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ABSTRACT 

As an economically important species in aquaculture, quality 

classification and meat yield assessment of oysters are crucial 

for industrial efficiency. Traditional manual assessment 

methods are inefficient and subjective. While computer vision-

based approaches have been explored for oyster weight 

estimation, they primarily rely on manually measured 

morphological parameters and often overlook valuable visual 

appearance features inherent in the raw images. Furthermore, 

weight alone is an insufficient indicator of meat content, as 

large shells may contain little meat. To address these 

limitations, this study pioneers a multimodal oyster meat yield 

prediction model that synergistically combines shape and 

appearance features for quality grading. Specifically, a 

segmentation network extracts shape parameters and 

appearance image data, constructing a multimodal dataset. A 

dual-branch feature extraction architecture is designed: the 

appearance branch utilizes self-attention mechanisms to 

capture pixel-level interactions, while the shape branch 

employs variational autoencoders (VAE) to map features into 

robust latent representations. These modality-specific features 

are concatenated and processed through a Multilayer 

Perceptron (MLP) to directly predict meat yield. Experimental 

results demonstrate that the proposed multimodal fusion 

approach, which comprehensively leverages both 

morphological and visual characteristics, establishes 

significantly more robust and accurate mapping relationships 

than unimodal models relying solely on shape or appearance. 

The model effectively captures complementary information 

and adaptively modulates cross-modal influences, thereby 

enhancing prediction accuracy (R²=0.9567). The key 

advantages of the proposed method lie in its ability to overcome 

the limitations of manual feature measurement and unimodal 

analysis by automatically extracting and fusing richer 

information and achieve superior prediction performance 

crucial for practical quality grading applications in oyster 

aquaculture.   
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1. INTRODUCTION 
Oysters are becoming an important source of nutrition for 

humans due to their high protein and low fat properties [1]. 

With population growth and natural ecosystem degradation, the 

majority of oysters consumed daily originate from aquaculture, 

positioning them as an increasingly vital cash crop in this 

industry [2], [3]. In aquaculture, oyster value is predominantly 

determined by quality, which is primarily reflected through 

meat yield rate [4]. Consequently, accurate classification of 

oyster quality based on meat yield rate proves essential for 

aquaculture enterprises to maximize economic benefits [5]-[7]. 

However, traditional quality assessment methods relying on 

manual weighing or empirical judgments exhibit limitations 

including low sorting efficiency, labor intensiveness, and 

insufficient accuracy [8]-[11]. This underscores the urgent need 

for a simple yet effective technical approach to estimate oyster 

meat yield through external characteristics [12], enabling 

precise quality classification. In recent years, computer vision 

which is a non-invasive technique with great potential for meat 

yield estimation has received extensive attention from the 

academic community [13]-[18].  

However, current domestic and international research 

predominantly focuses on weight estimation through 

morphological analysis to achieve selective breeding or quality 

classification [19]-[23]. These computer vision-based 

approaches establish relationships between weight and 

morphological features. Weight estimation methodologies can 

be categorized as single-factor or multi-factor based on 
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influential parameters [24], [25]. Single-factor methods 

investigate correlations between weight and individual 

morphological characteristics (e.g., length, width), constructing 

univariate regression models. For instance, Lim et al. 

demonstrated that length-weight relationships (LWR) serve as 

common tools for assessing the overall health status of cultured 

aquatic organisms [26]. Singh, Y. T. revealed shell weight 

showed positive correlation with length, breadth, width and dry 

meat weight, and abiotic parameters, silt and clay [27]. Single-

factor weight estimation methods are simple and easy to 

implement [28], [29], but in actual culture, oysters of the same 

length or width may have some differences in morphology. 

Therefore, this type of method only considers the relationship 

between individual morphological characteristics and weight, 

and has some limitations when classifying quality based on 

weight estimation. 

Multi-factor weight estimation methods explore multivariate 

relationships between weight and combined morphological 

features (e.g., area, perimeter), establishing comprehensive 

predictive models [30], [31]. Dame et al. conducted allometric 

analyses of shell weight, total weight, dry/wet meat weight, 

height, and length combinations in oysters from South Carolina 

subtidal and intertidal zones, identifying height as the most 

effective predictor for biomass parameters [32]. Pineda‐Metz 

et al. employed length-width-height variables in random forest 

models to estimate total weight, shell weight, and soft tissue 

wet weight, demonstrating superior performance compared to 

allometric models [33]. Gimin, R. et al. confirmed strong 

correlations between live weight and shell dimensions (length, 

height, width) as well as shell volume [34]. Although computer 

vision-based weight estimation has achieved maturity in 

quality classification, inherent limitations persist. Specifically, 

oysters may exhibit substantial total weight with 

disproportionately high shell-to-meat ratios (i.e., large but 

hollow shells). Therefore, meat yield rate emerges as a more 

market-relevant quality indicator, emphasizing superior meat 

content per unit weight. 

Studies have demonstrated significant correlations between 

oyster meat yield and morphological characteristics. For 

instance, Vu, S. V., et al. investigated the relationship between 

shell morphometric traits (cup ratio and fan ratio) and meat 

production (soft tissue weight and condition index) in 

Portuguese oysters, revealing genetic correlations between 

these shape ratios and meat output, thereby indicating the 

critical role of shell morphology in determining flesh 

productivity [35], [36]. Singh, Y. T. established quantitative 

relationships between length and total weight/shell weight/wet 

meat weight/dry meat weight, further explored length-meat 

yield correlations, and identified seasonal variations in 

condition index and meat production [8]. These findings 

confirm the feasibility of estimating meat yield through 

morphological analysis for quality classification. However, 

current research on oyster quality grading—whether based on 

weight or meat yield estimation—predominantly relies on 

manually measured shape parameters while neglecting inherent 

visual characteristics (e.g., color, texture) captured in raw 

imagery. This underscores the necessity to develop an 

automated multimodal approach integrating both appearance 

and morphological features for accurate meat yield estimation 

and subsequent quality classification. 

To address the critical limitations of reliance on manual 

measurements, neglect of rich visual appearance cues, and the 

inherent insufficiency of weight as a sole indicator of meat 

content, this study proposes a novel and robust multimodal 

oyster meat yield prediction model. This model fundamentally 

shifts the paradigm by synergistically combining both shape 

and appearance features derived directly and automatically 

from images for precise quality grading. Crucially departing 

from prior unimodal or manually-feature-dependent 

approaches, the proposed method employs a segmentation 

network as the foundational step to extract both precise shape 

parameters and the corresponding appearance image data 

(focusing solely on the oyster), thereby constructing a truly 

integrated multimodal dataset that inherently captures potential 

plumpness-related features visible in the oyster's appearance. 

The main contribution of this work is twofold: (1) Pioneering 

multimodal fusion in bivalve meat yield prediction: This study 

introduces the first framework that jointly models 

morphological parameters and visual appearance features, 

enabling the capture of cross-dimensional interaction patterns 

typically overlooked by unimodal approaches. (2) Specialized 

dual-branch architecture: The designed network implements 

functional specialization through parallel processing streams. 

The self-attention branch enhances discriminative feature 

representation via pixel-wise correlation weighting, while the 

auto-encoder branch constructs probabilistic distributions of 

shape parameters through latent space modeling. Their 

synergistic operation significantly improves predictive 

performance. 

2. MATERIAL 
In the experiment, 184 oyster samples were collected from 

aquaculture farms in Shandong Province, China, using a strict 

random sampling method to ensure randomness and 

representativeness. Images were captured using a Canon EOS 

5D Mark IV camera (Canon Inc., China), and weighing was 

performed with a JA3003 electronic analytical balance 

(sensitivity 1 mg, Shanghai Precision & Scientific Instrument 

Co., Ltd., China) to measure both the wet weight of the soft 

tissue and the total wet weight, which were used to calculate 

the meat yield ratio (meat yield ratio = wet weight of soft tissue 

/ total wet weight). Additionally, a S102-107-101 vernier 

caliper (Shanghai Yonghui Industrial Development Co., Ltd., 

China) was used to manually measure length, width, and other 

shape features to validate the accuracy of the shape features 

measured by the machine learning method. The oysters were 

placed on a black background, with the camera fixed above, 

maintaining a consistent distance from the surface, and each 

oyster was photographed from both the front and back. The 

camera settings included an exposure time of 1/80 s, ISO 

12800, a focal length of 100 mm, and an image resolution of 

4480 × 4480 pixels. This meticulous data collection process 

ensures the accuracy and reliability of the data, crucial for 

validating the effectiveness of the proposed multimodal oyster 

meat yield prediction model. Samples were collected as shown 

in Fig.1. 

 

Fig 1: Samples diagrams for various forms of oysters 

In this experiment, the collected raw images were used to create 

a multimodal dataset for training a multimodal model. This 

dataset includes both apparent image data and numerical shape 

data. 
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The process of creating the apparent image dataset involved 

first collecting raw image data containing the target (e.g., 

oysters) and preprocessing these images by resizing and 

normalization. Next, a UNet-style network model was used to 

segment the target regions.  By training the UNet model to 

generate segmentation masks and applying these masks to the 

original images, the background areas were blacked out, 

leaving only the target regions, thus generating the apparent 

data, as shown in Fig.2. 

 

Fig 2: Samples of apparent image dataset 

The process of making the shape feature dataset is as follows: 

the contour of the target area obtained by image segmentation 

is used to extract the shape feature numerical data using a series 

of digital image processing methods. Specifically, the 

segmentation masks were used to extract the target's contours 

and measure various shape features, such as Length, Width, 

Area, Perimeter, Convex Hull Length, and Convex Hull Area. 

Subsequently, the shape data were standardized to ensure that 

the shape feature values were independent of the oyster's size, 

resulting in new shape feature attributes: Length Eccentricity, 

Width Eccentricity, Roughness, Compactness, Elongation, and 

Plumpness. Detailed descriptions of these attributes are 

provided in Table 1. The attributes marked with an underline 

are the normalized attributes, which are the actual attributes 

used for model training. 

Table 1. Sample shape feature attribute description 

Feature 

attributes 
Description of feature attributes 

Length 
The distance between the two furthest 

points in the contour. 

Width 

The distance between the two furthest 

points in the contour perpendicular to 

Length. 

Area The pixel area of oyster. 

Perimeter The length of oyster contour. 

Convex Hull 

Length 

The length of the convex hull of the set of 

Perimeter points. 

Convex Hull 

Area 
The pixel area of convex hull. 

Length 

Eccentricity 

According to the intersection point of 

Length and Width, the Length is divided 

into two segments, Length Eccentricity 

means the ratio of the short segment to the 

long segment. 

Width 

Eccentricity 

The ratio of the short segment to the long 

segment, which is divided by Width. 

Roughness 
The Perimeter verses Convex Hull 

Length ratio. 

Compactness 
This is calculated as p2/(4πA),where p is 

the Perimeter, A is the Area. 

Elongation The ratio of Length to Width. 

Plumpness The ratio of Area to Convex Hull Area. 

 

 

Fig 3: Comparison of experimental and manual 

measurement data 

In order to verify the validity of the experiment, the 

experimentally measured long and width axes were compared 

with the manually measured long and short axes, and the 

experimental results are shown in Fig.3, where the experiments 

of 34 samples are shown due to the limited space. The green 

and purple color in the figure are the experimentally measured 

long and short axes of oysters, and the blue and red color are 

the manually measured long and short axes of oysters. It can be 

seen from the figure that the experimentally measured data and 

the manually measured data are similar, and the data obtained 

by the two measurement methods are highly consistent, which 

verifies the effectiveness of the proposed feature extraction 

method. This part is described in detail in the previous work 

[37]. 

Finally, the apparent data and shape features were integrated 

into a multimodal dataset for training the multimodal model. 

By doing so, the model can simultaneously utilize the apparent 

image information and shape features, thereby enhancing the 

training effectiveness and improving the model's performance. 

3. METHOD 

3.1 Multimodal fusion learning model 

construction 
Relevant studies have shown that there is a significant 

correlation between the meat yield of oysters and its features 

such as shape, texture and color. In this paper, a prediction 

model of oyster meat yield based on multimodal fusion learning 

is proposed. The model constructs a complete multimodal 

fusion learning framework containing shape feature extraction 

network, apparent feature extraction network, feature fusion 

module and regression prediction by deeply fusing the shape 

features and apparent features of oysters, as shown in Fig.4. 

 

Fig 4: Overall structure of the multimodal feature 

fusion learning model 

3.2 Apparent feature extraction based on 

self-attention mechanism 
This section details the appearance feature extraction method 

based on the Vision Transformer (ViT) [38] and Principal 

Component Analysis (PCA). First, the ViT encoder is utilized 

to extract global image features, followed by dimensionality 
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reduction via PCA to address potential overfitting issues arising 

from high-dimensional features when the feature 

dimensionality significantly exceeds the sample size. ViT 

overcomes the limitations of convolutional neural networks 

(CNNs) in handling long-range dependencies by prepending a 

class token to the sequence and employing linear layers for 

classification. Leveraging self-attention mechanisms, ViT 

captures long-range dependencies adaptively without manual 

design of convolutional kernels, enabling autonomous learning 

of interactive features. This flexibility ensures superior 

performance in complex pattern recognition tasks, justifying its 

selection for oyster appearance feature extraction. The core 

components of ViT in the model include image patching, class 

token insertion, positional encoding, and the encoder 

architecture, as illustrated in Fig.5.  

 

Fig 5: Structure of the apparent feature extraction 

model 

Specifically, the image is divided into 16×16 patches, resulting 

in 196 patches for a 224×224 image. Each patch is flattened and 

linearly embedded into a 768-dimensional vector, forming a 2D 

matrix of size [196,768]. A special class token (clsToken), 

serving as a trainable parameter with dimensions [1,768], is 

concatenated to the front of the patch vectors, producing an 

augmented matrix of size [197,768]. Positional encoding, 

implemented as a trainable parameter, is added element-wise to 

the matrix without altering its dimensions, maintaining the 

shape [197,768]. This matrix is then fed into the encoder for 

feature extraction, with the output retaining dimensions 

[197,768]. The first vector (corresponding to the clsToken) 

from this output is extracted as the global feature representation 

of the entire image, yielding a [1,768] feature matrix for 

subsequent analysis. 

The Multi-Head Self-Attention (MHSA) mechanism is one of 

the core components of the Transformer architecture. It enables 

the model to capture the relationships and features of many 

different aspects of the input data by processing multiple 

different self-attention heads in parallel. The model processes 

the input sequence through a self-attention mechanism and a 

feed-forward network that progressively extracts and integrates 

image features through multiple such layers. Residual 

connectivity and layer normalization ensure the flow and 

stability of information across the layers. The self-attention 

mechanism is used to process the input sequence Z, where Z 

contains the information extracted from the image. The self-

attention mechanism allows the model to process the 

information at each position while being able to attend to the 

information at other positions in the sequence. This is 

accomplished by calculating the attention weights with the 

following formula: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉                          (1) 

Where 𝑄、𝐾、𝑉 denote the linear mapping of query, key, and 

value, respectively, and  𝑑𝑘  is the mapping dimension. In 

practice, in order to enhance the expressive power of the model, 

it is common to use the multi-head self-attention mechanism, 

i.e., to compute multiple sets of 𝑄、𝐾、𝑉, and then stitch the 

results together. 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑍) =
𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ⋯ , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂                         (2) 

Here ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑍𝑊𝑄𝑖 , 𝑍𝑊𝐾𝑖 , 𝑍𝑊𝐾𝑖), 𝑊𝑂 is the final 

output mapping weight. The output of the self-attention 

mechanism is further processed through the feedforward 

network. The feedforward network consists of two fully 

connected layers with an activation function (usually ReLU) in 

the middle. This helps the model learn more complex features 

and patterns. 

 𝑌′ = 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝑌) = R 𝐿𝑈(𝑇𝑊𝐹1 + 𝑏𝐹1)𝑊𝐹2 + 𝑏𝐹2        

(3) 

Where 𝑌  is the output of the self-attention mechanism. To 

maintain the flow of information and the stability of the model, 

residual connectivity and layer normalization are introduced. 

The residual connection passes information directly to the next 

layer by adding the input sequence 𝑍  to the output of the 

feedforward network 𝑌′. 

                      𝑌″ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑌 + 𝑍)                              (4) 

Here, it is the 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 operation that helps mitigate the 

problem of vanishing gradients during training and improves 

the stability of the model during training. This structure allows 

the model to better capture the information in the input 

sequence while retaining important features of the original 

input. The multi-head self-attention mechanism is versatile, i.e., 

different attention heads can capture different aspects of the 

relationships and features of the input data, thus enhancing the 

expressive power of the model; at the same time, by computing 

multiple attention heads in parallel, the parallel computing 

capability of modern hardware can be effectively utilized to 

improve the computational efficiency; in addition, the scaled 

dot product attention mechanism stabilizes the gradient and 

avoids the gradient explosion during training problem. 

However, when the feature dimension (768) is much larger than 

the number of samples (368), the data is extremely sparse in the 

high-dimensional space, which tends to cause the model to 

memorize the noise in the training data instead of learning the 

generalization laws, and also requires more arithmetic 

resources. 

Therefore, PCA is chosen to perform dimensionality reduction 

on the extracted global features, and the feature directions that 

contribute the most to the data distribution are filtered out by 

retaining the principal components with the largest variance. 

Therefore, we choose PCA to perform dimensionality 

reduction on the extracted global features, and filter out the 

feature directions that contribute the most to the data 

distribution by retaining the principal components with the 

largest variance. However, traditional PCA relies on the 

eigenvalue decomposition of the covariance matrix, which 

requires sufficient samples (N > 768) to avoid the instability of 

the decomposition caused by the singularity of the covariance 

matrix, and since our sample size is insufficient, we use the 

singular value decomposition (SVD) to directly deal with the 

original matrix.  However, traditional PCA relies on the 

eigenvalue decomposition of the covariance matrix, which 

requires sufficient samples (N > 768) to avoid the instability of 
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the decomposition caused by the singularity of the covariance 

matrix, and since the sample size is insufficient, singular value 

decomposition (SVD) is used to directly deal with the original 

matrix. 

Firstly, the raw data need to be centered, i.e., by the following 

equation: 

                                 𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝑋 − 𝜇                          (5) 

Normalize the mean of each feature dimension to zero, where 

µ is the mean vector of each feature dimension. The purpose of 

this step is to remove the data bias and ensure the stability of 

the subsequent analysis. The data matrix 𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 ∈ ℝ368×768 

obtained after centering contains 768 dimensional features for 

368 samples. 

Next, this matrix is decomposed by singular value 

decomposition (SVD) with the mathematical expression: 

                                𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝑈Σ𝑉𝑇                          (6) 

where 𝑈 ∈ ℝ368×368 is the left singular vector matrix, Σ ∈
ℝ368×768 is the diagonally expanded matrix containing the 

singular values, and Σ ∈ ℝ768×768 is the right singular vector 

matrix, whose column vectors represent the directions of the 

principal components in the original feature space. The 

variance contribution ratio is calculated based on the singular 

values with the formula: 

                                𝐶𝑅𝑉𝑖 =
𝜎𝑖

∑ 𝜎𝑗
min (𝑁−1,𝑑)
𝑗=1

                        (7) 

where 𝜎𝑖  is the ith singular value, characterizing the strength of 

variance in the direction of the corresponding principal 

component. In order to reduce the dimensionality, the principal 

components corresponding to the first k largest singular values 

need to be selected, and here, to prevent overfitting, they are 

selected up to 64 dimensions and the cumulative variance is 

greater than 95%, i.e., the first 64 columns are extracted from 

the right singular matrix V to form the projection matrix W ∈
ℝ768×64.Finally, by multiplying the centered data matrix with 

the projection matrix: 

                            𝑋𝑝𝑐𝑎 = 𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 ∙ 𝑊                        (8) 

The original 768-dimensional features can be mapped into a 64-

dimensional low-dimensional space to complete the data 

dimensionality reduction. This process effectively compresses 

the data dimensions by retaining the principal components with 

the largest variance, while preserving the original information 

to the greatest extent. 

3.3 Shape Feature Extraction based on 

Variational Autoencoder 
Variational Autoencoder (VAE) as a generative model is able 

to learn latent representations of data, which cannot be directly 

observed or measured in machine learning and statistics. Latent 

spaces are hidden, but they influence and determine the 

distribution and structure of the data that can be observed, and 

can help interpret and capture the intrinsic structure and 

characteristics of the data. Compared to traditional auto-

encoders, VAEs not only learn a compact representation of the 

data, but also automatically regularize VAEs during the 

training process due to the introduction of KL dispersion, 

which helps to prevent overfitting and improves the 

generalization ability of the model. The core advantage of 

VAEs is that they are able to capture complex nonlinear 

relationships in the data and map high-dimensional data to a 

structured latent space well. This mapping not only preserves 

the key features of the data, but also reflects the underlying 

structure and distribution of the data. Since the latent space of 

VAE is characterized by continuity and structure, and is made 

close to the standard normal distribution by the KL dispersion 

constraint, each dimension in the latent variables may 

correspond to some abstract features in the data, which may be 

decoupled and beneficial to the downstream tasks. Based on the 

above characteristics, the encoder part of the VAE is selected 

for oyster shape feature extraction in this study. 

The structure of the shape feature extraction model is shown in 

 i . .  he e    er    ver s  he i p          i     he  e   μ 

and the logarithmic variance 𝑙𝑜𝑔(𝜎) of the latent variable z. 

These parameters are used to describe the distribution in the 

latent space. Inputting the data into the encoder, the encoder 

outputs two codes: one is the original code 𝜇(𝜇1、𝜇2、𝜇3); 

and the other is the code 𝜎(𝜎1、𝜎2、𝜎3) of the control noise, 

which serves to assign weights to the random noise 𝑒(𝑒1、𝑒2、
𝑒3). Finally, the original coding and the weighted noise coding 

are summed to obtain the output of the VAE in the encoder 

part-the latent vector 𝑧(𝑧1、𝑧2、𝑧3). 

 

Fig 6. Structure of the data feature extraction model 

Table 2. Evaluation indexes of regression results 

Feature 

Vectors 
RMSE MAE 𝑹𝟐 

𝜇 0.0321 0.0296 0.9118 

𝓏 0.0256 0.0277 0.9224 

The loss function of the VAE consists of two components: 

Reconstruction Error and KL Divergence. The reconstruction 

error measures the discrepancy between the original data and 

the reconstructed data, evaluating the model's ability to 

reconstruct the input 𝑥 given the latent variable 𝓏. The formula 

is as follows, where 𝑞(𝑥|𝑧)  denotes the latent distribution 

generated by the encoder: 

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟 = −𝐸𝑞(𝑧|𝑥)[𝑙𝑜𝑔 𝑝 (𝑥|𝑧)]             (9) 

The KL Divergence quantifies the difference between the latent 

distribution 𝑞(𝑥|𝑧)  output by the encoder and the standard 

normal distribution 𝑝(𝑧). The formula is: 

𝐾𝐿 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝐷𝐾𝐿(𝑞(𝑧|𝑥)‖𝑝(𝑧)) = −
1

2
∑ (1 +

𝐾

𝑖=1

log(𝜎𝑖
2) − 𝜇𝑖

2 − 𝜎𝑖
2)                                           (10) 

Here, 𝑞(𝑥|𝑧)  is the posterior distribution of 𝓏  given 𝑥 , 

and 𝑝(𝑧)  is the prior distribution of 𝓏 . The complete loss 

function is: 

      𝐿 = 𝐷𝐾𝐿(𝑞(𝑧|𝑥)‖𝑝(𝑧)) − 𝐸𝑞(𝑧|𝑥)[log𝑝(𝑥|𝑧)]            (11) 

In this study, the input raw data has a shape of [368, 6], and the 

latent dimension d is selected. During training, a complete 

model was constructed to evaluate the effectiveness of feature 

extraction. This includes an encoder with hidden layers 

implemented using fully connected layers (Dense Layers), and 

a decoder symmetrically structured to the encoder. Notably, 
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ReLU activation was used to enhance nonlinearity, while 

Sigmoid output ensured compatibility with normalized data. 

To determine the optimal dimensionality of the latent space, 

experimental validation was conducted. Given the limited 

sample size, excessively high latent dimensions could lead to 

redundancy or ineffective encoding of useful information. 

Therefore, the latent dimension was constrained to a reasonable 

range. Experiments were performed with latent dimensions d

∈{4,5,6,7}, and model performance was assessed based on 

reconstruction error and the predictive accuracy of shape 

features. The results, as shown in Table 3, indicate that when d 

= 6, the model achieved the best balance between 

reconstruction capability and generalizability. Consequently, a 

6-dimensional vector was selected as the final output for shape 

feature extraction. 

Table 3. Model performance under different potential 

dimensions 

Latent Dimension Reconstruction Error 𝑹𝟐 

4 0.12 0.85 

5 0.09 0.88 

6 0.08 0.92 

7 0.07 0.87 

 

3.4 Feature Vector Fusion and Regression 

Prediction 
The This study developed an oyster meat yield estimation 

model based on regression prediction algorithms, aiming to 

achieve accurate predictions. By fusing feature vectors from 

multiple models, the overall predictive capability and 

robustness were significantly enhanced. Experimental results 

demonstrated that the concatenation (Concat) method for 

feature vector fusion, followed by input into a MLP for 

regression, outperformed the Add method, as detailed in Table 

4.Using Concat for feature fusion improved the regression 

   e ’s R²     .   , re   e   A      .  44,       were  

RMSE by 0.0031, highlighting its substantial advantage in 

enhancing model performance. 

Table 4: Experimental results comparison of feature 

fusion methods 

Method RMSE MAE 𝑹𝟐 

Concat 0.0193 0.0236 0.9567 

Add 0.0224 0.028 0.9237 

In the feature fusion process, the appearance feature vector with 

768 dimensions extracted by the multi-head self-attention 

mechanism is first reduced to 64 dimensions through Principal 

Component Analysis, while retaining the shape feature vector 

with 6 dimensions extracted by VAE. Subsequently, the Concat 

method is used to concatenate them, generating a 70-

dimensional feature vector. This feature vector serves as input 

to the MLP regression predictor for oyster meat yield prediction. 

To construct a reasonable MLP regression prediction model, 

the following network structure is designed based on the 70-

dimensional input features: the input layer contains 70 neurons, 

matching the dimension of the concatenated feature vector; the 

first hidden layer contains 128 neurons, approximately twice 

the input dimension, which expands feature expression 

capability while avoiding parameter explosion, with ReLU 

activation function; the second hidden layer contains 64 

neurons, halving layer by layer to gradually compress 

redundant information while retaining key features; the third 

layer is further compressed to 32 dimensions to reduce model 

complexity and prevent overfitting; the output layer has 1 

dimension for direct meat yield prediction. Batch normalization 

is added after each hidden layer to stabilize the training process 

and improve generalization capability. Meanwhile, Dropout is 

set to 0.2 for the first two hidden layers and 0.1 for the final 

layer, suppressing noise in early stages while preserving 

effective features in later stages. Through multiple 

experimental validations, this three-hidden-layer design can 

effectively capture nonlinear relationships in input features 

while avoiding training difficulties caused by excessive 

network depth. 

To verify the rationality of the constructed meat yield 

prediction model, the model's prediction results are compared 

with manual measurement results. As shown in Fig 7, the blue 

curve represents the actual meat yield from manual 

measurements, while the orange curve represents the model's 

prediction results. It can be observed that the prediction results 

largely match the real data, indicating that the multimodal 

model constructed in this study has high feasibility and 

accuracy in oyster meat yield prediction. 

 

Fig 7. Comparison between model predictions and 

manual measurements of meat yield 

4. Experiments and Results 

4.1 Experimental Design 
This section details the specific implementation and 

comparative experimental results of oyster meat yield 

estimation using the constructed multimodal dataset and the 

proposed multimodal prediction model. To demonstrate the 

effectiveness of the proposed method, this study designed three 

sets of experiments: (1) To validate the accuracy of the end-to-

end model, i.e., to verify that direct meat yield prediction using 

the multimodal dataset yields more accurate results. The 

indirect method (predicting soft body wet weight and total 

weight separately before calculating meat yield) was compared 

with the direct meat yield prediction approach. (2) To verify the 

effectiveness of the multimodal oyster meat yield estimation 

strategy combining appearance and shape features, the 

proposed model was compared with unimodal regression 

prediction methods using either appearance features or shape 

features alone. (3) To validate the outstanding performance of 

the constructed multimodal prediction model in both feature 

extraction and regression prediction components, the feature 

extraction module, feature fusion module, and regression 

prediction module were compared with other commonly used 

models. 

The computer configuration used in experiments was as 

follows: CPU frequency of 4.89GHz, 16GB memory, 

Windows11 (64-bit) operating system. The programming 

language was python3.8, with anaconda3 as the integrated 

development environment, and experiments were conducted 

using the pytorch framework. The Adam optimizer was 

employed. 

 . 
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4.2 Evaluation Metrics 
The experimental results of regression prediction were 

evaluated using Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), and Coefficient of Determination (R²), 

calculated as follows: 

                     𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̃𝑖|

𝑁
𝑖=1                             (12) 

                   𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̃𝑖)

2𝑁

𝑖=1
                           (13) 

                 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦̃𝑖)

2𝑁
𝑖=1                          (14) 

                   𝑅2 =
(∑ (𝑦𝑖−𝑦̅𝑖)(𝑦̃𝑖−𝑦̂𝑖)

𝑁
𝑖=1 )

2

∑ (𝑦𝑖−𝑦̅𝑖)
2∑ (𝑦̃𝑖−𝑦̂𝑖)

2𝑁
𝑖=1

𝑁

𝑖=1

                       (15) 

Where 𝑦𝑖 is the true value, 𝑦̃𝑖 is the predicted value, 𝑦̅𝑖 is the 

mean of true values, 𝑦̂𝑖 is the mean of predicted values, 

and N is the number of predicted values. 

4.3 Comparative Analysis of Direct and 

Indirect Prediction Results 
Numerous studies have demonstrated correlations between 

oyster shape characteristics and both soft body wet weight and 

total weight. Given that meat yield = soft body wet weight / 

total wet weight, meat yield can be measured through two 

approaches: one involves separately predicting soft body wet 

weight and total weight before calculating meat yield, while the 

other directly predicts meat yield. To validate the superiority of 

the direct prediction method, this study compared the 

performance differences between the indirect calculation 

method (deriving meat yield from predicted soft body wet 

weight and total weight) and the direct meat yield prediction 

method. The experimental results are shown in Table 5. It 

should be noted that all models used the same shape features. 

Table 5. Comparison of direct and indirect meat yield 

prediction results 

 RMSE MAE 𝑹𝟐 

Total Weight 0.1733 0.1358 0.2450 

Soft Body Wet Weight 0.1321 0.1245 0.8808 

indirect meat yield 

prediction 
0.1452 0.1385 0.5629 

direct meat yield 

prediction 
0.0256 0.0277 0.9224 

The experimental results indicate significant error 

accumulation effects in the indirect prediction method. 

Specifically, since meat yield is a ratio of two predicted values, 

errors propagate through the division operation. The error 

propagation formula can estimate meat yield errors as follows: 

                             
∆𝑌

𝑌
≈ |

∆𝑀

𝑀
| + |

∆𝑊

𝑊
|                            (16) 

Where ∆𝑀 and ∆𝑊  represent prediction errors for soft body 

wet weight and total weight respectively, while M and W 

denote their predicted values. The RMSE of total weight 

prediction (0.1733) and MAE (0.1358) significantly amplify 

errors when propagated to meat yield calculation, whereas the 

direct method achieves a substantially lower RMSE of 0.0256. 

The direct prediction method outputs meat yield in one step 

through the MLP model, avoiding error accumulation from 

multi-step predictions. Furthermore, the 𝑅2  of total weight 

prediction (0.2450) is significantly lower than that of soft body 

wet weight (0.8808), indicating shape features have weaker 

explanatory power for total weight. This may be because total 

weight is more influenced by non-morphological factors like 

shell weight, while soft body wet weight shows more direct 

correlations with morphological features (e.g., eccentricity). 

The 𝑅2 of indirect meat yield prediction is markedly lower than 

the direct method, demonstrating how error propagation 

substantially reduces model explanatory power. Moreover, the 

direct method not only achieves lower errors but also simplifies 

the process from two-step prediction (total weight and soft 

body wet weight) to single-step output, reducing computational 

complexity. For scenarios requiring rapid meat yield 

estimation, the direct method offers advantages in real-time 

performance and resource efficiency. Additionally, it 

eliminates systematic biases caused by inaccurate total weight 

prediction, thereby enhancing model robustness. 

In conclusion, the direct prediction method demonstrates 

significant advantages over the indirect method in error control, 

explanatory power, and practical utility, providing a reliable 

solution for efficient oyster meat yield estimation and 

validating the rationality of the proposed direct prediction 

approach. 

4.4 Comparative Analysis of Multimodal 

Model and Unimodal Prediction Results 
To validate the effectiveness of the multimodal meat yield 

prediction strategy combining oyster appearance features and 

shape features, this study designed comparative experiments to 

evaluate the performance between the proposed multimodal 

model and unimodal prediction strategies using either 

appearance features or shape features alone. The strategy 

workflow is illustrated in Fig 8. 

The unimodal prediction models were divided into two 

categories: one using only appearance image information, 

consisting of an appearance feature extraction network and 

MLP, where the feature vector obtained through ViT-PCA 

feature extraction was directly input into the MLP for 

regression prediction; the other using only shape feature 

information, consisting of a shape feature extraction network 

and MLP, where only the feature vector output from the VAE 

encoding part was input into the MLP for regression prediction. 

The multimodal model concatenated the feature vector 

obtained from the ViT-PCA feature extraction network for 

appearance image information with the feature vector obtained 

from the VAE encoding feature extraction network for shape 

information, and then input the combined vector into the MLP 

model for regression prediction. Additionally, to verify the 

necessity of the feature extraction module, unimodal models 

with and without feature extraction were compared. The 

hyperparameters of the ViT-PCA, VAE, and MLP models 

remained consistent across all models. The prediction 

performance was evaluated using three metrics: Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), and 

Coefficient of Determination (𝑅2). 

 

Fig 8. Schematic diagram of unimodal prediction & 

multimodal prediction process 
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The experimental results are shown in Table 6. To confirm the 

effectiveness of feature extraction, unimodal prediction results 

with and without feature extraction were compared. For shape 

information, model performance significantly improved after 

VAE encoding, with RMSE decreasing from 0.0442 to 0.0256 

and R² increasing from 0.8805 to 0.9224. For appearance 

information, after ViT feature extraction, regression 

performance R² improved from 0.7651 to 0.8805. Most 

importantly, the multimodal model combining appearance 

features (ViT-PCA) and shape features (VAE encoding) 

achieved RMSE=0.0193 and R²=0.9567, significantly 

outperforming unimodal models. These results demonstrate the 

notable complementarity between appearance and shape 

features, which, when integrated, can effectively enhance 

prediction accuracy.  

To provide a more intuitive comparison, Fig 9 visualizes the 

prediction performance of the multimodal and unimodal 

models using scatter plots. In Fig 9(a), the predicted values 

generated by the multimodal model are tightly clustered along 

the ideal line (y = x), indicating high prediction precision and 

minimal deviation. The coefficient of determination reaches R² 

= 0.9561, confirming strong agreement between predicted and 

actual values. In contrast, Fig 9(b) illustrates the unimodal 

model based solely on appearance features, where the 

predictions exhibit more pronounced deviations, especially in 

higher yield ranges, resulting in a lower R² = 0.8422. These 

visual comparisons further validate the superiority of the 

multimodal strategy, highlighting its ability to leverage 

complementary information from both shape and appearance 

modalities to improve predictive performance. 

Table 6. Comparison of multimodal model and unimodal model prediction results 

      I                  A  𝑹𝟐 

Wi h     e   re 

   r   i   

App re        . 4 4  .      .     

 h pe      . 4    .      .  44 

Wi h  e   re 

   r   i   

App re    i    A      . 44   .  4   .     

 h pe  A       .      .      .   4 

     -      A       +      VA +V T-PCA+  P 0.0194 0.023 0.9567 

 

Fig 9: Comparison of prediction performance between 

multimodal and unimodal models based on scatter plots. 

Additionally, as shown in Table 7, the rationality of appearance 

image data in multimodal dataset construction was validated. 

Experimental results demonstrate that performing feature 

extraction directly on original images yielded significantly 

worse regression prediction results for oyster yield compared 

to using segmented target regions. Although the original 

dataset used black backgrounds, the segmented data still 

showed clear differences in feature representation, further 

confirming the necessity of retaining only target regions in 

collected images during dataset preparation. 

Table 7: Comparison of model regression effects before 

and after masking of the epistatic dataset 

input RMSE MAE 𝑹𝟐 

Apparent data-original 

image 
0.0455 0.0356 0.8786 

Apparent data-Mask 

Image 
0.0442 0.0348 0.8805 

 

In summary, while unimodal information can provide basic 

yield predictions, the multimodal strategy combining 

appearance and shape information clearly outperforms 

unimodal approaches. This further confirms the 

complementary nature of different modal information, 

demonstrating that utilizing multimodal information can yield 

more accurate prediction results, validating the effectiveness of 

the proposed multimodal fusion learning method for oyster 

yield estimation. 

4.5 Comparative Analysis of Various 

Multimodal Model Construction Results 
The multimodal model consists of three core components: 

feature extraction, feature fusion, and regression prediction. 

Although each component has multiple excellent alternative 

methods,  experimental verification shows the current model 

performs exceptionally well in oyster yield prediction. 

Specifically, ViT-PCA was used to extract appearance features 

(adjusted to 64 dimensions) and VAE for shape feature 

extraction. Finally, simple concatenation (concat) was used for 

feature fusion, with MLP performing regression prediction to 

achieve accurate oyster yield estimation.To validate the 

rationality of feature extraction in the model, ablation 

experiments were conducted. First, the appearance feature 

extractor was replaced with ResNet, a classical convolutional 

network whose residual structure effectively captures local 

detail features. Second, the shape feature extractor was 

substituted with an Autoencoder (AE). Each component was 

replaced separately or both were replaced simultaneously to 

comprehensively evaluate the feature extraction module's 

impact. To assess the regression model's rationality, MLP was 

compared with polynomial regression. Since previous 

experiments demonstrated concat's superior performance in 

feature fusion, this method was maintained to focus on 

analyzing the feature extraction module. 
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Table 8: Comparison of experimental results of multiple 

multimodal models 

Model RMSE MAE 𝑹𝟐 

ResNet+AE+MLP 0.0918 0.0553 0.4844 

ResNet+VAE+MLP 0.0403 0.0318 0.9010 

ViT-PCA+AE+ 

polynomial 
0.1581 0.1237 -1.2272 

ViT-PCA+AE+MLP 0.0283 0.0216 0.9512 

ViT-PCA+VAE+MLP 0.0073 0.0050 0.9967 

As shown in Table 8, the constructed multimodal fusion 

learning model demonstrates optimal performance in 

regression prediction. When replacing both the appearance and 

shape feature extractors with ResNet and Autoencoder (AE) 

respectively, the model performance significantly deteriorates 

(𝑅2=0.4844), representing the most substantial performance 

decline among all replacement experiments. Analyzing each 

feature extraction module separately reveals that the choice of 

appearance feature extraction method substantially impacts 

model performance. Models employing self-attention 

mechanisms achieve 𝑅2  values of 0.9312 and 0.9567, while 

those using ResNet yield 𝑅2 values of 0.4844 and 0.9010. This 

discrepancy indicates that self-attention mechanisms more 

effectively capture global appearance features, whereas 

ResNet's local feature extraction characteristics may limit its 

modeling capability for complex oyster appearance patterns. 

Furthermore, in shape feature extraction methods, VAE 

significantly outperforms AE, with ViT-PCA+VAE+MLP 

( 𝑅2 =0.9567) showing a 2.7% improvement over ViT-

PCA+AE+MLP (𝑅2=0.9312), demonstrating that VAE's latent 

space regularization constraints enable better extraction of 

discriminative shape features. Comparing MLP with 

polynomial regression shows MLP's superior performance in 

modeling nonlinear relationships. For instance, 

Trans+AE+MLP achieves 𝑅2 =0.9312, while 

Trans+AE+Polynomial yields 𝑅2=-1.2272, performing worse 

than mean prediction. This suggests polynomial regression's 

insufficient model complexity fails to capture nonlinear 

relationships between oyster yield and multimodal features, 

whereas MLP's multilayer nonlinear transformations enable 

more precise fitting, further validating deep regression models' 

necessity for this task. 

In conclusion, the multimodal model employing ViT-PCA for 

appearance feature extraction, VAE for shape feature 

extraction, concatenation for feature fusion, and MLP for 

regression prediction demonstrates outstanding performance in 

oyster yield prediction. This model effectively validates the 

multimodal fusion approach's efficacy. 

5. CONCLUSIONS 
This chapter proposes an oyster yield prediction method based 

on multimodal fusion learning, constructing an efficient 

multimodal prediction framework by comprehensively 

considering the influence of both shape and appearance 

features on yield. The method innovatively achieves deep 

integration of appearance and shape features through feature 

concatenation, significantly enhancing model prediction 

performance. To enable non-invasive oyster yield estimation, a 

multimodal dataset was constructed using collected images, 

where appearance image data highlights target regions through 

U-Net segmentation, and shape attribute data is measured 

based on obtained contours.Experimental results demonstrate 

the constructed multimodal oyster yield prediction model's 

excellent regression performance (R²=0.9567), fully validating 

the proposed method's effectiveness. The study reveals that 

feature concatenation enables the model to effectively capture 

complementary information across modalities, achieving 

precise yield prediction. Appearance features significantly 

influence yield prediction, and their combination with shape 

features proves both necessary and effective for regression 

prediction. 
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