researchers are using metaheuristic 

optimization more and more to get around the manual and less-

than-ideal nature of hyperparameter tuning in deep learning 

models. To improve generalization, one method combines a 

deep LSTM network with the Sparrow Search Algorithm (SSA) 

and Fruit Fly Optimization (FFO) to automatically modify 

important parameters like learning rate and dropout. The 

strategy put forth by Arasi et al. [10], demonstrates how well 

dual optimization works when negotiating intricate parameter 

spaces. 

[25] introduced mg-BDRGRU, a bidirectional GRU decoder 

that uses depth residual connections for edge computing 

environments. The model shows how structural innovations 

can address both accuracy and latency, and is optimized for 

real-time inference on embedded hardware such as Jetson TX2. 

A different approach that makes use of a multi-level deep 

reinforcement learning (RL) framework to optimize captioning 

policies at the word and sentence levels was put forth [18]. The 

model complements the LSA-based optimization by 

dynamically improving semantic consistency in captions by 

integrating vision-language and language-language rewards. 

2.2. Transformer and Attention-Based 

Architectures 

Transformers have reshaped sequence modeling, and their 

application to image captioning has proven highly impactful. 

An Adaptive Semantic-Enhanced Transformer, introduced in 

[6], employs weakly-supervised attention alongside adaptive 

gating to enrich semantic encoding. This design helps highlight 

meaningful regions in the image for more precise language 

generation. 

To promote diversity and control in generated captions, [26] 

proposed a non-autoregressive, length-controllable 

transformer. Their model encodes target length as a guiding 

parameter and uses a refinement process akin to sequence-level 

knowledge distillation, thereby improving flexibility without 

compromising fluency. 

Reward optimization has also been explored through 

hierarchical feedback mechanisms. [27] proposed a dual-

network structure comprising a Revaluation Network (REN) 

and Scoring Network (SN) to evaluate sentence-level quality 

and correct word-level biases. Their approach aligns with the 

intention to generate more human-like, fluent captions. 

[28] addressed the challenge of visual-semantic mismatch by 

designing a pyramid dual attention mechanism. Their method 

integrates spatial and channel-wise attention over multiple 

feature levels, enhancing the model's capability to distinguish 

fine-grained objects and their contextual relevance. 

2.3. Remote Sensing Image Captioning 

(RSIC) 

Remote sensing images are distinct in scale, texture, and 

content, requiring specialized captioning strategies. One such 

solution is Chg2Cap, a Siamese CNN-based captioning 

framework designed to detect and describe bi-temporal 

changes in satellite images. As described in [29], the system 

effectively employs attention to focus on altered regions 

between temporal image pairs. 

The RSICCformer model, developed [17], which applies a 

dual-branch transformer architecture to remote sensing change 

captioning. Trained on the LEVIR-CC dataset, it separates 

content extraction and temporal fusion into parallel streams 

before merging the outputs through a dedicated decoder. 

Based on the interpenetration of globals and locals,  [8] came 

up with a framework of the neural network combining the 

benefits of Transformers and those of multi-scale feature 

extraction (MG-Transformer) that combines ResNet and CLIP 

embedding. Their solution utilizes Global Grouping Attention 

(GGA) and Meshed Cross-Attention (MCA) modules that 

provide the possibility of semantic alignment at the high-

resolution level of satellite images. 

[30] used the SA-FWC model, which works on small-scale data 

and with complex terrain using Sequential Attention and 

Flexible Word Correlation. It uses LSTM-based decoding 

together with self-attention-boosted features of VGG16 to 

maintain spatial leaders and consistent grammar inside the 

storytelling. 

2.4. Semantic and Linguistic Enhancement 

Frameworks 

There have been a few studies which have examined semantic 

alignment and linguistic guidance as caption quality requires 

seemingly more and more fluidity of human speech. [12] 

created a fine-grained attention mechanism that minimizes the 

odds of ambiguous or irrelevant captions through matching 

specific visual areas with semantic descriptors; it comes in 

handy in scenes having so many objects. 

Due to the problem of vocabulary monotony, [19] proposed a 

Part-of-Speech (POS) Guidance Module. It enhances syntactic 

variety, but does not interfere with the semantic flow since it 

prefers words according to grammatical limitations. 

[20] which employed multi-task learning to forecast the POS 

tags and produce captions simultaneously. In their way, they 

directly integrate linguistic structure into the decision-making 
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process of the decoder and make use of merge-based and inject-

based methods. 

Finally, there is the Re-Caption framework which is proposed 

in [31]. The model employs internal visual and semantic 

saliency maps to edit the original caption in order to enhance 

descriptive accuracy and point out larger regions that are 

aesthetically more important. This avoids the use of any 

external saliency tool. 

3. PROPOSED MODEL  

 This proposed framework as depicted in Figure 1 combines 

three potent elements to produce meaningful image captions: a 

Vision Transformer (ViT) is used to encode images, an LSTM 

network is used to generate captions,  and the Lightning Search 

Algorithm (LSA) is used to optimize important 

hyperparameters. 

 

Figure 2. Workflow of Proposed System 

These elements are tightly integrated into an end-to-end 

training system, and two decoding strategies are used to 

generate the final captions. 

3.1. Image Encoder Using Vision 

Transformer (Vit) 

 

Figure 1. Vision Transformers Encoder [36] 

The image encoder in this model as shown in Figure 2 is based 

on the Vision Transformer. It divides pictures into a number of 

fixed-size patches to process them. These patches are then 

flattened into vectors and projected into a higher-dimensional 

embedding space. 

To preserve the spatial structure of the image, each patch 

embedding is enriched with positional encodings. After passing 

through several layers of transformer encoders, these vectors 

are subjected to multi-head self-attention mechanisms. 

This enables the model to capture global dependencies between 

various parts of the image as well as local features. The output 

is a comprehensive feature vector that represents the semantic 

content of the image. Compared to traditional CNN-based 

encoders, ViT offers greater flexibility and expressiveness, 

especially in complex or cluttered scenes. 

3.2. Caption Generator Using LSTM 

The Long Short-Term Memory (LSTM) network is used as the 

caption generator and is appropriate for sequential data 

modeling. It begins generating a caption one word at a time 

using the image features that the ViT encoder has produced. 

At each step, the LSTM considers both the image features and 

the words that have already been generated. It maintains a 

hidden state that captures the context of the sentence so far, 

enabling it to produce fluent and grammatically correct outputs. 

The predicted output at each step is passed through a dense 

layer, and the softmax activation function considers the most 

likely word from the vocabulary. The process repeats until an 

end-of-sequence token is predicted or the maximum caption 

length is reached. 

3.3. Lightning Search Algorithm (LSA) for 

Hyperparameter Optimization 

To enhance the performance and training efficiency of the 

model, the Lightning Search Algorithm is used to optimize key 

hyperparameters including,  

• Learning rate 

• Dropout Rate 

• Batch Size 

LSA begins by generating an initial population of random 

hyperparameter configurations, each referred to as a projectile. 

These candidates are evaluated by training the model briefly 

and measuring their validation loss. The configuration with the 
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lowest loss is treated as the best-performing solution for that 

iteration. 

In order to help the other candidates get closer to this ideal 

solution, updates are made later. The movement resembles the 

movement of energy in space, the movement of lightning in 

nature is recreated as well. To allow the algorithm go for a 

balance between exploration and convergence, the algorithm 

introduces a combination of adaptive steps, random 

perturbations and directional adjustments during updates. 

Continuous hyperparameters are adapted on a per-step basis 

using Gaussian and exponential functions such as learning rate 

and dropout. Discrete parameters, like that of the batch size, 

however are adjusted slowly in order to achieve better values. 

On an LSA, one gets the LSA candidate configurations refined 

by several iterations until it picks the one that will bring the CG 

with the highest model accuracy and minimum validation loss. 

This automatic tuning process makes the model more resistant 

to changes and keeps the manual trial-and-error out of the 

equation. 

3.4. End-to-End Training Workflow 

The model is trained on a completely integrated worflow, and 

among them, there are ViT, LSTM, and LSA, which interact 

with each other to improve performance. 

The ViT encoder extracts a high-level semantic feature 

representation then the ViT model takes the input image as 

inputs. After the input of the features, the LSTM decoder 

undertakes the autoregressive process of sequentially decoding 

captions based on the word-by-word prediction. 

Categorical cross-entropy loss is used to compare the ground-

truth captions and the predicted ones. Simultaneously the LSA 

evaluates the current configuration of hyperparameters and 

optimizes them once a better configuration is found. As the 

result of such dynamic adaptation, the decoder configuration 

and network weights are ensured to improve with time. 

The quality of the produced captions is tested on the validation 

set with statistical measures e.g. BLEU, METEOR and 

ROUGE. With learning and optimization within a single loop, 

an effective model that can describe things that are syntactically 

fluent and semantically rich is generated in this workflow. 

3.5. Caption Generation (DECODING) 

Strategies 

The final captions are generated by the model after training 

through the process of decoding. The process of selecting these 

words in respect to the vocabulary at every level may 

considerably influence the quality of the descriptions 

generated. This paper uses Beam Search and Greedy Search to 

more the decoding algorithms. 

3.5.1. Beam Search 

Beam search as a decoder is more complicated, having several 

sets of candidate sequences at each time step. It expands every 

sequence of the top k (k being the beam width), accounting 

every possible candidate next-word instead of choosing a single 

word. The sequences are scored via cumulative log 

probabilities and only the highest scoring ones are retained [4]. 

This continues until a full sentence is arrived at. The diversity 

and fluency of the captions gets maximized significantly with 

the help of beam search since it explores a broader scope of 

possible choices. This model applies beam widths of three or 

five in effort to trade between cost and quality. Beam search is 

especially useful in images containing complex content and 

generating context aware and descriptive captions [19].  

3.5.2. Greedy Search 

Greedy search is a fast and easy decoding algorithm. At every 

time step, the model would pick the word in the softmax layer 

having the highest probability. This word is consumed as an 

input of the next time step until a maximum caption length is 

filled in or the end of sequence token is generated. 

This is also a computationally efficient way to generate the 

captions that often turned out to be less imaginative or 

repetitive. The greedy search could lose the best overall 

sentence structure and get contented with the local optimality 

in a globally inferior outcome due to consideration of the most 

likely word at each step [26]. 

4. RESULTS AND DISCUSSION 

A system whose components include the Intel Core i5 CPU, 

16GB RAM, and 1TB of SSD is used to implement the 

proposed image captioning model, ViT-LSTM-LSA, based on 

Python 3.12.4. The Lightning Search Algorithm (LSA) rather 

than the manual tuning of training parameters dynamically 

generates key hyperparameters like batch size, learning rate, 

dropout rate etc.. LSA search can be thought of as an iterative 

method through which the hyperparameter area is searched and 

configurations updated using the validation loss to find the best 

settings at each training run. They set the training epochs to 50 

and perform a nonlinear transformation in the model by using 

ReLU activation. 

4.1. Dataset Details 

The Flickr30k that is a well-established benchmark in the task 

of image to text generation and retrieval is chosen to evaluate 

the experimental results of the model ViT-LSTM-LSA. The 

FlickRelevance provides 31783 realistic photos that are in the 

Flickr collection. Each image comes with five different 

captions handwritten by native speakers of English and 

containing a diversity of detailed natural language explanations 

of the visuals. The elaborated details of the Flickr30k dataset is 

given in Table 1. 

Table 1. Dataset Details 

Dataset Name Flickr30k 

Total Images 31783 

Captions per Image 5 (human-annotated) 

Total Captions 1,58,915 

Source Flickr photo sharing platform 

Language English 

 According to every scene, the captions provide 

variety of linguistic expression which will allow models to 

acquire relationships of objects and action, contexts, and 

paraphrase. Consequently, the dataset is deemed to be 

particularly useful when it comes to evaluation of the capacity 

of an image captioning system to generate natural-sounding 

and generalized descriptions [1], [3]. 
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Figure 3. Sample images in Flickr30k Dataset [13] 

The factor that has contributed to its popularity among image 

captioning studies is moderate size dataset, and extensive 

linguistic variation, making Flickr30k both feasible to train and 

complex to model. The dataset is compatible with the modern 

deep learning frameworks and allows testing, validation, and 

training splits. 

A sample of the images available in the Flickr30k dataset used 

in this research and containing multiple kinds of images 

depicting social relations, sporting activities, human actions 

and environment can be seen in Figure 3 . 

4.2. Evaluation Metrics 

On the Flickr30k dataset, the performance of the proposed 

captioning system which comprises the ViT (Vision 

Transformer), LSTM, and the Lightning Search Algorithm 

(LSA) to hyperparameter optimization was tested. The 

measurements are the quantitative ones: the BLEU-1 to BLEU-

4 scores, METEOR, and ROUGE-1, ROUGE-2, ROUGE-L 

based comparison of results with the baseline architectures: 

ResNet, Inception, and Xception [19]. The evaluation item was 

based on an average of evaluation measures commonly adopted 

in natural language generation discipline: 

4.2.1. BLEU (Bilingual Evaluation Understudy) 

The n-gram precision between the generated and reference 

captions is evaluated using BLEU-1 to BLEU-4 scores. BLEU-

1 measures unigram overlap, while BLEU-4 considers up to 

four-gram sequences, delivering a detailed analysis of syntactic 

accuracy and fluency. Higher scores indicate better alignment 

with human-generated captions. 

4.2.2. METEOR (Metric for Evaluation of 

Translation with Explicit ORdering) 

 METEOR reviews captions based on synonym matching, 

stemming, word alignment, and semantic equivalence. This 

metric emphasizes both precision and recall and is effective in 

capturing linguistic variability and semantic relevance in the 

generated caption. 

4.2.3. ROUGE (Recall-Oriented Understudy for 

Gisting Evaluation) 

 ROUGE-1 and ROUGE-2 calculate the overlap of bigrams 

and unigrams, respectively, and ROUGE-L calculates the LCS-

Longest common sequence between the reference and 

candidate captions. The coherence of sentences and lexical 

similarity are reflected in these scores. 

4.3. BLEU Score Analysis 

Table 2. BLEU scores across various feature extraction 

Models 

Model 
BLEU-1 BLEU-2 BLEU-3 BLEU-4 

Beam Greedy Beam Greedy Beam Greedy Beam Greedy 

ResNet 0.546 0.509 0.358 0.324 0.228 0.197 0.139 0.114 

Inception 0.537 0.497 0.347 0.314 0.225 0.193 0.139 0.111 

Xception 0.543 0.507 0.356 0.326 0.235 0.202 0.152 0.119 

ViT 0.552 0.539 0.370 0.354 0.247 0.227 0.155 0.139 

 

As displayed in Table 2, the ViT-based model achieved the 

highest BLEU scores across all n-gram levels using both greedy 

and beam search strategies. Specifically, BLEU-4 scores 

reached 0.155 (beam) and 0.139 (greedy) with ViT, 

outperforming Xception (0.152 / 0.119) and ResNet (0.139 / 

0.114). The improvement is attributed to ViT’s superior ability 

to model global visual dependencies, which enhances the 

quality of contextually appropriate word predictions. 

 

Figure 4. BLEU-1 Scores Comparison Across Models 

On the Flickr30k dataset, BLEU-1 scores in figure 4 show that 

the ViT-based model with beam search achieves the highest 

unigram precision (0.552), slightly ahead of all other 

architectures, and even with greedy decoding it maintains a 

strong score (0.539). The small gap between beam and greedy 

results suggests that the approach generates accurate word 

choices inherently, without heavy reliance on search strategies. 

This highlights the strength of the ViT–LSTM–LSA framework 

in consistently selecting relevant words for captions, setting it 

apart as the most effective among the evaluated models for 

single-word accuracy. 
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Figure 5. BLEU-2 Scores Comparison Across Models 

In figure 5, BLEU-2 scores are plotted, which measures bigram 

precision and captures the accuracy of short word sequences, 

the ViT–LSTM–LSA model records the highest score with 

beam search (0.370), outperforming all other evaluated 

architectures. Even under greedy decoding, it achieves a strong 

score of 0.354, maintaining a clear lead over competing 

models. The relatively small gap between beam and greedy 

decoding indicates that the model’s feature extraction and 

language generation components are inherently effective at 

producing coherent word pairs without heavy reliance on 

advanced search strategies. This superior performance in 

BLEU-2 demonstrates the model’s capability to generate 

captions that not only contain accurate individual words but 

also form meaningful and contextually relevant short phrases. 

 

Figure 6. BLEU-3 Scores Comparison Across Models 

In figure 6, it shows thef BLEU-3 scores, which measures the 

precision of three-word sequences, the ViT–LSTM–LSA 

model achieves the highest score with beam search at 0.247, 

followed by Xception beam at 0.235, ResNet beam at 0.228, 

and Inception beam at 0.225. Under greedy decoding, ViT 

records 0.227, maintaining its lead over Xception (0.202), 

ResNet (0.197), and Inception (0.193). The beam–greedy gap 

for ViT is 0.020, smaller than that of the CNN-based models, 

indicating consistent performance across decoding strategies. 

These results demonstrate the model’s ability to retain accuracy 

in longer n-grams while delivering top performance in both 

search settings. 

In figure 7, It shows the BLEU-4 scores, that it evaluates the 

precision of four-word sequences and is a stronger indicator of 

overall caption fluency, the ViT–LSTM–LSA model attains the 

highest score with beam search at 0.155, followed by Xception 

beam at 0.152, Inception beam at 0.139, and ResNet beam at 

0.139. In greedy decoding, ViT reaches 0.139, ahead of 

Xception (0.119), ResNet (0.114), and Inception (0.111). The 

beam–greedy difference for ViT is 0.016, smaller than the gaps 

observed in the CNN-based baselines, reflecting its stability 

across decoding strategies. These results confirm the model’s 

capability to maintain coherent and contextually accurate 

longer sequences, reinforcing its effectiveness in generating 

high-quality captions. 

 

Figure 7. BLEU-4 Scores Comparison Across Models 

The BLEU-n results (n = 1 to 4) show that the ViT–LSTM–

LSA model performs better than all CNN-based models across 

every evaluation level, from single words to longer four-word 

sequences. It consistently achieves the highest scores with both 

beam search and greedy decoding, with only small differences 

between the two, showing that its predictions are accurate even 

without complex search strategies. The advantage becomes 

more noticeable in BLEU-3 and BLEU-4, where capturing 

longer and more meaningful phrases is crucial. Beam search 

improves results for all models, but the ViT-based approach 

remains the most effective overall, demonstrating a strong 

ability to generate captions that are both accurate and 

contextually relevant. 

4.4. METEOR Score Comparison 

Table 3. METEOR scores across various feature extraction 

Models 

Model Beam Greedy 

ResNet 0.360 0.338 

Inception 0.362 0.334 

Xception 0.356 0.324 

ViT 0.376 0.356 

 

Table 3 compares METEOR scores, which consider semantic 

matching and synonym handling. The ViT-LSTM-LSA model 

achieved 0.376 (beam) and 0.356 (greedy), surpassing the 

scores from all baseline models. These results validate that the 

ViT–LSTM–LSA system generates more meaningful and 

semantically aligned captions. 
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Figure 8. METEOR Scores Comparison Across Models 

Figure 8 presents METEOR scores, which incorporate 

synonym matching, word stemming, and alignment-based 

penalties for more nuanced caption evaluation. The ViT-LSTM 

model achieved the highest METEOR score under both 

decoding strategies, reinforcing its advantage in generating 

semantically rich and linguistically precise captions. Compared 

to ResNet and Inception, the ViT model demonstrates better 

generalization in word choice and sentence formation, 

attributes critical for applications requiring natural human-like 

descriptions. 

4.5. ROUGE Score Comparison 

Table 4. ROUGE scores across various feature extraction 

Models 

Model 
ROUGE-1 

 

ROUGE-2 

 

ROUGE-L 

 Beam Greedy Beam Greedy Beam Greedy 

ResNet 0.446 0.429 0.198 0.180 0.422 0.407 

Inception 0.437 0.420 0.192 0.176 0.411 0.395 

Xception 0.440 0.421 0.195 0.177 0.411 0.396 

ViT 0.453 0.447 0.210 0.198 0.424 0.420 

 

The ROUGE scores, which show the overlap of longer 

sequences between the reference and anticipated captions, are 

shown in Table 4. Under beam search decoding, the ViT-based 

model produced the highest scores for ROUGE-1, ROUGE-2, 

and ROUGE-L, with respective scores of 0.453, 0.210, and 

0.424. 

 

Figure 9. ROUGE-1 Scores Comparison Across Models 

In figure 9 it present the ROUGE-1 scores , as it measures the 

overlap of individual words between generated captions and 

reference captions, the ViT–LSTM–LSA model records the 

highest score with beam search at 0.453, followed by Xception 

beam at 0.440, ResNet beam at 0.446, and Inception beam at 

0.437. With greedy decoding, ViT achieves 0.447, staying 

ahead of ResNet (0.429), Xception (0.421), and Inception 

(0.420). The gap between beam and greedy for ViT is 0.006, 

smaller than that of CNN-based models, which range from 

0.016 to 0.018. These results show that the ViT-based model 

not only leads in single-word recall but also maintains stable 

performance across decoding strategies, producing captions 

that consistently capture more of the important words from the 

reference descriptions. 

 

Figure 10. ROUGE-2 Scores Comparison Across Models 

In figure 10 it presents ROUGE-2 scores, which measures the 

overlap of two-word sequences between generated and 

reference captions, the ViT–LSTM–LSA model achieves the 

highest score with beam search at 0.210, ahead of Xception 

beam at 0.195, ResNet beam at 0.198, and Inception beam at 

0.192. In greedy decoding, ViT records 0.198, maintaining its 

lead over Xception (0.177), ResNet (0.180), and Inception 

(0.176). The beam–greedy gap for ViT is 0.012, smaller than 

the differences observed in the CNN-based models, which 

range from 0.018 to 0.020. These results highlight the model’s 

strong ability to preserve accurate short phrase structures and 

contextual meaning, while remaining consistent across both 

decoding strategies. 
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Figure 11. ROUGE-L Scores Comparison Across Models 

In figure 11 ROUGE-L scores are plotted, it evaluates the 

longest common subsequence (LCS) between generated and 

reference captions and reflects overall sentence-level structure 

alignment, the ViT–LSTM–LSA model achieves the highest 

score with beam search at 0.424, followed by ResNet beam at 

0.422, Xception beam at 0.411, and Inception beam at 0.411. 

Under greedy decoding, ViT scores 0.420, remaining ahead of 

ResNet (0.407), Xception (0.396), and Inception (0.395). The 

difference between beam and greedy for ViT is 0.004, notably 

smaller than the 0.014–0.016 range observed in the CNN-based 

models. These results indicate that the ViT-based approach is 

particularly effective at generating captions with sentence 

structures closely matching the references, while delivering 

stable performance across decoding methods. 

The ROUGE metric results clearly show that the ViT–LSTM–

LSA model consistently outperforms all CNN-based baselines 

in capturing both word-level and phrase-level overlaps, as well 

as maintaining sentence structure. It achieves the highest 

ROUGE-1 score of 0.453, the top ROUGE-2 score of 0.210, 

and the leading ROUGE-L score of 0.424 using beam search, 

while also retaining strong performance with greedy decoding. 

The small score differences between decoding methods for this 

model, compared to the larger gaps in CNN-based approaches, 

indicate its stability and reliability in generating contextually 

aligned captions. Overall, these results demonstrate that the 

ViT-based approach is more effective in preserving important 

content, producing fluent sentence structures, and delivering 

captions that closely match the meaning and flow of the 

reference descriptions. 

5. CONCLUSION AND FUTURE SCOPE 

5.1. Conclusion 
In this paper, a powerful image feature extraction model is 

presented, which is called as Vision Transformer (ViT), which 

can generate captions to images by a sequence provided by the 

Long Short-Term Memory (LSTM), and hyperparameter 

optimization Lighting Search Algorithm (LSA). The proposed 

system utilizes the time-sequence modelling ability of LSTM 

and spatial context ability of ViT, and LSA enhances the model 

performance by adaptively varying the learning rate, dropout, 

and hidden units. 

The proposed hybrid ViT-LSTM architecture integrates the ViT 

and LSTM which not only outperforms the baseline models that 

follow the ResNet, Inception, and Xception but also yields 

better results in terms of evaluation measures such as BLEU, 

METEOR, and ROUGE in the experimental working on 

flickr30k. The performance gains are attributed to the effective 

hyperparameter exploration strategy adopted by ViT through 

self-attention-based encoding as well as by LSA. 

Also, the model under consideration shows the tendency to 

increase its effectiveness using beam search and greedy 

decoding strategies and have good generalization qualities. 

These results ratify the capacity of the proposed system in 

generating descriptive, fluent, and semantically true subtitles of 

various images. 

5.2. Future Scope 

Even though the proposed image captioning system has 

demonstrated the impressive performance on a number of 

benchmark datasets, there is a range of areas that can be 

enhanced. One positive direction is to increase the model 

ability to generate multiple language-specific titles to one 

image. This would allow the system to remember multiple 

contextual interpretations or semantic perspectives, something 

that is particularly handy in field such as accessibility, 

education and storytelling. 

Another possible development area is the combination of 

structured visual information, such as scene graphs or other 

sources of external knowledge. The system can end up with 

more rational, comprehensive and human-like descriptions on 

combining relational and contextual knowledge of the objects 

in an image, especially in intricate scenes. 

Real-time deployment is one more important element. 

Although the accuracy of the present model is optimized, it 

would still require further work in model compactness, 

quantization, or application of lightweight transformer 

architecture to transfer it to the edge devices or low-resource 

areas. This would make the system more applicable in the 

embedded vision applications, mobile, and surveillance. 

Also, the model could be more applicable to practical 

applications and flexible when its implementation would be 

extended to multilingual or domain datasets, such as remote 

sensing or medical imaging. Finally, the availability of 

interactive learning, such as using reinforcement learning or by 

human feedback can allow the model to dynamically update its 

outputs in such a way so that the quality of the captions 

graduates to support the specific requirements of individual 

users or tasks. 
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