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ABSTRACT

Multicollinearity is a significant issue in multiple linear
regression that occurs when two or more independent variables
are highly correlated. This correlation undermines the
reliability and stability of regression estimates, making it
challenging to isolate and interpret the individual effect of each
predictor variable. In the presence of multicollinearity,
traditional estimation methods like Ordinary Least Squares
(OLS) become less effective, often resulting in inflated
standard errors and less reliable statistical inference.

When multicollinearity exists, biased estimation techniques
such as Ridge regression, the Liu estimator, and Principal
Component-based estimators are frequently used. These
estimators provide more stable and interpretable results when
independent variables are correlated. Other estimators that are
a combination of existing estimators have been formed. These
include the Principal Component Ridge (PCRE) and Principal
Component Liu (PCLIU) estimators. They further mitigate the
adverse effects of multicollinearity. This study evaluates the
performance of PCRE and PCLIU estimators under varying
degrees of multicollinearity, sample sizes, and error variances.
Seven distinct forms of the biasing parameter k, along with
their generalized versions, are examined in this analysis.
Originally introduced in 2019 by Fayose and Ayinde, these
forms include the maximum, minimum, arithmetic mean,
geometric mean, harmonic mean, mid-range, and median.
Monte Carlo simulations, repeated 1,000 times, were
conducted on regression models with four and seven predictors,
across five levels of multicollinearity, three error variances, and
eight sample sizes. The Mean Square Error (MSE) criterion
was used for evaluation. Results indicate that the maximum
form of the Principal Component Ridge estimator consistently
outperforms others in terms of efficiency.
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1. INTRODUCTION

Regression analysis is used to study the relationship between
two variables, known as the dependent and independent
variables. When only one independent variable is used to
predict the value of the dependent variable, it is called simple
linear regression. However, when two or more independent
variables are used to predict the value of the dependent
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variable—also known as the response—it is called multiple
linear regression.

The ordinary least squares (OLS) estimator is the traditional
method used to estimate the parameters of a linear regression
model. It aims to find a line or hyperplane that best fits the
observed data by minimizing the sum of the squared residuals.
The residuals are the differences between the predicted values
and the actual observed values in the model. Under certain
assumptions, known as the Gauss-Markov assumptions, OLS
estimates are BLUE (Best Linear Unbiased Estimators)
(Gujarati, 2021) [1]. This means that, among all unbiased linear
estimators, the OLS estimates are the most efficient and thus
the most precise.

One of the Gauss-Markov assumptions that must be satisfied is
that the independent variables should not be highly linearly
correlated. When this assumption does not hold,
multicollinearity is said to exist in the linear regression model.

Multicollinearity frequently occurs in linear regression. When
multicollinearity is present, it becomes difficult to distinguish
the unique contribution of each independent variable. Although
the ordinary least squares (OLS) estimator—the traditional
method for estimating parameters in a linear regression
model—still produces unbiased estimates in the presence of
multicollinearity, these estimates exhibit large variances and
covariances and are highly sensitive to small changes in the
data set. This often results in wide confidence intervals
(Gujarati, 2021; Kibria and Lukman) [1,2].

Multicollinearity can be detected using various metrics such as
the variance inflation factor (VIF), condition index, and
correlation matrices (Paul, 2006; Montgomery et al. 2021)
(3.4].

Multicollinearity may arise due to the choice of the model
specification or from the nature of the data collected (Gujarati,
2021) [1]. Several solutions have been proposed over the years
to address multicollinearity in linear regression models. Paul
(2006) [3] noted that if multicollinearity is caused by the model
specification, then re-specifying the regression model may help
reduce its impact. Two common approaches to re-specification
include redefining the explanatory variables and eliminating
one or more variables from the model (Paul, 2006; Khalaf &
Iguernane, 2016) [2,5]. However, the removal of explanatory
variables can reduce the predictive power of the model,
particularly if the excluded variables have significant
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explanatory power related to the response variable and
therefore may not provide a satisfactory solution.

Researchers have developed estimators to address the problem
of multicollinearity in linear regression models. These
estimators include the Ridge Estimator by Hoerl and Kennard
(1970) [6] and the Liu Estimator by Liu (1993) [7]. Although
these estimators produce biased estimates, they are often
preferred over unbiased ones because they have a higher
probability of being closer to the true population parameter
value (Muniz & Kibria, 2009) [8].

In the ridge estimator proposed by Hoerl and Kennard (1970)
[6], a non-zero value k called the ridge parameter is added to
the diagonal of the X'X matrix of the ordinary least squares
(OLS) estimator This addition typically reduces the mean
squared error (MSE) of the ridge regression estimator
compared to that of the OLS estimator. When K=0. The ridge
estimator equals the OLS estimator. Traditionally, K is
determined graphically using the ridge trace plot developed by
Hoerl and Kennard (1970) [6]. However, using the ridge trace
plot is subjective.

Over time, different authors have proposed various methods to
estimate the ridge parameter kk. Notable contributors include
Hoerl and Kennard (1970) [6], Hoerl et al. (1975) [9],
McDonald and Galarneau (1975) [10], Lawless and Wang
(1976) [11], Dempster et al. (1977) [12], Troskie and Chalton
(1996) [13], Firinguetti (1999) [14], Kibria (2003) [15], Khalaf
and Shukur (2005) [16], Batah et al. (2008) [17], Kibria and
Banik (2016) [18], Lukman and Ayinde (2017) [19], Lukman
et al. (2020) [20], Fayose and Kayode (2019) [21], among
others.

The ridge regression estimators can be classified into two main

types: generalized ridge estimators and ordinary ridge
estimators. A major challenge in applying ridge regression is
selecting an appropriate value for the ridge parameter k. The
solution obtained from the ridge estimator depends critically on
the value of k used. Since the ideal value of k depends on the
unknown population parameters, it can only be estimated from
the data. Currently, there is no consensus on the best method
for determining k.

In a study by Fayose and Ayinde (2019) [21] , seven different
forms of the biasing parameter kk that perform more efficiently
than the generalized form were proposed and used as kk values.
These different forms include the maximum, minimum,
arithmetic mean, geometric mean, harmonic mean, mid-range,
and median.

Over the years, other researchers have developed combined
estimators with the expectation that combining different
estimators might inherit the advantages of both components.
Baye and Parker (1984) [22] combined the Ridge estimator
with Principal Component (PC) estimator to develop the r-k
class estimator, which is an alternative method of dealing with
multicollinearity. This new combined estimator was shown to
perform better than the individual component elements (Baye
and Parker,1984) [22]. Nomura and Ohkuba (1985) [23]
compared the r-k class estimator with the Ridge and OLS
estimators according to scalar mean square error criterion,
showing that the r-k class estimator outperforms each of these
individual estimators. Additionally, Sarkar (1996) [24]
compared the performance of the OLS, Ridge and Principal
Component estimator with respect to their Matrix Mean Square
Error (MMSE). He derived necessary and sufficient conditions
under which the r-k class estimator achieves a smaller MMSE
than the OLS, Ridge and the Principal component estimators.
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The article by Baye and Parker (1984) [22] motivated other
researchers to investigate combinations of estimators to address
multicollinearity. Kaciranlar and Sakallioglu (2001) [25]
developed the r-d class estimators by combining the Liu and
Principal Component (PC) estimators. Using the MSE
criterion, they compared this new estimator with the ordinary
least squares (OLS), PC and Liu estimators, demonstrating
improved performance. Ozkale and Kaciranlar (2007) [26]
further combined the PC estimator with the restricted least
squares estimator to develop a new estimator, called the
Restricted principal components regression (RPCR) estimator.
Batah et al. (2009) [27] introduced the modified r—k class ridge
regression (MCRR) estimator by combining the unbiased ridge
regression (URR) estimator of Crouse et al. (1995) [28] with
the PC estimator. Adegoke et al. (2016) [29], combined the
Ridge and Liu estimators to improve efficiency in the presence
of multicollinearity. Lukman et al. (2020) [20] proposed a new
estimator by combining modified ridge type and principal
component estimators. More recently Huang and Bai (2023)
[30] combined the modified Kibria—Lukman and the principal
component regression estimators to develop an estimator
effective for use in the presence of multicollinearity.

The Principal Component Ridge (PCRE) estimator (Bayes
&Parker, 1984) [22] and the Principal Component Liu (PCLIU)
estimator (Kaciranlar & Sakallioglu, 2001) [25] are both
designed to handle multicollinearity exists in a linear regression
model. They are dimension reduction techniques that produce
biased estimates but with reduced variance compared to the
ordinary least squares (OLS) estimator. Both estimators
combine principal component analysis (PCA) with either ridge
regression (for PCRE) or Liu regression (for PCLIU).

Ozbey and Kagiranlar (2015) [31] using the Mean squared error
(MSE) demonstrated that when multicollinearity is present,
both estimators provide more precise estimates than the OLS
estimator. The shrinkage of regression coefficients for the
Principal Component Ridge estimator is achieved through a
non-zero constant k (Bayes &Parker, 1984) [22] while the
Principal Component Liu estimator uses a shrinkage parameter
d that takes a value between zero and one (Kaciranlar &
Sakallioglu, 2001) [26].

Furthermore, the PCLIU estimator tends to perform better than
the PCRE estimator when severe multicollinearity exists in the
data, whereas the PCRE estimator outperforms the PCLIU
under moderate multicollinearity conditions (Ozbey &
Kagiranlar, 2015) [31]. A common critique of both PCRE and
PCLIU estimators is that since their principal components are
linear combinations of the original correlated variables,
interpreting the resulting coefficient estimates in terms of the
original variables is difficult.

The aim of this study is to evaluate different forms of the
biasing parameter used with the Principal Component Ridge
(PCRE) and Principal Component Liu (PCLIU) estimators to
identify which form yields the most efficient estimates. By
determining the most efficient estimator, this research seeks to
provide guidance on the optimal choice of biasing parameter
form for use with either estimator in the presence of
multicollinearity.

1.1 OLS ESTIMATOR

Consider the standard regression model:

Y=XB+U (1 (D)
Where X is an n x p matrix with full rank, Y is an n x 1 vector
of dependent variable,  is a p x 1 vector of unknown
parameters, and U is the error term, such that E(U) = 0 and
E(UUY) = I, provided
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X1X is invertible (Lukman et al. 2018), the OLS estimator is
given as:

B=XX)"'X'Y @)
@

Consider the regression model in equation (1) and letting A=
diag (41,4, ..., 4p) be a pxp diagonal matrix of the eigenvalues
of X'X, and T be a p X p orthogonal matrix whose columns are
the eigenvectors associated with A4, 4, .... 4, such that TT' =

T'T=1Ip.

Then,

X'X = TAT' 3)

3)

and

A=T'X'XT “

“4)

Defining Z = XT, then

X=ZT' )
(€))

Putting eqn. (5) into eqn. (4)

A=T'X'XT=2'Z ©)

(6)
Substituting eqn. (6) for X in eqn. (1), we obtain the equivalent
model given as:

Y=ZT'f+U @)

(7

LetT'B = a, then:

=T a @®)

®)

and

Y=Za+U ©)

©)

The ordinary Least Squares estimator of a,@g;s is given as:

&OLS = (Z’Z)_’Z’y =A"'Z'Y (10)
(10)

1.2 RIDGE REGRESSION ESTIMATOR

(RE)

To solve the problem of multicollinearity, Hoerl and Kennard
(1970) [6], developed the Ridge Regression estimator which
works by adding a small value, K, to the diagonal elements of
the X1X matrix before computing the estimates. This value, k,
balances the trade-off between fitting the data well and keeping
the coefficients small. Using the model in equation (9), this
corresponds to adding a small value, K, to the diagonal
elements of the Z'Z matrix before computing the estimates.
Thus, the ridge regression estimator (RE) becomes:

arg = (Z'Z+KD)'Z'Y (11
(11)

Where Z'Z is a p x p product matrix of explanatory variables,
Z'Y is a p x | vector of the product of dependent and
explanatory variables,

K = diagonal (Ky, Ky, .., Kp), Ki= = >0.i= 1,2, .. p.

When K1 = KZ == Kp = K, K>0, then (X\GRE = (X\RE and if
K=0, then @grz=0p1s

In equation (11) above, K > 0 and / is an identity matrix. Note
that if K=0 the ridge estimator (RE) reduces to the ordinary
least squares (OLS) estimator. The values of k used in this
study are those proposed by Hoerl and Kennard (1970) [6], and
Fayose and Ayinde (2019) [21].

1.2.1 Hoerl and Kennard Generalized Form
K=6%/&?,i=1,2,3....p (12)
(12)
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62 =3, (13)
n-p
(13)
is the MSE from the OLS regression
a; is the ith element of the vector a from the OLS regression
p is the number of regressors, and n is the sample size.

1.2.2 Fayose and Ayinde Generalized Form

1

5 a;*2? ea'2\[2  (a’an
2 [15) (s - (220
gr=yr, g is the MSE from the OLS regression

a; is the ith element of the vector a from the OLS regression
p is the number of regressors, and n is the sample size.

A; is the ith eigenvalue of the Z1Z matrix

Following Fayose and Ayinde (2019) [21], seven different
forms of the biasing parameter k that perform more efficiently
than the generalized form were also used as k values. These
different forms are maximum, minimum, Arithmetic mean,
Geometric mean, Harmonic mean, Mid-range and Median.

1.3 LIU ESTIMATOR

Liu (1993) [7], motivated by the interpretation of the ridge
estimate developed an alternative biased estimator to overcome
multicollinearity for the linear regression model presented in
equation (9). This estimator modifies the calculation of the
regression coefficients by incorporating a biasing parameter,
typically denoted as d, which lies between 0 and 1. This
parameter allows the estimator to shrink the regression
coefficients towards zero, thereby reducing their variance and
improving estimation stability. Using our equivalent model the
Liu estimator can be written as:

Ay =[Z'Z+D7(Z'Z +dl) GgLs (15)

where d is the Biasing parameter and is defined as:
1

D
Zi=1/1i(xi+1)

P aZ (16)

A+1)?

dyy=1-62

(16)

1.4 PRINCIPAL COMPONENT
ESTIMATOR

The main purpose of Principal Component Regression is to
estimate the values of a response variable based on selected
Principal Components of the explanatory variables. It is a
multivariate technique developed by Hotelling (1933) for
explaining a set of correlated variables using a reduced number
of uncorrelated variables (principal components, or PCs) with
maximum variances (Pongpiachan et al., 2024) [34]. The
estimates produced using the Principal Component estimators
are biased (Weeraratne et al., 2024) [35]. When using Principal
Component Regression, two stages are involved. The first stage
reduces the number of predictor variables in the model using
principal component analysis. The second stage involves using
the reduced variables obtained from principal component
analysis in an ordinary least square (OLS) (Ayinde et al., 2012)
[36]. From our regression model in equation (9), the columns
of Z, which define a new set of orthogonal regressors, such as
7=(Z1,Z3, .. Zp)=|Zy,Zp_,] are referred to as principal
components. The pxp matrix of eigen vectors T =(t4, ty, ... tp)
can also be written as [T, T,_] with descending eigen values
Ay = Ay = -+ = A, such that the last of these eigenvalues are
approximately equal to zero. Thus equation (1) can be written
as:

Y=XB+U
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=XTT'B +U

=XT,T,' B+ X Ty Ty B +U

=Zyapt Zy_yppt U (17)

(17

Where Z, contains PCs that are used in the regression model
and Z,_, contain PCs that are discarded from the model. Thus,
the regression equation becomes:
Y=Za +U (18)
(18)
The principal component estimator, &p from this transformed
equation is given as:
&PC:(Z‘r’Z‘r)_’ r,y (19)

1.5 PRINCIPAL COMPONENT RIDGE

(PCRE) ESTIMATOR

Baye & Parker (1984) [22] combined the Ridge and Principal
Component estimator to form a new estimator called the
Principal Component Ridge estimator to address the problem
of multicollinearity in linear regression models. This estimator
works by first transforming the original correlated predictors
into a set of uncorrelated principal components and then
applying ridge regression to these components. Using our
transformed model in equation (9), the Principal Component
estimator in equation (19) and the Ridge estimator in equation
(11), the Principal Component Ridge estimator is defined as:
apere = (Z1Z, + KD ZY (20)
(20)

The finite sample properties of the Principal Component Ridge
estimator are derived as:

1.5.1 Proof of Expected Value of @pcrg

E(@pcre) = E((Z7Z, + KI)™'Z;Y) (21)
21
= (ZLZ, + KD)™'ZLE(Y)
=(Z.Z, +KD)~'Z.Za (22)
(22)

1.5.2 Proof of Biasedness of @pcrg

BIAS(@pcre) = E(Qpcre) — @ (23)
(23)
= (Z;Z, +KD7'Z]Za — «a

=((Z/Z, +KD'Z,Z — Da) (24)
(24)

Let Q(r) = ((Z.Z, + KI) ZyZ — Da, then,
BIAS(@pcre) = Q(r) (25)
(25)

1.5.3 Proof of Variance of @pcrg
(26)
= (Z.Z, + KD™'Z.VAR(Y)Z,(Z.Z, + KI)~’
=02 (2.2, +KD)™'Z.2,(Z.Z, + K)~' 7)

1.5.4 Proof of Mean Square Error of @pcrg
Let o(r) = 02 (Z}Z, + KI)™'Z} Z,(Z,Z, + KI)™', then,
MSE( @pcre) = VAR( @pcre) +

BIAS( @pcpg) (BIAS(@perp))’ (28)
(28)
MSE( &PCRE) = (P(T) + Q(T)Q’(T) (29)
(29)
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1.6 PRINCIPAL COMPONENT LIU

(PCLIU) ESTIMATOR

The Principal Component Liu (PCLIU) estimator is a hybrid of
the principal component regression and the Liu estimator. It
was developed by Kaciranlar & Sakallioglu (2001) [26]. The
PCLIU estimator provides a regression approach for handling
multicollinearity in linear models by combining both principal
component regression and Liu estimation techniques.
Specifically, it addresses regression bias by first creating an
orthogonal set of principal components from the predictors
using principal component analysis (PCA), which reduces the
dimensionality of the data and removes correlations among the
transformed predictors. After obtaining the principal
components, the Liu estimator is applied to these components
to bias the coefficient estimates toward zero by employing its
biasing parameter, typically denoted as d. This biasing reduces
the overall variance, thereby improving the stability of the
estimates. Using our transformed model in (9), the Principal
Component estimator in equation (19) and the Liu estimator in
equation (15), the Principal Component Liu estimator is
defined as:

Apcriy = (ZrZy + )7 (Z7Z, + dI) @pc (30)
(30)

1.6.1 Proof of Expected Value of Qpcry
E(@pcLiv) = E[(Z7Zy + D)7 (Z7Z, + dI) Gpc] (1)

(31)

=(Z;Z, + D7 (ZrZy + dD) E(@pc)
E@pcLiv) = ZrZr + 7' (Z7Zy + dD) (Z7Z,) "' Z7Za  (32)
(32)

1.6.2 Proof of Biasedness of Qpcry
BIAS @pciv) = (ZyZy + D)7 (Z7Zp + dl) (Z7Z,) ' Z7Za —
a

= (22, + D (ZZ, +dD) (Z}Z)7'ZZ ~Na  (33)
(33)

Let J(d) = [(ZLZ, + D)™ (ZLZ, +dI) (Z.Z,)"'Z.Z — 1]
Thus, BIAS@pciy) = J(d) (34)
(34)

1.6.3 Proof of Variance of @pcriy
VAR (@pcriy) = VAR((Z3Z, + KI)™' (Z7Z, + dl) @pc) (35)
(35)
= (Z.Z, + 1)~ (ZLZ, + dI) VAR(@p()
=(ZLZ, + D)7 (Z2Z, + dl) 0% (ZLZ,)~
= 0*[(Z/Z, + D)7'(Z1Z, + dI) (Z;Z,)™" (36)

1.6.4 Proof of Mean Square Error of @pcry
Let K(d) = 02[(Z.Z, + )" (Z.Z, + dI) (Z.Z,)™'], then,
MSE(@pcriy) = VAR(@pcpiy) +

BIAS @periy) (BIAS @pcuin)) 37)
(37)
MSE (@pcriy) = K(d) + J(d)]'(d) (38)
(38)

2.1 MATERIALS AND METHODS
2.1.1 Model Formulation for Monte Carlo
Study

To investigate the performance of our proposed and existing
estimators when multicollinearity is present, this study
considers a multiple linear regression model of the form:
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Y=Xp+e¢ 39
(39

where Y is an n X 1 vector of response variable, X is a known
n x p full rank matrix of explanatory variables, 3 is an p x 1
vector of unknown regression parameters, € is an n x 1 vector
of errors such that E(g) = 0 and Var (&) = o?I,. The number
of explanatory variables (p) used were four (4) and seven (7).
The sample sizes considered vary to assess estimator
performance across small and large datasets. Specifically, the
sample sizes considered are: 10, 15, 20, 30, 40, 50, 100, and
250.

2.1.2 Procedure for Generating Explanatory

Variables
The simulation procedure used by McDonald and Galarneau
(1975) [10], Wichern and Churchill (1978) [37], Gibbons
(1981) [38], Kibria (2003) [15], Dorugade and Kashid (2010)
[39], Dorugade (2016) [40], and Lukman et al (2018) [32],
Amalare et al. (2023) [41], is also be used to generate
explanatory variables in this study. This is given as:

1
Xy=(01- PZ)EZti +pZyy (40)
(40)
t=1,2,3...,n.i=1,2,....p.
Where Z,;’s are independent standard normal random variables
with mean zero and unit variance, p is the correlation between
any two explanatory variables and p is the number of
explanatory variables. The p is specified so that the correlation
between any two regressors is given as p2. These explanatory
variables are then standardized so that the matrix X!X is in
correlation form.

2.1.3 Criterion for Investigation of the

Performance of Estimators

The quality and efficiency of each estimator are evaluated using
the Mean Squared Error (MSE) criterion, a widely accepted
metric to quantify the accuracy and variability of parameter
estimates. The MSE of an estimator & for the true parameter «
is given as

MSE(@) = —o=%120°(@ — )" (& — @) @1)

1)

Where & is the estimates of any of the estimators being studied.
For each simulated sample generated at given levels of
multicollinearity, error variance, and sample size, the
estimators are applied, and estimates @ are obtained. The
estimated MSE is computed by averaging the squared
deviations of @& from a across replications. The estimator
achieving the smallest estimated MSE under given simulation
conditions is considered the best-performing estimator.

All simulation routines, including the generation of explanatory
variables, estimation of parameters for each estimator
considered, and computation of MSEs, were implemented in
the statistical software R (version 4.5.0). To ensure the MSE
estimates were stable and reliable, 1000 simulation replications
for each combination of sample size, number of explanatory
variables, multicollinearity level, and error variance, were
conducted. The Statistical Package for the Social Sciences
(SPSS version 29.0) was used after simulation to perform
ranking of estimators based on their computed MSE values.
This facilitated a clear identification of the most efficient
estimators across varying scenarios.

3. RESULTS
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TABLE 1: Frequency of the Principal Component Ridge

and Principal Component Liu estimators Over the Levels

of Multicollinearity and Error Variance at Each Sample
Size When There is Multicollinearity for p=4

Sample size (n)

Estimator 10 15 20 30 40 50 100 250
RHKMAWPC 7 4 4 2 3 2 1 0
RFAMAWPC 3 3 2 2 3 2 2 0
LUHMWPC 0 3 4 2 0 2 1 1
LUMIWPC 5 1 0 3 1 1 0 0
RFAMIWPC 0 0 0 2 2 1 3 1
RHKMIWPC 0 0 0 0 2 0 2 5
RHKGNWPC 0 0 0 0 2 1 1 3
RFAGMWPC 0 0 1 1 1 1 1 1
RFAAMWPC 0 1 1 1 0 0 1 0
RHKMDWPC 0 0 2 1 0 0 0 1
RFAHMWPC 0 0 0 1 0 2 0 0
RFAGNWPC 0 0 0 0 0 1 0 1
LUGMWPC 0 0 0 0 0 0 0 1
RHKAMWPC 0 1 0 0 0 0 0 0
RHKMRWPC 0 1 0 0 0 0 0 0
RFAMDWPC 0 0 0 0 1 0 0 0
RHKGMWPC 0 0 0 0 0 1 0 0
RHKHMWPC 0 0 0 0 0 0 1 0
LUGNWPC 0 0 0 0 0 0 0 1
Total 15 14 14 15 15 14 13 15

NOTE: Estimator with highest frequency is bolded.
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Figure 1: Graphical Representation of the Frequency of
the Most Efficient Estimators Under Mean Square Error
Criterion at Different Sample Sizes When There is

Multicollinearity and p=4.

TABLE 2: Frequency of the Principal Component Ridge
and Principal Component Liu estimators Over the Levels
of Multicollinearity and Error Variance at Each Sample

Size When There is Multicollinearity for p=7

Sample Size (n)
Estimator 10 15 20 30 40
RHKMAWPC 5 5 5 2 2
RFAMAWPC 3 2 2 4 2
LUHMWPC 0o 0 2 1 4
LUMIWPC 4 4 0 0 0
RHKGMWPC 0 0 0 2 1

RFAGNWPC 0 0 1 2 1

=]
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RHKMIWPC 0 0 0 0 0 0 2 5 7
RFAGMWPC 0 1 0 0 2 0 2 1 6
RHKGNWPC 0 0 1 0 1 1 1 2 6
LUGMWPC 0 0 0 4 0 0 0 1 5
RFAMIWPC 0 0 0 0 1 1 2 1 5
RHKAMWPC 2 1 1 0 0 0 0 0 4
RFAAMWPC 0 1 1 0 1 1 0 0 4
LUMAWPC 0 0 0 0 0 1 0 1 2
RFAMRWPC 0 0 1 0 0 0 0 0 1
RFAHMWPC 0 0 0 0 0 1 0 0 1
RHKHMWPC 0 0 0 0 0 1 0 0 1

Total 14 14 14 15 15 15 15 15 117

NOTE : Estimators with highest frequencies are bolded.
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Figure 2: Graphical Representation of the Frequency of
14 3 the Most Efficient Estimators Under Mean Square Error
Criterion at Different Sample Sizes When There is
10 4 Multicollinearity and p=7
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Tables 1 and 2 present a summary of the frequency with which
7 ¢.gach estimator produces the minimum mean squared error
(MSE) when counted across varying levels of multicollinearity
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and error variance at each examined sample size. Table 1
corresponds to the case when the number of explanatory
variables p=4, while Table 2 corresponds to the case when p=7.

In Table 1, the frequencies of estimators achieving the
minimum MSE across combinations of multicollinearity levels
and error variances at different sample sizes are shown for p=4.
The results indicate that the estimator RHKMAWPC, which is
the principal component ridge estimator with the maximum
variant of the biasing parameter proposed by Hoerl and
Kennard (1970), achieves the lowest MSE most frequently
among all estimators considered. This makes RHKMAWPC
the most consistently efficient estimator under these settings.
The second most frequent efficient estimator is RFAMAWPC,
which is the principal component ridge estimator with the
maximum variant of the biasing parameter proposed by Fayose
and Ayinde (2019). Within the family of Principal Component
Liu estimators, the harmonic mean variant LUHMWPC
demonstrates superior efficiency, having the highest frequency
for the number of times it achieves the lowest mean squared
error. It is followed in lowest MSE performance frequency by
the minimum variant LUMIWPC. These results illustrate the
relative performance of different biasing parameter forms used
with the principal component ridge and Liu estimators
when p=4.

Figure 1 is a graphical representation of the results in Table 1.
It represents the frequency of the four most efficient estimators
under the mean squared error criterion at different levels of
multicollinearity and error variance at each sample size when
multicollinearity exists and p=4. From the graph, the estimator
that had the lowest mean squared error the most times is
RHKMAWPC.

In Table 2, the frequencies of estimators achieving the
minimum MSE across combinations of multicollinearity levels
and error variances at different sample sizes are shown for p=7.
The pattern here is consistent with that observed for p=4;
specifically, for the principal component ridge estimators,
RHKMAWPC remains the estimator that most frequently
attains the minimum MSE compared with the other estimators
under consideration. It is again followed by RFAMAWPC in
terms of frequency of achieving minimum MSE. Among the
Principal Component Liu estimator variants, the harmonic
mean form LUHMWPC continues to hold the highest
efficiency, with the minimum variant LUMIWPC ranking
second.

Figure 2 is a graphical representation of the findings of Table
2. It shows the frequency of each estimator being the most
efficient at different multicollinearity levels, error variances,
and sample sizes when p=7. This figure visualizes the sustained
superior performance of RHKMAWPC as the sample size and
parameter count increase.

These tables and figures demonstrate that the choice of biasing
parameter form significantly affects estimator efficiency.
RHKMAWPC, employing the maximum variant of the biasing
parameter with the principal component ridge estimator,
consistently provides the most efficient estimates in terms of
minimum MSE among all estimators for different numbers of
explanatory variables considered, under various levels of
multicollinearity, error variance, and sample sizes. The
harmonic mean variant LUHMWPC remains the most efficient
among Principal Component Liu estimators for the settings
considered.
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5. CONCLUSION

Multicollinearity is a common problem in linear regression. It
occurs when the explanatory variables are highly correlated.
This causes traditional estimation methods like OLS to produce
estimates that are inefficient and unstable. The use of biasing
parameters in estimators yields estimates with less variance at
the expense of a small increase in bias. Biasing estimators are
incorporated in both the PCRE and PCLIU estimators.
Research has shown that the performance of a biasing estimator
depends on the form and value of its biasing parameters. This
study evaluated the efficiency of different forms of the biasing
parameter for both the Principal Component Ridge (PCRE) and
Principal Component Liu (PCLIU) estimators for linear
regression  models under different conditions of
multicollinearity, sample sizes, and error variances. Among the
seven different forms of the biasing parameter considered, the
maximum form produced the most efficient estimates when
used with the principal component ridge estimator. This
estimator, RHKMAWPC, had the smallest MSE for the
Principal Component Ridge estimator. The estimator
LUHMWPC, which is the harmonic mean form when used with
the Principal Component Liu estimator, provided the most
efficient estimates for the principal component Liu estimator.
Overall, RHKMAWPC was the most efficient estimator for
both principal component estimators since it had the lowest
MSE across the different model settings that were considered.
This study highlights the importance of selecting an appropriate
form of the biasing parameter tailored to the estimator and data
structure at hand. The results obtained suggest that while both
PCRE and PCLIU estimators offer improvements over
traditional methods, choosing the correct form of the biasing
parameter can further improve performance. Model prediction
and interpretability are enhanced when the efficiency of an
estimator is improved. Future study can assess the robustness
of these estimators when heteroscedasticity is found to exist in
the model.
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