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ABSTRACT 

An efficient deep learning framework is proposed for sentiment 

analysis that leverages both textual and visual modalities. The 

architecture integrates Long Short-Term Memory (LSTM) 

networks for capturing sequential dependencies in textual data 

with Convolutional Neural Networks (CNNs) for analyzing 

visual content. This multimodal fusion enhances sentiment 

classification accuracy. The model is assessed on two 

benchmark datasets—Memes and MVSA—and its 

performance is compared to traditional machine learning 

models such as Support Vector Machines and Logistic 

Regression, as well as the transformer-based VisualBERT. 

Although VisualBERT achieves slightly higher accuracy 

(83.18% on Memes and 81.29% on MVSA), the proposed 

approach delivers comparable results (77.70% and 80.42%, 

respectively) while maintaining a much lower computational 

footprint. This balance between performance and efficiency 

highlights the model’s practical value for applications where 

computational resources are limited or real-time analysis is 

required. 
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1. INTRODUCTION 
The widespread exchange of updates on major social 

networking platforms has become a central part of modern 

digital communication, enabling users to share information, 

opinions, and emotions globally [1]. Sentiment analysis, a key 

area within natural language processing (NLP), aims to identify 

and categorize the emotional tone behind user-generated 

content—spanning both textual and visual modalities [1], [2]. 

This domain focuses on analyzing large-scale content from 

platforms such as Twitter, Facebook, Instagram, and Flickr [3]. 

Traditional sentiment analysis has primarily relied on textual 

data. However, recent advancements highlight the importance 

of multimodal approaches, where the fusion of textual and 

visual features significantly enhances classification 

performance compared to single-modality models [4]. Given 

the complex and subjective nature of emotions—ranging from 

positive, negative, and neutral to more nuanced states like joy 

or sarcasm—leveraging diverse data sources is essential for 

building accurate and robust sentiment analysis systems [5]. 

Historically, sentiment analysis employed statistical and 

machine learning techniques that depended heavily on 

handcrafted features, limiting their adaptability and scalability. 

In contrast, modern deep learning methods—particularly 

neural network architectures—have demonstrated superior 

performance by learning high-level features automatically [6, 

7]. 

The present study proposes a lightweight hybrid deep learning 

model that combines Long Short-Term Memory (LSTM) 

networks for textual analysis with Convolutional Neural 

Networks (CNNs) for image-based sentiment understanding 

[8]. The goal is to fuse temporal and spatial information 

effectively to improve sentiment classification accuracy. the 

model is evaluated on two widely used benchmark datasets: 

MVSA and Memes. It is compared against traditional machine 

learning models—such as Support Vector Machines (SVM) 

and Logistic Regression—as well as the transformer-based 

VisualBERT model. 

While VisualBERT achieves the highest accuracy (83.18% on 

Memes and 81.29% on MVSA), hybrid model offers a 

competitive alternative (77.70% and 80.42%, respectively), 

with significantly lower computational requirements. This 

makes it well-suited for real-time or resource-constrained 

environments. The results demonstrate the limitations of 

unimodal approaches and reinforce the effectiveness of 

multimodal fusion in sentiment analysis. 

Overall, this work contributes both theoretically and practically 

to the field by developing and evaluating a hybrid LSTM-CNN 

framework that can enhance the interpretation of sentiment in 

social media content. VisualBERT is also assessed to provide 

a deeper comparative understanding of current multimodal 

architectures. 

2.  RELATED WORK 

2.1 Sentiment Analysis for Text 
Sentiment analysis is key to understanding public and customer 

opinions, using three main approaches: sentiment lexicons, 

machine learning, and deep learning [9]. Supervised ML 

models like Linear SVM and Logistic Regression perform well 

in classification tasks [10] but struggle with domain 

transferability and require manual annotation. Deep learning 

addresses these issues by learning complex features 

automatically through neural networks such as RNNs and 

CNNs. Attention mechanisms enhance emotional cue 

detection, while LSTM networks excel in capturing long-term 

dependencies in text, making them highly effective for 

sentiment classification [11]. 

2.2 Sentiment Analysis for Images 
Visual sentiment analysis studies emotional responses elicited 

by visual cues, posing unique challenges due to the subjective 

nature of emotions [12]. Deep learning, especially CNNs, has 
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revolutionized computer vision tasks by improving feature 

extraction and computational efficiency through convolutional, 

pooling, and normalization layers [13]. CNNs are widely 

applied to scene understanding, object recognition, and image-

based sentiment prediction [14]. 

Several CNN-based approaches have demonstrated significant 

improvements in representing visual sentiment. For example, 

DeepSentiBank uses adjective-noun pairs for emotion 

classification, while fine-tuned CNNs trained on large-scale 

datasets achieve superior emotion prediction performance. 

Architectures such as PCNN effectively leverage noisy web 

data for sentiment tasks [15]. Despite these advances, 

challenges such as sentiment ambiguity and category overlap 

remain. To mitigate these issues, hybrid models combining 

CNNs with RNNs have been proposed to capture multi-level 

features [16]. CNNs generally require fewer parameters than 

fully connected networks, resulting in efficient training while 

maintaining high accuracy [17]. 

2.3 Multimodal Text and Image Sentiment 

Analysis 
Multimodal Sentiment Analysis (MSA) involves the 

combination of information from various sources—such as text 

and images—to assess emotions and sentiments. It is widely 

used in applications like personalized advertising, opinion 

analysis, emotion-aware recommendation engines, and human-

computer interaction [18]. The rapid increase in user-generated 

content on social media has positioned MSA as an important 

area of research [19]. 

MSA presents several challenges, including the creation of 

effective multimodal representations, alignment of modalities 

both in time and meaning, and reliable fusion of diverse data 

types. These tasks are further complicated by issues such as 

asynchronous inputs, varying data quality, and modality-

specific noise [20]. To tackle these problems, deep learning 

models—such as CNNs, LSTMs, and transformers enhanced 

with attention mechanisms—have been widely adopted. 

Two prominent difficulties in MSA are the semantic gap, 

referring to the disconnect between raw input features (like 

pixels) and abstract sentiment concepts (like emotions), and 

data fusion, which involves integrating complementary 

features from different modalities effectively [21]. As 

multimodal systems become more sophisticated, ensuring 

interpretability and explainability is essential for understanding 

the individual impact of each modality, thereby enabling more 

transparent and dependable predictions [22]. 

2.4 Multimodal Fusion for Hybrid LSTM-

CNN Models 
Recent research in multimodal fusion for emotion recognition 

has explored various strategies to combine complementary data 

from different modalities. Fusion methods are generally 

classified as early fusion (feature-level), late fusion (decision-

level), or hybrid fusion. Hybrid models that combine LSTM 

and CNN architectures are particularly promising for text and 

image sentiment analysis, as they exploit LSTMs’ sequential 

modeling strength for text and CNNs’ spatial feature extraction 

for images [9]. 

Several studies propose fusion mechanisms that concatenate 

LSTM-derived textual features with CNN-extracted visual 

features, which are then fed into dense or attention layers for 

sentiment prediction [23]. More advanced methods employ 

gating mechanisms or attention-based fusion, allowing the 

model to dynamically weight and integrate features based on 

their relevance to sentiment interpretation. For example, Gated 

Multimodal Units (GMUs) utilize gating units to control the 

contribution of each modality via trainable parameters [24]. 

In contrast, transformer-based models like VisualBERT 

directly integrate text and image inputs within a unified 

architecture by embedding image features as special tokens 

alongside tokenized text. Self-attention layers in these models 

learn cross-modal dependencies effectively [25, 26]. Although 

powerful, transformer-based models typically require extensive 

computational resources and large-scale pretraining datasets 

[27]. 

The study proposes a lightweight hybrid LSTM-CNN 

architecture as a practical and interpretable alternative to 

resource-intensive transformer models. While it does not 

surpass large-scale models like VisualBERT in accuracy, it 

offers a favorable balance between performance, 

computational efficiency, and deployment ease. This makes it 

particularly suitable for real-world applications such as content 

moderation, sentiment monitoring, and user feedback analysis 

on resource-constrained platforms including mobile and 

embedded devices [28]. 

3.  METHODOLOGIES 

3.1 Dataset 
The datasets used in this study are sourced from Kaggle [29] 

and include internet memes as well as the MVSA dataset, both 

containing images paired with corresponding textual content 

[30]. Prior research has examined image color palettes and the 

emotional tone of associated text [31]. features are extracted to 

classify memes into three sentiment categories: positive, 

negative, and neutral. Negative memes typically express 

emotions such as sadness, anger, or disgust, while positive 

memes convey happiness or surprise. Neutral memes exhibit 

minimal emotional expression [30]. 

3.2 Adversarial Robustness and 

Overfitting 
To address challenges related to overfitting and robustness, this 

study examines training on small-scale benchmark datasets. A 

key limitation observed is that although models may achieve 

high accuracy on standard test sets, their performance often 

degrades when exposed to adversarial examples. Achieving 

robust generalization usual requires substantially more training 

data than typical procedures provide [32]. Additionally, 

training with large batch sizes can lead to a generalization gap, 

where the model performs well on training data but poorly on 

unseen samples. The random walk on a random landscape 

framework is employed to describe the stochastic evolution of 

model parameters during early training phases [33]. 

3.3 Text Preprocessing and Feature 

Extraction 
Text preprocessing transforms raw textual data into analyzable 

forms, a critical step in natural language processing (NLP) [34]. 

The following techniques are applied: 

3.3.1 Tokenization: Text is segmented into tokens using 

punctuation and non-alphabetic characters as delimiters. 

3.3.2 Stop-word Filtering: Commonly occurring words and 

tokens based on predefined length constraints are removed. 

3.3.3 Stemming: Words are reduced to their root forms using 

algorithms such as Porter, Lovin’s, and the Snowball stemmer, 

which implements 41 rule-based transformations [35]. 

3.3.4 Noise Removal: Eliminates punctuation, Twitter 

symbols, and HTML tags [36]. 
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The cleaned text (TPT) is then used to extract features via the 

Term Frequency–Inverse Document Frequency (TF-IDF) 

method: 

3.3.5 Term Frequency (TF): Measures how frequently a word 

appears in a document. 

Inverse Document Frequency (IDF): Applies a logarithmic 

transformation to assess term rarity across the corpus [37]. 

3.4  Image Processing 
Image classification and segmentation use descriptors like 

texture, color, edge maps, HOG, and GIST [38]. In a related 

study, twelve 64×64 sub-images were extracted from brain 

scans and labeled for Invasive Ductal Carcinoma detection [39, 

40]. For meme analysis, OCR is used to extract embedded text 

from images [41]. 

3.5 Multimodal Deep Learning 

Architecture  
To combine heterogeneous data sources for sentiment 

classification, multimodal deep learning framework ís 

proposed integrating textual and visual information via a hybrid 

LSTM-CNN architecture enhanced by gated fusion and cross-

modal attention mechanisms. 

3.5.1 Text Branch: 

A Long Short-Term Memory LSTM recurrent network 

processes preprocessed text inputs, capturing temporal and 

contextual relationships within token sequences to generate a 

fixed-size semantic vector [42]. Text is tokenized, embedded 

into 100-dimensional vectors, and passed through a 128-unit 

LSTM, followed by batch normalization and dropout 0.5 to 

enhance generalization. 

3.5.2  Image Branch: 

 A Convolutional Neural Network CNN extracts spatial 

features from resized meme images, capturing texture, color, 

and sentiment cues relevant to classification [43]. Images pass 

through two convolutional layers (with 32 and 64 filters), each 

followed by max pooling, then flattening and dropout, before a 

dense layer project them into a 128-dimensional space. 

3.5.3 Fusion Mechanism:  

A gated fusion module combines modalities by learning the 

importance of each. Inspired by Gated Multimodal Units 

(GMUs) [24], it uses trainable gating parameters to weight 

visual and textual features. Both modalities are projected into a 

shared semantic space. Global pooling is applied to text 

outputs, and image features are reshaped. These are 

concatenated and passed through a sigmoid-activated gating 

layer to dynamically balance their contributions. 

3.5.4 Cross-Modal Attention:  

A multi-head bidirectional attention layer [43] enables image 

and text features to attend to one another. This two-way 

interaction highlights sentiment-relevant cues and models fine-

grained inter-modal relationships. Residual connections further 

enhance these features with cross-modal context. 

3.5.5 Training Enhancements:  

The model is trained for 10 epochs with a batch size of 16 using 

the Adam optimizer and categorical cross-entropy loss, with 

validation on a separate test set. To enhance robustness and 

avoid overfitting—especially on small meme-based datasets—

techniques such as early stopping, learning rate scheduling, 

dropout, L2 regularization, and architectural constraints are 

applied [44]. Is there any spelling error in this section 

3.6 Transformer-Based  
An alternative model variant integrating transformer-based 

components: 

3.6.1 Text Tokenization: The BERT tokenizer preprocesses 

text inputs. 

3.6.2 Image Features: Pre-trained ResNet-50 with frozen 

convolutional layers extracts 1024-dimensional visual 

features. 

3.6.3 Cross-Modal Transformer: These features are 

embedded as tokens within a VisualBERT architecture, 

enabling self-attention mechanisms to learn semantic 

relationships across visual and textual modalities for sentiment 

classification [45]. 

 

While VisualBERT demonstrates strong performance, its 

reliance on extensive pretraining and significant computational 

resources makes it less suitable for real-time applications [26]. 

In contrast, the hybrid LSTM-CNN model offers a balanced 

trade-off between accuracy and efficiency. This makes it 

particularly useful for resource-constrained environments, such 

as mobile applications, content moderation systems, or 

embedded sentiment tracking tools, where low latency and 

computational efficiency are critical. 

including both architectures allows to evaluate trade-offs 

between model complexity and performance in real-world 

applications.  

4. TECHNIQUES 

4.1 Traditional Machine Learning Models 
Support Vector Machine (SVM) is a linear classifier that 

minimizes errors while maximizing the margin between 

classes, making it a maximum margin classifier. It projects data 

into a higher-dimensional space to identify the optimal 

separating hyperplane, ensuring clear class separation [46]. 

Logistic Regression is a commonly used binary classification 

model that estimates class probabilities using the logistic 

function. It is valued for its simplicity and interpretability but 

may struggle with complex language features like sarcasm or 

idioms due to its linear assumptions [47]. 

4.2 Deep Learning Models 

4.2.1 Long Short-Term Memory (LSTM) 
Long Short-Term Memory (LSTM) networks are an advanced 

type of recurrent neural network (RNN) specifically developed 

to model long-term dependencies in sequential data, such as 

natural language or time series. To use LSTMs effectively, the 

input text must undergo preprocessing steps like cleaning, 

tokenization, and word embedding to transform it into 

numerical vectors suitable for the model. LSTMs are 

particularly effective at maintaining information over long 

sequences while addressing the vanishing gradient issue 

commonly found in standard RNNs [48, 49]. 

4.2.2 Convolutional Neural Networks (CNNs) 
CNN have become dominant in the field of computer vision 

due to their capacity to extract complex spatial features. A 

typical CNN architecture includes an input layer, multiple 

convolutional and pooling layers, normalization, and one or 
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more fully connected layers. CNNs are highly effective for 

structured data prediction tasks and are well-optimized for 

operations involving matrices and vectors [50, 51]. 

4.3 Hybrid Models 
Hybrid models that integrate CNNs and LSTMs leverage the 

strengths of both architectures. CNNs are efficient for 

identifying local patterns in text, while LSTMs capture 

sequential dependencies. This synergy is particularly useful for 

sentiment classification and depression detection in social 

media posts [52]. 

In the proposed CNN–LSTM architecture, CNN layers first 

extract spatial features, followed by MaxPooling and a Flatten 

layer to reshape outputs for LSTM input. The LSTM then 

processes temporal relationships across sequences. To prevent 

overfitting—a common deep learning challenge—Dropout 

layers are used to randomly disable neurons during training. 

The final classification is handled by a fully connected (FC) 

layer [49, 53, 54]. 

VisualBERT is a transformer-based model that combines 

BERT (for text) and Faster R-CNN (for images). It treats object 

proposals as pseudo-tokens and integrates them with textual 

input into a unified transformer pipeline. Pre-training is 

conducted on image-caption datasets using masked language 

modeling and text-image matching tasks. VisualBERT excels 

at identifying nuanced sentiment and offensive content in 

memes by jointly processing both modalities [55, 56]. 

 

Figure 1 CNN–LSTM Architecture 

4.4  Evaluation Metrics 
To assess model performance, several metrics are employed: 

Accuracy: Measures the ratio of correctly predicted instances 

to the total instances [57]. 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝑇𝑁
  (1) 

Weighted- Accuracy =  
1

𝑁
∑ 𝑊𝑖𝑁
𝑖=1 ∙

𝑇𝑝𝑖+𝑇𝑁𝑖

𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝐼+𝑇𝑁𝐼

   (2) 

Weighted Accuracy: Adjusts for class imbalances by assigning 

weights Wi to each class: 

Precision: Proportion of true positive predictions among all 

positive predictions. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (3) 

Recall (Sensitivity): Measures how well the model identifies 

actual positive instances. 

Recall =   
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (4)        

F1-Score: Harmonic mean of precision and recall, providing a 

balanced measure of accuracy. 

F1-Score =   2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖∙𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖∙𝑅𝑒𝑐𝑎𝑙𝑙𝑖
       (5) 

Weighted F1-Score: Accounts for class imbalance by 

weighting individual F1-scores: 

Weighted-F1-score =  
1

𝑁
∑ 𝑊𝑖𝑁
𝑖=1 ∙ 2 ∙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖∙𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖∙𝑅𝑒𝑐𝑎𝑙𝑙𝑖
  (6) 

5. EXPERIMENT & EVALUATION AND 

RESULTS 
This section outlines the datasets used and the experimental 

configuration employed for model training and evaluation. 

5.1 Datasets 
This study utilized two benchmark multimodal datasets: the 

Memes dataset and the MVSA dataset. Both comprise paired 

image and text data annotated for sentiment classification into 

three categories—positive, negative, and neutral. However, 

each dataset exhibits class imbalance, which was appropriately 

addressed during model training. 

5.1.1 Memes Dataset  
The Memes dataset comprises approximately 6,992 valid 

samples, each consisting of a paired image and its 

corresponding textual caption. Initially, missing text entries 

(NaN values) were imputed using corrupted or truncated image 

files were excluded. After preprocessing, a one-to-one 

alignment was ensured between the text and image components 

to maintain modality consistency. 

5.1.2 MVSA Dataset  
The MVSA dataset includes approximately 20,000 samples in 

total, each consisting of a paired image and its corresponding 

text. While the dataset contains three sentiment classes 

(positive, negative, and neutral), the distribution across these 

categories is imbalanced. This class imbalance was addressed 

during training using weighted loss functions. 

5.1.3 Tools and Libraries 
The experiments were implemented using Python and various 

deep learning and NLP libraries, including: 
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Pandas for data handling, NLTK for text preprocessing, 

TensorFlow and Keras for LSTM-based models, PyTorch and 

TorchVision for CNN and VisualBERT models, Scikit-learn 

for traditional machine learning classifiers transformers by 

hugging face for implementing visualbert 

5.2 Experimental Setup 
All datasets were split into training and testing sets using an 

80:20 ratio. This split was consistently applied across all 

experiments involving text-only, image-only, and multimodal 

text image inputs. Model performance was evaluated using 

standard classification metrics including accuracy, precision, 

recall, and F1-score. 

5.3 EVALUATION CONFIGURATIONS 

AND RESULTS 
Table 1 Traditional Machine Learning Models 

Aspect Feature SVM Logistic Regression 

Model Type Classical ML Classical ML 

Input 

Modalities 
Text + Image Text + Image 

Text 

Representation 

TF-IDF (OCR + 

Text) 
TF-IDF (OCR + Text) 

Image 

Representation 
Flattened Pixels Flattened Pixels 

Fusion Strategy 
Manual Feature 

Fusion 
Manual Feature Fusion 

Regularization Standardization Standardization 

Data 

Augmentation 
None None 

Memes 

Accuracy 
66.82% 70.93% 

MVSA 

Accuracy 
61.45% 70.91% 

 

Table 2 VisualBERT Variants Comparison 

Aspect 

Feature 

VisualBER

T 

(Text+Imag

e) 

VisualBERT 

(Text Only) 

VisualBERT 

(Image Only) 

Model Type Transformer 

(Multimodal

) 

Transformer 

(Text) 

Transformer 

(Image) 

Input 

Modalities 

Text + 

Image 

Text only Image only 

Text 

Representat

ion 

BERT 

embeddings 

 
 

BERT 

embeddings 

 

Dummy input 

Image 

Representat

ion 

ResNet-50 

(frozen) 

None ResNet-50 

(frozen) 

Fusion 

Strategy 

Early 

Fusion 

(Token-

Level) 

None Dummy Fusion 

Classifier 

Head 

Linear (768 

→ 3) 

Linear (768 

→ 3) 

Linear (768 → 

3) 

Regularizati

on 

Dropout 

0.5 

Dropout 

0.3 

Dropout 

0.4 

Data 

Augmentati

on 

None None None 

Optimizer AdamW 

(LR = 3e-5) 

AdamW (LR 

= 3e-5) 

AdamW (LR = 

3e-5) 

Epochs 10 10 10 

Early 

Stopping 

Patience = 3 Patience = 3 Patience = 3 

Memes 

Accuracy 

83.18% 78.52% 60.48% 

MVSA 

Accuracy 

81.29% 81.12% 0.6048 

 

Table 3 Deep Learning Models (LSTM/CNN) 

Aspect 

Feature 
Top In-between Bottom 

Model Type Hybrid DL RNN-based CNN-based 

Input 

Modalities 

Text + 

Image 
Text only Image only 

Text 

Representatio

n 

LSTM 

Embeddin

gs 

TF-IDF None 

Image 

Representatio

n 

CNN 

(custom) 
None ResNet-50 

Fusion 

Strategy 

Feature 

Concatena

tion 

N/A N/A 

Classifier 

Head 

Attention 

+ FC 
Dense Layers FC Layer 

Regularizatio

n 

Dropout 

0.5 

Dropout 

0.5 

Dropout 

0.4 

Data 

Augmentatio

n 

None None 
Horizontal 

Flip 

Optimizer ADAM ADAM ADAMW 

Epochs 10 10 10 

Early 

Stopping 

Patience = 

3 
Patience = 3 Patience = 3 

Memes 

Accuracy 
77.70% 76.97% 53.38% 

MVSA 

Accuracy 
80.42% 78.39% 47.50% 

 

Table 4 Classification Report 

DAT

ASE

T 

 

Model 

INPu

T 

TYPE 

 

 

AC

CU 

RA

CY 

 

F1- 

NEG 

F1- 

NE

U 

 

F1

- 

P

O

S 

 

MA

C 

RO 

F1 

MEM

ES 

LSTM

+CNN 

Text+I

mage 

0.78 0.63 0.83 0.

71 

0.73 

MEM

ES 

LSTM Text 

only 

0.77 0.54 0.84 0.

65 

0.68 

MEM

ES 

CNN Image 

only 

0.53 0.17 0.69 0.

24 

0.37 
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MEM

ES 

Visual

BERT 

Text 

Image 

0.83 0.70 0.87 0.

81 

0.79 

MEM

ES 

Visual

BERT 

Text 

only 

0.79 0.65 0.83 0.

75 

0.75 

MEM

ES 

Visual

BERT 

Image 

only 

0.67 0.00 0.80 0.

00 

0.27 

MVS

A 

LSTM

+CNN 

Text. 

Image 

0.80 0.62 0.65 0.

90 

0.72 

MVS

A 

LSTM Text. 

only 

0.78 0..52 0.67 0.

88 

0.69 

MVS

A 

CNN Image 

only 

0.47  0.06 0.39 0.

59 

0.35 

MVS

A 

Visual

BERT 

Text 

Image 

0.81 0.63 0.70 0.

90 

0.75 

MVS

A 

Visual

BERT 

Text 

only 

0.81 0.63 0.69 0.

91 

0.74 

MVS

A 

Visual

BERT 

Image 

only 

0.60 0.00 0.00 0.

75 

0.25 

 

6. CONCLUSION AND FUTURE WORK 
This study presented a comprehensive evaluation of sentiment 

classification using text, image, and multimodal inputs. A 

lightweight hybrid model combining LSTM for text and CNN 

for image features was proposed and benchmarked against 

traditional classifiers and the transformer-based Visualbert 

model. 

While VisualBERT achieved the highest accuracy on both the 

Memes (83.18%) and MVSA (81.29%) datasets, the proposed 

hybrid LSTM-CNN model delivered competitive 

performance77.70% and 80.42%, respectively at significantly 

lower computational cost. This makes it a practical option for 

deployment in real-time or resource-constrained environments, 

such as mobile applications or content moderation platforms. 

Key observations include the relatively strong performance of 

text-only models, particularly on the MVSA dataset, indicating 

that textual features often carry the bulk of sentiment-related 

information. In contrast, image-only models performed poorly, 

highlighting the limited standalone utility of visual cues for 

sentiment analysis. Neutral sentiment classification also 

remains a challenge, primarily due to its subtle and ambiguous 

nature. 

Future work will focus on improving multimodal alignment 

using advanced attention mechanisms and exploring more 

powerful vision-language models, such as CLIP, ALBEF, and 

BLIP-2. Enhancing datasets to better represent nuanced 

emotional expressions will also be a priority, with the goal of 

improving model generalizability and robustness across diverse 

social media contexts. 

 

Figure 2 Illustration showcasing the accuracy of models that utilize text, images, and a combination of both text and images 
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