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ABSTRACT

Image captioning, situated at the intersection of computer vision
and natural language processing, requires a sophisticated under-
standing of both visual scenes and linguistic structure. While mod-
ern approaches are dominated by large-scale Transformer architec-
tures, this paper documents a systematic, iterative development of
foundational image captioning models, progressing from a simple
CNN-LSTM encoder-decoder to a competitive attention-based sys-
tem. This paper presents a series of five models, beginning with
Genesis and concluding with Nexus, an advanced model featur-
ing an EfficientNetV2B3 backbone and a dynamic attention mech-
anism. The experiments chart the impact of architectural enhance-
ments and demonstrate a key finding within the classic CNN-
LSTM paradigm: merely upgrading the visual backbone without
a corresponding attention mechanism can degrade performance, as
the single-vector bottleneck cannot transmit the richer visual detail.
This insight validates the architectural shift to attention. Trained
on the MS COCO 2017 dataset, the final model, Nexus, achieves
a BLEU-4 score of 31.4, surpassing several foundational bench-
marks and validating the iterative design process. This work pro-
vides a clear, replicable blueprint for understanding the core ar-
chitectural principles that underpin modern vision-language tasks.
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1. INTRODUCTION

The automated generation of natural language descriptions for im-
ages, known as image captioning, remains a challenging and active
area of research. It represents a classic multi-modal task, demand-
ing that a model not only recognize objects and their attributes
within an image but also understand their relationships and com-
pose a grammatically correct and semantically rich sentence.

The dominant approach to this problem has been the encoder-
decoder framework [5]], which typically uses a Convolutional Neu-

ral Network (CNN) to encode an image into a fixed-length vec-
tor representation, and a Recurrent Neural Network (RNN) to de-
code this vector into a sequence of words. While pioneering, this
paradigm is sensitive to a wide array of architectural choices, from
the depth of the CNN backbone to the complexity of the RNN de-
coder and the method of feature fusion.

In this paper, we present the results of a structured, iterative re-
search process aimed at building and refining an image caption-
ing model. The methodology is rooted in progressive enhancement,
starting with a simple baseline and methodically introducing more
complex components to address specific limitations. This paper
documents the development of five distinct models, named to re-
flect their role in this evolution: Genesis, Contexta, Clarity, Focalis,
and Nexus.

This journey provides valuable insights into the interplay between
visual perception, language modeling, and attention. This paper
demonstrates empirically how each architectural modification im-
pacts performance, including a counter-intuitive but instructive
finding where a more powerful visual encoder led to a decrease
in caption quality, thereby motivating the shift to an attention-
based design. This work also serves as a pedagogical guide for stu-
dents and practitioners, offering a clear, replicable framework to
understand the architectural trade-offs that shaped modern vision-
language models. The final model, Nexus, leverages the lessons
learned to achieve results that are competitive with and, on several
key metrics surpass, foundational benchmarks in the field.

2. RELATED WORK

The field of image captioning has evolved significantly since its
inception. This section reviews the foundational encoder—decoder
paradigms upon which this work builds, as well as the modern
Transformer-based architectures that now define the state of the art.

2.1 Foundational Encoder-Decoder Architectures

Early work established the now-classic encoder-decoder architec-
ture. Vinyals et al. [5] in their ”Show and Tell” model, success-
fully repurposed techniques from machine translation, using a pre-
trained CNN like InceptionV3 as an encoder and an LSTM network
as a decoder. The initial model, Genesis, is a direct implementation
of this foundational paradigm.

The primary limitation of this approach was the information bot-
tleneck created by compressing the entire image into a single static
context vector. The breakthrough came with the introduction of vi-



sual attention mechanisms by Xu et al. [6] in "Show, Attend and
Tell”. Their model allowed the decoder to dynamically ”look™ at
different parts of the image at each step of the caption generation
process. This concept of soft attention is central to the advanced
models, Focalis and Nexus, and directly addresses the static bottle-
neck problem this paper investigates. Further refinements on this
grid-based attention include the “Bottom-Up and Top-Down At-
tention” model by Anderson et al. [[7]], which first identifies salient
object regions and then applies top-down attention.

2.2 The Transformer Revolution and Modern
Approaches

The current state of the art in vision-language tasks has been over-
whelmingly shaped by the Transformer architecture [[19]. Models
like BLIP [22] and Flamingo [23|] have set new performance bench-
marks by employing large-scale, unified Transformer-based frame-
works. BLIP, for instance, introduced a multimodal mixture of
encoder-decoder models to effectively pre-train on noisy web data,
unifying image-text understanding and generation. These models
often leverage vision transformers (ViT) [20] for image encoding,
dispensing with CNNs entirely.

While attention-based Transformers are dominant, research into
non-attention or attention-free architectures continues. For exam-
ple, RWKYV [24], a type of Recurrent Neural Network, has been
adapted for multimodal tasks, offering a linear-time complexity
alternative to the quadratic complexity of standard self-attention.
This demonstrates that architectural diversity persists. Unlike the
CNN-LSTM models with global average pooling that this paper
investigates, architectures like RWKV or vision-specific designs
like U-Nets [4] use different feature processing methods (recurrent
states or skip connections) that may mitigate the specific single-
vector bottleneck this paper identifies.

3. ANITERATIVE, DIAGNOSTIC APPROACH TO
MODEL DESIGN

The methodology is rooted in a structured, iterative research pro-
cess designed to build and refine an image captioning model. This
approach provides a crucial, hands-on analysis of the architectural
trade-offs, particularly the attention-based resolution of the static
information bottleneck that motivated the field’s transition towards
more complex systems. This paper documents the development of
five distinct models, progressively introducing more complex com-
ponents to address specific limitations and test clear hypotheses.

3.1 Model 1: Genesis

The Genesis model serves as the foundational baseline, embodying
the classic encoder-decoder paradigm that set the stage for modern
image captioning. The architecture is intentionally simple to estab-
lish a clear performance benchmark. The encoder’s role is to ’see”
the image, for which this paper employs the InceptionV3 architec-
ture pre-trained on ImageNet. This choice provides a strong set of
visual features learned from a massive dataset. The final convolu-
tional feature map from InceptionV3 is passed through a Global
Average Pooling layer, which condenses the entire spatial grid into
a single, fixed-length 2048-dimension feature vector.

This static vector, intended to be a semantic summary of the image,
is then fed as the initial hidden state to the decoder. The decoder,
a unidirectional Long Short-Term Memory (LSTM) network with
256 units, is responsible for "telling” the story. It generates the cap-
tion word-by-word, with each new word conditioned on the pre-
vious word and the LSTM’s hidden state. The critical limitation,

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.31, August 2025

which this model is designed to exemplify, is that the entire burden
of representing the image’s content rests on this single static vector.
This creates a severe information bottleneck, as the decoder has
no way to re-examine different parts of the image as it generates
the caption. This entire model was trained on the Flickr8k dataset
to validate its baseline functionality.
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Fig. 1: Diagram of the Genesis architecture.

3.2 Model 2: Contexta

While Genesis established the visual baseline, its primary limita-
tion was its decoder’s simplistic understanding of linguistic struc-
ture. A standard unidirectional LSTM only considers past context
(the words it has already generated) when predicting the next word.
To address this, this paper developed Contexta, a model designed
to test the hypothesis that a richer language model could improve
caption quality, even with the same static visual input.

The core modification was replacing the unidirectional LSTM with
a Bidirectional LSTM (Bi-LSTM) with 256 units for each direc-
tion. By processing the sequence of previously generated words
in both forward and backward directions, the Bi-LSTM creates a
more comprehensive understanding of the grammatical and seman-
tic context of the partial caption at each decoding step. This results
in a richer 512-dimension language context vector. Furthermore,



the fusion mechanism for combining the image vector and the lan-
guage state was upgraded from simple addition to ‘Concatenate‘.
Concatenation preserves the distinct feature representations from
both the visual and linguistic streams, allowing subsequent layers
to learn more complex interactions between them, whereas simple
addition can risk “washing out” information. The goal of Contexta
was to isolate and measure the impact of a more powerful language
decoder.

3.3 Model 3: Clarity

The next step was to test a straightforward hypothesis: would a
more powerful visual feature extractor directly lead to better cap-
tions? To investigate this, this paper designed the Clarity model.
This paper replaces the InceptionV3 backbone with a state-of-the-
art EfficientNetV2B3, known for its superior accuracy. Critically,
this paper retained the rest of the Contexta architecture, including
the global average pooling encoder and the Bi-LSTM decoder.
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Fig. 2: Diagram of the Contexta and Clarity architecture, which uses a static
image vector and a Bi-LSTM decoder.

3.4 Model 4: Focalis

The performance degradation of Clarity provided a critical diag-
nostic insight: a more powerful visual feature extractor is useless if
its output cannot be effectively utilized by the decoder. This con-
firmed the hypothesis that the single, static feature vector was act-
ing as a severe information bottleneck. Although EfficientNetV2B3
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was providing a richer, more detailed map of the image, global av-
erage pooling collapses this entire map into a single vector, irre-
trievably discarding the spatial information that defines “where”
objects are. To solve this, this paper designed Focalis, which repre-
sents a fundamental architectural pivot from a static to a dynamic
vision-language interface.

The core innovation in Focalis is the introduction of a Luong-style
attention mechanism, which completely removes the global av-
erage pooling layer. Instead of forcing the model to “remember”
the entire image from a single vector, This paper allows it to se-
lectively “look™ at different regions of the image at each step of
the caption generation process. This enables the decoder to ground
specific words in specific spatial locations, for example, focusing
on the region containing a "dog” when generating that word, and
then shifting focus to the “’ball” when describing what the dog is
chasing.

The mechanics of the attention process operate at each decoding
timestep:

—Feature Grid: The EfficientNetV2B3 encoder outputs a (10x10,
1536) feature grid, preserving the spatial layout of the image.
After the spatial encoder (described below), this becomes a set
of 100 context-aware feature vectors, which serve as the ”values”
for the attention mechanism.

—Query, Key, and Value: At each step, the decoder’s current hid-
den state acts as the “query” vector. This query represents the
model’s current context, what it has said so far and what it might
say next. The query is compared against each of the 100 image
patch vectors (the “’keys”) using an additive scoring function to
generate attention weights.

—Context Vector Generation: These weights, normalized via a
softmax function, determine the importance of each image patch
for the current decoding step. A weighted sum of the image patch
vectors (“values”) is then computed, producing a single, dynamic
context vector that is tailored to the specific word being gener-
ated. This vector is then concatenated with the decoder’s input to
predict the next word.

Crucially, before the attention mechanism is applied, this paper in-
troduce the key architectural refinement: a Bidirectional LSTM as
a spatial encoder. Unlike standard attention mechanisms that treat
each image patch independently, this Bi-LSTM processes the 100
patch vectors as a sequence. By reading the sequence of patches
forwards and backwards, it enriches each patch’s vector with in-
formation about its neighbors. For instance, the vector for a patch
containing a “’face” becomes aware that it is spatially adjacent to a
patch containing "hair.” This creates a more contextually rich set of
feature vectors over which the decoder can attend.

The Bi-LSTM processes the raw feature grid (h,) to produce
context-aware vectors (h) that incorporate spatial relationships be-
fore they are used by the attention mechanism:

h, = Bi-LSTM(h,) (1

This complete architecture directly addresses the limitations ob-
served in the previous models. By providing the decoder with dy-
namic, selective access to context-aware spatial features, this paper
hypothesized that Focalis would not only resolve the performance
degradation seen in Clarity but would significantly surpass all prior
models. As the results show, this proved to be the case, marking the
critical turning point in the development cycle.



3.5 Model 5: Nexus

The Nexus model does not introduce a new architecture; rather, it
represents the culmination of the research by testing the scalability
and full potential of the best design. While Focalis proved that the
attention-based architecture was effective on a smaller scale, Nexus
was designed to answer a critical question: how does this architec-
ture perform when trained on a large, complex, and diverse dataset?
To this end, this paper took the robust attention-based architec-
ture of Focalis, with its EfficientNetV2B3 backbone and Bi-LSTM
spatial encoder, and trained it on the large-scale MS COCO 2017
dataset. MS COCO, with its 118k training images, is significantly
larger and more complex than Flickr8k. Its images often contain
multiple objects in intricate relationships, and it provides five refer-
ence captions per image, exposing the model to a much richer range
of linguistic expression. The goal of Nexus was therefore to unlock
the full capabilities of the architecture by leveraging this data. This
paper hypothesized that the attention mechanism would learn more
nuanced and accurate alignments, the visual encoder would learn
more generalizable features, and the language decoder would de-
velop a more sophisticated command of grammar and vocabulary.
In essence, Nexus serves as the final validation of the iterative de-
sign process, demonstrating its effectiveness in a standard bench-
mark setting.
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Fig. 3: Architecture of the Focalis and Nexus model. This attention-based
design allows the decoder to dynamically focus on different image regions
for each word.
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4. EXPERIMENTS AND RESULTS
4.1 Experimental Setup

Datasets: The initial models (Genesis-Focalis) were trained on the
Flickr8k dataset, which contains approximately 8,000 images. The
final model, Nexus, was trained on the MS COCO 2017 dataset,
using the official split of 118k training images and 5k validation
images.

Training: The Nexus model was trained using the Adam opti-
mizer [16] with an initial learning rate of 1 X 10~* and ‘clip-
norm=1.0°. This paper employed a ‘ReduceLROnPlateau‘ sched-
uler (patience=1) and label smoothing (¢ = 0.1) with the ‘Cate-
goricalCrossentropy ‘ loss function. Training was performed using
a "teacher forcing” strategy and continued until an ‘EarlyStopping*
callback (patience=3) halted the process after 25 epochs.
Evaluation Metrics: this paper evaluate model performance using
BLEU [13] and METEOR [14]. For inference, this paper use Beam
Search with a beam width of K = 7. As an independent researcher
with limited computational resources, the widely-used CIDEr met-
ric was not computed; however, BLEU and METEOR provide a
robust evaluation consistent with foundational benchmarks and al-
low for clear comparison across the iterative models.

4.2 Result Analysis

The performance of each model, shown in Table 1, clearly illus-
trates the impact of the iterative architectural improvements and
the critical role of data scaling.

Table 1. : Performance Progression Across All Models. Models 1-4 are eval-
uated on Flickr8k; Nexus is evaluated on MS COCO.

Model Dataset BLEU-4 METEOR
Genesis Flickr8k 14.4 26.7
Contexta  Flickr8k 17.2 36.1
Clarity Flickr8k 9.1 17.5
Focalis Flickr8k 20.2 38.1
Nexus MS COCO 314 47.4

Progressive Enhancement on Flickr8k: Each architectural step
on the smaller dataset provided key insights. The move to a Bi-
LSTM in Contexta improved scores over Genesis. Critically, Clar-
ity demonstrated that a more powerful visual backbone (Efficient-
NetV2) without attention actually degraded performance, exposing
the information bottleneck. The introduction of attention in Focalis
resolved this, achieving the best scores on Flickr8k.

The Power of Scale: The most dramatic performance leap oc-
curred with the Nexus model. By training the best architecture on
the large-scale MS COCO dataset, this paper unlocked its true po-
tential. The BLEU-4 score jumped from 20.2 to 31.4, an improve-
ment of over 55%. This demonstrates that advanced architectures
require large, diverse datasets to learn robust, generalizable repre-
sentations. The final model surpasses several foundational bench-
marks, as shown in Table 4.

Qualitative Improvements: The impact of architectural choices
is most strikingly revealed when testing the models on challeng-
ing images from the MS COCO dataset, as shown in Table 2. This
comparison exposes the combined limitations of both architecture
and training data, demonstrating how the information bottleneck in
the non-attention models forces them to "hallucinate” when faced
with unfamiliar scenes.



The first example is the most telling. When presented with an im-
age of a giraffe, an animal largely absent from the Flickr8k dataset,
both Genesis and Clarity catastrophically misidentify the subject as
a ”’dog”. This demonstrates a critical failure: unable to process the
unique visual features of the giraffe through their static vector bot-
tleneck, the models are forced to fall back on the statistical priors
of their limited training data, where “dog” is a far more common
and high-probability subject. They are not describing the image,
but rather guessing the most plausible caption from their narrow
experience.

This pattern of failure extends to other complex scenes. For the im-
age of kites flying, the non-attention models again hallucinate an
entirely different, high-probability scenario involving “’people” at
a "beach” or in “water,” defaulting to generic scenes prevalent in
their training set rather than parsing the specific objects present.
Similarly, for the dining image, they fail to grasp the specific con-
text, demonstrating a failure of both object recognition and seman-
tic relationship understanding when the scene deviates from their
training experience.

In stark contrast, Nexus, whose architecture was designed to over-
come this bottleneck and was trained on the richer and more diverse
MS COCO dataset, correctly identifies the “giraffe,” the “kites,”
and the specific dining scene. This powerful comparison highlights
that a superior architecture (the attention mechanism) combined
with large-scale, relevant data is fundamental to achieving accurate
semantic grounding and moving beyond simple pattern matching.

Table 2. : Qualitative Comparison of Sample Captions.

Model Generated Caption

Image: A giraffe standing in a field (see Appendix Fig. 6)
Genesis A brown and white dog is running through the grass.
Clarity A dog is running through a grassy field.

Nexus A giraffe standing on top of a lush green field.

Image: Kites flying in the sky (see Appendix Fig. 7)
Genesis A group of people are playing in the water.
Clarity A group of people are walking on the beach.
Nexus There are many kites flying in the sky.

Image: People sitting at a table (see Appendix Fig. 8)

Genesis A group of people are standing in front of a crowd of people.
Clarity A group of people are sitting at a restaurant.

Nexus Several people sitting around a table with plates of food.

Training Dynamics and Model Selection The training process
for Nexus revealed a divergence between the validation loss (the
optimization target) and the final evaluation metrics. As shown in
Figure 4, val_loss continued to improve until Epoch 25. How-
ever, an evaluation of checkpoints on a random 15-image sample
(Table 3) showed that peak performance on metrics like F1-Score
and BLEU-4 occurred earlier, around Epoch 13, where val_loss
and train_loss first converged. After this point, the model began
to over-optimize on the cross-entropy loss at the expense of cap-
tion quality. This finding is consistent with observations from prior
work [6], where a breakdown in correlation between log-likelihood
and BLEU was also noted. This analysis led us to select the check-
point from Epoch 13 as the champion model for final evaluation
and reporting.
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Table 3. : Metric Comparison of Nexus Checkpoints on a Sample Set.

Metric Epoch 10 Epoch 13  Epoch 25
BLEU-1 0.8352 0.7979 0.6066
BLEU-2 0.6961 0.6962 0.4643
BLEU-3 0.5428 0.5661 0.3294
BLEU-4 0.4192 0.4650 0.1856
METEOR 0.5557 0.5869 0.5878
Precision 0.8571 0.8367 0.8495
Recall 0.7372 0.7750 0.6049
F1-Score 0.7927 0.8047 0.6639

The analysis of the training dynamics highlights a significant di-
vergence between the optimization objective (validation loss) and
the task’s primary evaluation metrics (e.g., BLEU, METEOR). This
difference arises because the CategoricalCrossentropy loss func-
tion serves as an imperfect proxy for sentence-level quality. While
it effectively guides the model in next-word prediction, it does not
explicitly reward n-gram overlap or semantic coherence across an
entire generated sequence. This paper observe that after reaching
a point of convergence around Epoch 13, further training leads to
overfitting on this proxy objective. This results in the model fa-
voring high-probability, often repetitive, phrases that continue to
reduce loss but degrade overall caption quality, as reflected by de-
creasing BLEU scores. This misalignment between log-likelihood
maximization and human-centric evaluation metrics is a recognized
challenge in sequence generation, as previously discussed by Xu et
al. [6].

Consequently, although the model at Epoch 25 achieves the mini-
mum validation loss, the checkpoint from Epoch 13 represents the
optimal model for the task. It achieves the highest scores on metrics
like BLEU-4 and METEOR, which are more closely aligned with
human judgments of quality. This finding demonstrates the impor-
tance of using a comprehensive suite of task-specific metrics for
model selection, rather than relying solely on the training loss.
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Fig. 4: Training and validation loss curves for the Nexus model over 25 epochs.
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Epoch 13: A man is riding a wave on a surfboard.
Epoch 25: A man riding a wave on top of a surfboard.

Fig. 5: Attention visualization for a sample image using the Nexus model checkpoint from Epoch 13. The heatmaps show the model’s focus
shifting across image regions as it generates each word in the caption. Captions from Epochs 10 and 25 are included below the image for
comparison, but only the Epoch 13 caption corresponds to the attention map shown.



5. CONCLUSION

In this paper, this paper have detailed the iterative design and eval-
uation of five image captioning models, charting a course from a
simple baseline to a competitive attention-based system. The sys-
tematic approach demonstrates a clear path for model enhancement
and yields several key insights. First, this paper show that within
the classic CNN-LSTM paradigm, simply upgrading a visual back-
bone is not a guaranteed path to better performance; it must be
paired with an architecture, such as an attention mechanism, that
can effectively process the increased feature complexity. Second,
this paper show that the point of lowest validation loss does not al-
ways correspond to peak performance on task-specific metrics like
BLEU, necessitating a nuanced model selection process.

While the final model, Nexus, does not compete with the scale
or performance of contemporary Transformer-based systems like
BLIP, its final BLEU-4 score of 31.4 validates the architectural de-
sign by surpassing several foundational benchmarks. This work’s
contribution is not a new state-of-the-art result, but rather a clear,
educational, and practical guide to understanding the founda-
tional trade-offs in vision-language architecture that precipitated
the field’s shift toward modern, attention-centric designs.

Future Work

While the Nexus model demonstrates strong performance, several
areas remain open for exploration. As an independent researcher,
this work was developed with limited computational resources,
which motivated the focus on efficient CNN-LSTM architectures
and guided the evaluation choices. Future work could investigate
lightweight or quantized variants of the architecture for deploy-
ment in resource-constrained environments. Second, generaliza-
tion to out-of-distribution or low-resource image domains warrants
deeper investigation, potentially using domain adaptation or con-
trastive pre-training techniques.
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Table 4. : Final Benchmark Comparison on the MS COCO Validation Set. Scores are reported as percentages. The Nexus model is compared
against foundational models and modern Transformer-based systems to provide a clear context for its performance.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR
Foundational CNN-LSTM Models

BRNN (Karpathy & Li, 2015) [18 64.2 45.1 30.4 20.3 -
Google NIC (Vinyals et al., 201 . 66.6 46.1 329 24.6 -
Soft-Attention (Xu et al., 2015) 6] 70.7 49.2 344 24.3 23.9*
Hard-Attention (Xu et al., 2015) Iﬁl 71.8 50.4 35.7 25.0 23.0*
Up-Down (Anderson et al., 2018) || 79.8 - - 36.3 27.7%
Nexus (This work, Epoch 13) 71.7 55.0 41.8 314 47.4
Transformer-Based Models (for reference)

OSCAR (Li et al., 2020) [21] - - - 36.5 33.5%
BLIP (Li et al., 2022) || - - - 39.7 36.1*

*METEOR scores from different eras/packages may not be directly comparable. The NLTK-based METEOR score is reported for completeness.

,,,,,,,,,,,,,,,

This appendix provides additional visual results to complement the - || - ! u
quantitative analysis in the main paper. This paper showcase atten-

tion maps from the best model, Nexus, to illustrate how the model Fig. 9: A person holding an umbrella in the rain.
dynamically focuses on relevant image regions during caption gen-
eration.

APPENDIX

A. QUALITATIVE EXAMPLES AND
VISUALIZATIONS

Fig. 8: Several people sitting around a table with plates of food.
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Fig. 12: Nexus Caption: ’Several people sitting around a table with plates
of food.”

Fig. 10: Nexus Caption: ”A giraffe standing on top of a lush green field.”

Fig. 11: Nexus Caption: “There are many kites flying in the sky.”
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