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ABSTRACT 
Multicollinearity is a significant issue in multiple linear 

regression that occurs when two or more independent variables 

are highly correlated. This correlation undermines the 

reliability and stability of regression estimates, making it 

challenging to isolate and interpret the individual effect of each 

predictor variable. In the presence of multicollinearity, 

traditional estimation methods like Ordinary Least Squares 

(OLS) become less effective, often resulting in inflated 

standard errors and less reliable statistical inference. 

When multicollinearity exists, biased estimation techniques 

such as Ridge regression, the Liu estimator, and Principal 

Component-based estimators are frequently used. These 

estimators provide more stable and interpretable results when 

independent variables are correlated. Other estimators that are 

a combination of existing estimators have been formed. These 

include the Principal Component Ridge (PCRE) and Principal 

Component Liu (PCLIU) estimators. They further mitigate the 

adverse effects of multicollinearity. This study evaluates the 

performance of PCRE and PCLIU estimators under varying 

degrees of multicollinearity, sample sizes, and error variances. 

Seven distinct forms of the biasing parameter k, along with 

their generalized versions, are examined in this analysis. 

Originally introduced in 2019 by Fayose and Ayinde, these 

forms include the maximum, minimum, arithmetic mean, 

geometric mean, harmonic mean, mid-range, and median. 

Monte Carlo simulations, repeated 1,000 times, were 

conducted on regression models with four and seven predictors, 

across five levels of multicollinearity, three error variances, and 

eight sample sizes. The Mean Square Error (MSE) criterion 

was used for evaluation. Results indicate that the maximum 

form of the Principal Component Ridge estimator consistently 

outperforms others in terms of efficiency. 

Keywords 
Ordinary Least Squares, Ridge Regression Estimator, Liu 

Estimator, Principal Component Estimator, Principal 

Component Ridge Estimator, Principal Component Liu 

Estimator. 

1. INTRODUCTION 
Regression analysis is used to study the relationship between 

two variables, known as the dependent and independent 

variables. When only one independent variable is used to 

predict the value of the dependent variable, it is called simple 

linear regression. However, when two or more independent 

variables are used to predict the value of the dependent 

variable—also known as the response—it is called multiple 

linear regression. 

 

The ordinary least squares (OLS) estimator is the traditional 

method used to estimate the parameters of a linear regression 

model. It aims to find a line or hyperplane that best fits the 

observed data by minimizing the sum of the squared residuals. 

The residuals are the differences between the predicted values 

and the actual observed values in the model. Under certain 

assumptions, known as the Gauss-Markov assumptions, OLS 

estimates are BLUE (Best Linear Unbiased Estimators) 

(Gujarati, 2021) [1]. This means that, among all unbiased linear 

estimators, the OLS estimates are the most efficient and thus 

the most precise. 

One of the Gauss-Markov assumptions that must be satisfied is 

that the independent variables should not be highly linearly 

correlated. When this assumption does not hold, 

multicollinearity is said to exist in the linear regression model. 

Multicollinearity frequently occurs in linear regression. When 

multicollinearity is present, it becomes difficult to distinguish 

the unique contribution of each independent variable. Although 

the ordinary least squares (OLS) estimator—the traditional 

method for estimating parameters in a linear regression 

model—still produces unbiased estimates in the presence of 

multicollinearity, these estimates exhibit large variances and 

covariances and are highly sensitive to small changes in the 

data set. This often results in wide confidence intervals 

(Gujarati, 2021; Kibria and Lukman) [1,2]. 

Multicollinearity can be detected using various metrics such as 

the variance inflation factor (VIF), condition index, and 

correlation matrices (Paul, 2006; Montgomery et al. 2021) 

[3,4].  

Multicollinearity may arise due to the choice of the model 

specification or from the nature of the data collected (Gujarati, 

2021) [1]. Several solutions have been proposed over the years 

to address multicollinearity in linear regression models. Paul 

(2006) [3] noted that if multicollinearity is caused by the model 

specification, then re-specifying the regression model may help 

reduce its impact. Two common approaches to re-specification 

include redefining the explanatory variables and eliminating 

one or more variables from the model (Paul, 2006; Khalaf & 

Iguernane, 2016) [2,5]. However, the removal of explanatory 

variables can reduce the predictive power of the model, 

particularly if the excluded variables have significant 
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explanatory power related to the response variable and 

therefore may not provide a satisfactory solution. 

Researchers have developed estimators to address the problem 

of multicollinearity in linear regression models. These 

estimators include the Ridge Estimator by Hoerl and Kennard 

(1970) [6] and the Liu Estimator by Liu (1993) [7]. Although 

these estimators produce biased estimates, they are often 

preferred over unbiased ones because they have a higher 

probability of being closer to the true population parameter 

value (Muniz & Kibria, 2009) [8]. 

In the ridge estimator proposed by Hoerl and Kennard (1970) 

[6], a non-zero value k called the ridge parameter is added to 

the diagonal of the 𝑋′𝑋 matrix of the ordinary least squares 

(OLS) estimator This addition typically reduces the mean 

squared error (MSE) of the ridge regression estimator 

compared to that of the OLS estimator. When K=0. The ridge 

estimator equals the OLS estimator. Traditionally, K is 

determined graphically using the ridge trace plot developed by 

Hoerl and Kennard (1970) [6]. However, using the ridge trace 

plot is subjective. 

Over time, different authors have proposed various methods to 

estimate the ridge parameter kk. Notable contributors include 

Hoerl and Kennard (1970) [6], Hoerl et al. (1975) [9], 

McDonald and Galarneau (1975) [10], Lawless and Wang 

(1976) [11], Dempster et al. (1977) [12], Troskie and Chalton 

(1996) [13], Firinguetti (1999) [14], Kibria (2003) [15], Khalaf 

and Shukur (2005) [16], Batah et al. (2008) [17], Kibria and 

Banik (2016) [18], Lukman and Ayinde (2017) [19], Lukman 

et al. (2020) [20], Fayose and Kayode (2019) [21], among 

others. 

 The ridge regression estimators can be classified into two main 

types: generalized ridge estimators and ordinary ridge 

estimators. A major challenge in applying ridge regression is 

selecting an appropriate value for the ridge parameter k. The 

solution obtained from the ridge estimator depends critically on 

the value of k used. Since the ideal value of k depends on the 

unknown population parameters, it can only be estimated from 

the data. Currently, there is no consensus on the best method 

for determining k. 

In a study by Fayose and Ayinde (2019) [21] , seven different 

forms of the biasing parameter kk that perform more efficiently 

than the generalized form were proposed and used as kk values. 

These different forms include the maximum, minimum, 

arithmetic mean, geometric mean, harmonic mean, mid-range, 

and median. 

Over the years, other researchers have developed combined 

estimators with the expectation that combining different 

estimators might inherit the advantages of both components. 

Baye and Parker (1984) [22] combined the Ridge estimator 

with Principal Component (PC) estimator to develop the r-k 

class estimator, which is an alternative method of dealing with 

multicollinearity. This new combined estimator was shown to 

perform better than the individual component elements (Baye 

and Parker,1984) [22].  Nomura and Ohkuba (1985) [23] 

compared the r-k class estimator with the Ridge and OLS 

estimators according to scalar mean square error criterion, 

showing that the r-k class estimator outperforms each of these 

individual estimators. Additionally, Sarkar (1996) [24] 

compared the performance of the OLS, Ridge and Principal 

Component estimator with respect to their Matrix Mean Square 

Error (MMSE). He derived necessary and sufficient conditions 

under which the r-k class estimator achieves a smaller MMSE 

than the OLS, Ridge and the Principal component estimators. 

The article by Baye and Parker (1984) [22] motivated other 

researchers to investigate combinations of estimators to address 

multicollinearity. Kaciranlar and Sakallioglu (2001) [25] 

developed the r-d class estimators by combining the Liu and 

Principal Component (PC) estimators. Using the MSE 

criterion, they compared this new estimator with the ordinary 

least squares (OLS), PC and Liu estimators, demonstrating 

improved performance. Ozkale and Kaciranlar (2007) [26] 

further combined the PC estimator with the restricted least 

squares estimator to develop a new estimator, called the 

Restricted principal components regression (RPCR) estimator. 

Batah et al. (2009) [27] introduced the modified r–k class ridge 

regression (MCRR) estimator by combining the unbiased ridge 

regression (URR) estimator of Crouse et al. (1995) [28] with 

the PC estimator. Adegoke et al. (2016) [29], combined the 

Ridge and Liu estimators to improve efficiency in the presence 

of multicollinearity. Lukman et al. (2020) [20] proposed a new 

estimator by combining modified ridge type and principal 

component estimators. More recently Huang and Bai (2023) 

[30] combined the modified Kibria–Lukman and the principal 

component regression estimators to develop an estimator 

effective for use in the presence of multicollinearity. 

The Principal Component Ridge (PCRE) estimator (Bayes 

&Parker, 1984) [22] and the Principal Component Liu (PCLIU) 

estimator (Kaciranlar & Sakallioglu, 2001) [25] are both 

designed to handle multicollinearity exists in a linear regression 

model. They are dimension reduction techniques that produce 

biased estimates but with reduced variance compared to the 

ordinary least squares (OLS) estimator. Both estimators 

combine principal component analysis (PCA) with either ridge 

regression (for PCRE) or Liu regression (for PCLIU). 

Ozbey and Kaçıranlar (2015) [31] using the Mean squared error 

(MSE) demonstrated that when multicollinearity is present, 

both estimators provide more precise estimates than the OLS 

estimator. The shrinkage of regression coefficients for the 

Principal Component Ridge estimator is achieved through a 

non-zero constant k (Bayes &Parker, 1984) [22] while the 

Principal Component Liu estimator uses a shrinkage parameter 

d that takes a value between zero and one (Kaciranlar & 

Sakallioglu, 2001) [26].  

Furthermore, the PCLIU estimator tends to perform better than 

the PCRE estimator when severe multicollinearity exists in the 

data, whereas the PCRE estimator outperforms the PCLIU 

under moderate multicollinearity conditions (Ozbey & 

Kaçıranlar, 2015) [31]. A common critique of both PCRE and 

PCLIU estimators is that since their principal components are 

linear combinations of the original correlated variables, 

interpreting the resulting coefficient estimates in terms of the 

original variables is difficult. 

The aim of this study is to evaluate different forms of the 

biasing parameter used with the Principal Component Ridge 

(PCRE) and Principal Component Liu (PCLIU) estimators to 

identify which form yields the most efficient estimates. By 

determining the most efficient estimator, this research seeks to 

provide guidance on the optimal choice of biasing parameter 

form for use with either estimator in the presence of 

multicollinearity. 

1.1 OLS ESTIMATOR 
Consider the standard regression model: 

𝑌 = 𝑋𝛽 + 𝑈                                                                     (1) (1) 

Where X is an n x p matrix with full rank, Y is an n x 1 vector 

of dependent variable, 𝛽 is a p x 1 vector of unknown 

parameters, and 𝑈 is the error term, such that  𝐸(𝑈) = 0 and 

𝐸(𝑈𝑈1) = 𝜎2𝐼𝑛                                                                       provided 
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𝑋1𝑋 is invertible (Lukman et al. 2018), the OLS estimator is 

given as: 

𝛽̂ = (𝑋′𝑋)−′𝑋′𝑌                                                                   (2)  

(2) 

Consider the regression model in equation (1) and letting Ʌ= 

diag (𝜆1,𝜆2, … , 𝜆𝑝) be a pxp diagonal matrix of the eigenvalues 

of 𝑋′𝑋, and T be a p × p orthogonal matrix whose columns are 

the eigenvectors associated with 𝜆1, 𝜆2 … . 𝜆𝑝 such that 𝑇𝑇′ =

𝑇′𝑇 = 𝐼𝑃 .                                                                                              

Then, 

 𝑋′𝑋 =  𝑇Ʌ𝑇′                                                                         (3)      

(3) 

and  

Ʌ = 𝑇′𝑋′𝑋𝑇                                                                           (4)    

(4) 

Defining Z = XT, then          

X=𝑍𝑇′                                                                                    (5)                                                                                         

         (5)      

Putting eqn. (5) into eqn. (4)  

Ʌ = 𝑇′𝑋′𝑋𝑇 = 𝑍′𝑍                                                               (6)      

(6)   

Substituting eqn. (6) for X in eqn. (1), we obtain the equivalent 

model given as: 

Y=𝑍𝑇′𝛽 + 𝑈                                                                         (7)          

(7)                                          

Let 𝑇′𝛽 = 𝛼 , then:  

β=T 𝛼                                                                                    (8)        

(8) 

and 

𝑌 = 𝑍𝛼 + 𝑈                                                                          (9)       

(9) 

The ordinary Least Squares estimator of  𝛼, 𝛼𝑂𝐿𝑆  is given as: 

𝛼̂𝑂𝐿𝑆 = (𝑍′𝑍)−′𝑍′𝑦 = Ʌ−′𝑍′𝑌                                            (10)

 (10) 

1.2 RIDGE REGRESSION ESTIMATOR 

(RE) 
To solve the problem of multicollinearity, Hoerl and Kennard 

(1970) [6], developed the Ridge Regression estimator which 

works by adding a small value, K, to the diagonal elements of 

the 𝑋1𝑋 matrix before computing the estimates. This value, k, 

balances the trade-off between fitting the data well and keeping 

the coefficients small. Using the model in equation (9), this 

corresponds to adding a small value, K, to the diagonal 

elements of the 𝑍′𝑍 matrix before computing the estimates. 

Thus, the ridge regression estimator (RE) becomes: 

𝛼̂𝑅𝐸 = (𝑍′𝑍 + 𝐾𝐼)−′𝑍′𝑌                                                    (11)  

(11) 

Where 𝑍′𝑍 is a p x p product matrix of explanatory variables,  

𝑍′𝑌 is a p x 1 vector of the product of dependent and 

explanatory variables,  

K = diagonal (𝐾1, 𝐾2, … , 𝐾𝑃),  𝐾𝑖=  
𝜎2

𝛼𝑖̂

̂
  ≥ 0. i= 1, 2, ..., p. 

When 𝐾1 = 𝐾2 = ⋯ . = 𝐾𝑝 = 𝐾, K>0, then 𝛼̂𝐺𝑅𝐸 = 𝛼̂𝑅𝐸 and if 

K=0, then 𝛼̂𝑅𝐸=𝛼̂𝑂𝐿𝑆 

In equation (11) above, K > 0 and I is an identity matrix. Note 

that if K=0 the ridge estimator (RE) reduces to the ordinary 

least squares (OLS) estimator. The values of k used in this 

study are those proposed by Hoerl and Kennard (1970) [6], and 

Fayose and Ayinde (2019) [21]. 

1.2.1 Hoerl and Kennard Generalized Form 

K=𝜎̂2/𝛼̂𝑖
2, i=1,2, 3…, p                                                    (12) 

 (12) 

𝜎̂2 = ∑
𝑢𝑖

2

𝑛−𝑝

𝑛
𝑖=1                                                                    (13)

 (13) 

 is the MSE from the OLS regression 

𝛼𝑖  is the ith element of the vector 𝛼 from the OLS regression 

p is the number of regressors, and n is the sample size. 

1.2.2 Fayose and Ayinde Generalized Form 

𝝈̂

𝜶𝒊
𝟐

{ [(
𝜶̂𝒊

𝟒
𝝀𝒊

𝟐

𝟒𝝈̂𝟐
) + (

𝟔𝜶̂𝒊
𝟒

𝝀𝒊

𝝈̂𝟐
)]

𝟏

𝟐

− (
𝜶̂𝒊

𝟐
𝝀𝒊

𝟐𝝈̂𝟐
)}                          (14) (14) 

𝜎̂2 = ∑
𝑢𝑖

2

𝑛−𝑝

𝑛
𝑖=1   is the MSE from the OLS regression 

𝛼𝑖  is the ith element of the vector 𝛼 from the OLS regression 

p is the number of regressors, and n is the sample size. 

𝜆𝑖  is the ith eigenvalue of the 𝑍1Z matrix 

Following Fayose and Ayinde (2019) [21], seven different 

forms of the biasing parameter k that perform more efficiently 

than the generalized form were also used as k values. These 

different forms are maximum, minimum, Arithmetic mean, 

Geometric mean, Harmonic mean, Mid-range and Median. 

1.3 LIU ESTIMATOR 
Liu (1993) [7], motivated by the interpretation of the ridge 

estimate developed an alternative biased estimator to overcome 

multicollinearity for the linear regression model presented in 

equation (9). This estimator modifies the calculation of the 

regression coefficients by incorporating a biasing parameter, 

typically denoted as d, which lies between 0 and 1. This 

parameter allows the estimator to shrink the regression 

coefficients towards zero, thereby reducing their variance and 

improving estimation stability. Using our equivalent model the 

Liu estimator can be written as: 

𝛼̂𝐿𝐼𝑈 = [(𝑍′𝑍 + I)−′(𝑍′𝑍 + 𝑑𝐼) 𝛼̂𝑂𝐿𝑆          (15)                                                                                                      

  

where d is the Biasing parameter and is defined as:  

𝑑𝐿𝐼𝑈 = 1 − 𝜎̂2 [
∑

1

𝜆𝑖(𝜆𝑖+1)

𝑝
𝑖=1

∑ 𝛼̂𝑖
2𝑝

𝑖=1
(𝜆𝑖+1)2

]                                                 (16)   

(16) 

1.4 PRINCIPAL COMPONENT 

ESTIMATOR 
The main purpose of Principal Component Regression is to 

estimate the values of a response variable based on selected 

Principal Components of the explanatory variables. It is a 

multivariate technique developed by Hotelling (1933) for 

explaining a set of correlated variables using a reduced number 

of uncorrelated variables (principal components, or PCs) with 

maximum variances (Pongpiachan et al., 2024) [34]. The 

estimates produced using the Principal Component estimators 

are biased (Weeraratne et al., 2024) [35]. When using Principal 

Component Regression, two stages are involved. The first stage 

reduces the number of predictor variables in the model using 

principal component analysis. The second stage involves using 

the reduced variables obtained from principal component 

analysis in an ordinary least square (OLS) (Ayinde et al., 2012) 

[36]. From our regression model in equation (9), the columns 

of Z, which define a new set of orthogonal regressors, such as 

Z=(𝑍1, 𝑍2, … 𝑍𝑝)=[𝑍𝑟 , 𝑍𝑝−𝑟] are referred to as principal 

components. The pxp matrix of eigen vectors T =(𝑡1, 𝑡2, … 𝑡𝑝) 

can also be written as [𝑇𝑟 , 𝑇𝑝−𝑟] with descending eigen values 

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝 such that the last of these eigenvalues are 

approximately equal to zero. Thus equation (1) can be written 

as:  

𝑌 = 𝑋𝛽 + 𝑈  
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    =X𝑇𝑇′𝛽 +U    

    = X 𝑇𝑟𝑇𝑟
′𝛽 + X 𝑇𝑝−𝑟𝑇𝑝−𝑟

′𝛽 +U                              

     =𝑍𝑟𝛼𝑟+ 𝑍𝑝−𝑟𝛼𝑝−𝑟+ U                       (17)                              

      (17) 

Where 𝑍𝑟 contains PCs that are used in the regression model 

and 𝑍𝑝−𝑟  contain PCs that are discarded from the model. Thus, 

the regression equation becomes: 

𝑌 = 𝑍𝑟𝛼𝑟 + 𝑈                                                                     (18)   

(18) 

The principal component estimator, 𝛼̂𝑃𝐶 from this transformed 

equation is given as:  

𝛼̂𝑃𝐶=(𝑍𝑟
′𝑍𝑟)−′𝑍𝑟

′𝑦                                                             (19)                                                                                                                                         

1.5 PRINCIPAL COMPONENT RIDGE 

(PCRE) ESTIMATOR  
Baye & Parker (1984) [22] combined the Ridge and Principal 

Component estimator to form a new estimator called the 

Principal Component Ridge estimator to address the problem 

of multicollinearity in linear regression models. This estimator 

works by first transforming the original correlated predictors 

into a set of uncorrelated principal components and then 

applying ridge regression to these components. Using our 

transformed model in equation (9), the Principal Component 

estimator in equation (19) and the Ridge estimator in equation 

(11), the Principal Component Ridge estimator is defined as: 

 𝛼̂𝑃𝐶𝑅𝐸 = (𝑍𝑟
′ 𝑍𝑟 + 𝐾𝐼)−′𝑍𝑟

′ 𝑌                                               (20)  

(20) 

The finite sample properties of the Principal Component Ridge 

estimator are derived as: 

1.5.1 Proof of Expected Value of  𝜶̂𝑷𝑪𝑹𝑬 
𝐸( 𝛼̂𝑃𝐶𝑅𝐸) = 𝐸((𝑍𝑟

′ 𝑍𝑟 + 𝐾𝐼)−′𝑍𝑟
′ 𝑌)                                  (21) 

 (21) 

                   = (𝑍𝑟
′ 𝑍𝑟 + 𝐾𝐼)−′𝑍𝑟

′ 𝐸(𝑌)    

                   = (𝑍𝑟
′ 𝑍𝑟 + 𝐾𝐼)−′𝑍𝑟

′ 𝑍𝛼                                     (22)      

  (22) 

1.5.2 Proof of Biasedness of 𝜶̂𝑷𝑪𝑹𝑬 
𝐵𝐼𝐴𝑆( 𝛼̂𝑃𝐶𝑅𝐸) = 𝐸(𝛼̂𝑃𝐶𝑅𝐸) − 𝛼                                        (23)

 (23) 

                        =   (𝑍𝑟
′ 𝑍𝑟 + 𝐾𝐼)−′𝑍𝑟

′ 𝑍𝛼 − 𝛼         

                       = ((𝑍𝑟
′ 𝑍𝑟 + 𝐾𝐼)−′𝑍𝑟

′ 𝑍 − 𝐼)𝛼 )                       (24) 

 (24)                            

Let 
     

𝑄(𝑟)        = ((𝑍𝑟
′ 𝑍𝑟 + 𝐾𝐼)

−′
𝑍𝑟

′ 𝑍 − 𝐼)𝛼, then,  

𝐵𝐼𝐴𝑆( 𝛼̂𝑃𝐶𝑅𝐸) = 𝑄(𝑟)                                                        (25)

 (25) 

1.5.3 Proof of Variance of 𝜶̂𝑷𝑪𝑹𝑬 
𝑉𝐴𝑅( 𝛼̂𝑃𝐶𝑅𝐸) = 𝑉𝐴𝑅((𝑍𝑟

′ 𝑍𝑟 + 𝐾𝐼)−′𝑍𝑟
′ 𝑌)                      (26) 

 (26) 

               =  (𝑍𝑟
′ 𝑍𝑟 + 𝐾𝐼)−′𝑍𝑟

′ 𝑉𝐴𝑅(𝑌)𝑍𝑟(𝑍𝑟
′ 𝑍𝑟 + 𝐾𝐼)−′  

            = 𝜎2 (𝑍𝑟
′ 𝑍𝑟 + 𝐾𝐼)−′𝑍𝑟

′ 𝑍𝑟(𝑍𝑟
′ 𝑍𝑟 + 𝐾𝐼)−′               (27)                                                                                

1.5.4 Proof of Mean Square Error of 𝜶̂𝑷𝑪𝑹𝑬 
Let 𝜑(𝑟) = 𝜎2 (𝑍𝑟

′ 𝑍𝑟 + 𝐾𝐼)−′𝑍𝑟
′ 𝑍𝑟(𝑍𝑟

′ 𝑍𝑟 + 𝐾𝐼)−′, then, 

𝑀𝑆𝐸( 𝛼̂𝑃𝐶𝑅𝐸) = 𝑉𝐴𝑅( 𝛼̂𝑃𝐶𝑅𝐸) +

𝐵𝐼𝐴𝑆( 𝛼̂𝑃𝐶𝑅𝐸)(𝐵𝐼𝐴𝑆( 𝛼̂𝑃𝐶𝑅𝐸))
′
                                        (28)

 (28) 

𝑀𝑆𝐸( 𝛼̂𝑃𝐶𝑅𝐸) = 𝜑(𝑟) + 𝑄(𝑟)𝑄′(𝑟)                                 (29)

 (29) 

1.6 PRINCIPAL COMPONENT LIU 

(PCLIU) ESTIMATOR 
The Principal Component Liu (PCLIU) estimator is a hybrid of 

the principal component regression and the Liu estimator. It 

was developed by Kacıranlar & Sakallıoglu (2001) [26]. The 

PCLIU estimator provides a regression approach for handling 

multicollinearity in linear models by combining both principal 

component regression and Liu estimation techniques. 

Specifically, it addresses regression bias by first creating an 

orthogonal set of principal components from the predictors 

using principal component analysis (PCA), which reduces the 

dimensionality of the data and removes correlations among the 

transformed predictors. After obtaining the principal 

components, the Liu estimator is applied to these components 

to bias the coefficient estimates toward zero by employing its 

biasing parameter, typically denoted as d. This biasing reduces 

the overall variance, thereby improving the stability of the 

estimates. Using our transformed model in (9), the Principal 

Component estimator in equation (19) and the Liu estimator in 

equation (15), the Principal Component Liu estimator is 

defined as: 

𝛼̂𝑃𝐶𝐿𝐼𝑈 = (𝑍𝑟
′ 𝑍𝑟 + I)−′ (𝑍𝑟

′ 𝑍𝑟 + 𝑑𝐼) 𝛼̂𝑃𝐶                            (30)   

(30) 

1.6.1 Proof of Expected Value of 𝜶̂𝑷𝑪𝑳𝑰𝑼 
𝐸(𝛼̂𝑃𝐶𝐿𝐼𝑈)        = 𝐸[(𝑍𝑟

′ 𝑍𝑟 + I)−′ (𝑍𝑟
′ 𝑍𝑟 + 𝑑𝐼) 𝛼̂𝑃𝐶]           (31)

 (31) 

                         = (𝑍𝑟
′ 𝑍𝑟 + I)−′ (𝑍𝑟

′ 𝑍𝑟 + 𝑑𝐼) 𝐸(𝛼̂𝑃𝐶)   

𝐸(𝛼̂𝑃𝐶𝐿𝐼𝑈) = (𝑍𝑟
′ 𝑍𝑟 + I)−′ (𝑍𝑟

′ 𝑍𝑟 + 𝑑𝐼) (𝑍𝑟
′ 𝑍𝑟)−′𝑍𝑟

′ 𝑍𝛼    (32)  

 (32) 

1.6.2 Proof of Biasedness of  𝜶̂𝑷𝑪𝑳𝑰𝑼 
𝐵𝐼𝐴𝑆(𝛼̂𝑃𝐶𝐿𝐼𝑈) =  (𝑍𝑟

′ 𝑍𝑟 + I)−′ (𝑍𝑟
′ 𝑍𝑟 + 𝑑𝐼) (𝑍𝑟

′ 𝑍𝑟)−′𝑍𝑟
′ 𝑍𝛼 −

𝛼    

 =  [(𝑍𝑟
′ 𝑍𝑟 + I)−′ (𝑍𝑟

′ 𝑍𝑟 + 𝑑𝐼) (𝑍𝑟
′ 𝑍𝑟)−′𝑍𝑟

′ 𝑍 − 𝐼] 𝛼           (33) 

 (33) 

   Let 𝐽(𝑑) = [(𝑍𝑟
′ 𝑍𝑟 + I)−′ (𝑍𝑟

′ 𝑍𝑟 + 𝑑𝐼) (𝑍𝑟
′ 𝑍𝑟)−′𝑍𝑟

′ 𝑍 − 𝐼] 𝛼     

  

Thus, 𝐵𝐼𝐴𝑆(𝛼̂𝑃𝐶𝐿𝐼𝑈) = 𝐽(𝑑)              (34)                                         
                                    (34) 

1.6.3 Proof of Variance of 𝜶̂𝑷𝑪𝑳𝑰𝑼 
𝑉𝐴𝑅(𝛼̂𝑃𝐶𝐿𝐼𝑈) = 𝑉𝐴𝑅((𝑍𝑟

′ 𝑍𝑟 + 𝐾I)−′ (𝑍𝑟
′ 𝑍𝑟 + 𝑑𝐼) 𝛼̂𝑃𝐶)   (35)     

(35) 

                       = (𝑍𝑟
′ 𝑍𝑟 + I)−′ (𝑍𝑟

′ 𝑍𝑟 + 𝑑𝐼) VAR(𝛼̂𝑃𝐶)                                           
                       =(𝑍𝑟

′ 𝑍𝑟 + I)−′ (𝑍𝑟
1𝑍𝑟 + 𝑑𝐼) 𝜎2 (𝑍𝑟

′ 𝑍𝑟)−′  

                      =  𝜎2[(𝑍𝑟
′ 𝑍𝑟 + I)−′(𝑍𝑟

′ 𝑍𝑟 + 𝑑𝐼)  (𝑍𝑟
′ 𝑍𝑟)−′   (36)                                                                            

1.6.4 Proof of Mean Square Error of 𝜶̂𝑷𝑪𝑳𝑰𝑼 
Let 𝐾(𝑑) = 𝜎2[(𝑍𝑟

′ 𝑍𝑟 + I)−′ (𝑍𝑟
′ 𝑍𝑟 + 𝑑𝐼) (𝑍𝑟

′ 𝑍𝑟)−′], then, 

𝑀𝑆𝐸(𝛼̂𝑃𝐶𝐿𝐼𝑈) = 𝑉𝐴𝑅(𝛼̂𝑃𝐶𝐿𝐼𝑈) +

𝐵𝐼𝐴𝑆(𝛼̂𝑃𝐶𝐿𝐼𝑈)(𝐵𝐼𝐴𝑆(𝛼̂𝑃𝐶𝐿𝐼𝑈))
′
                                          (37)           

(37) 

  𝑀𝑆𝐸(𝛼̂𝑃𝐶𝐿𝐼𝑈) = 𝐾(𝑑) + 𝐽(𝑑)𝐽′(𝑑)                                  (38)      

(38) 

 

2.1 MATERIALS AND METHODS 

2.1.1 Model Formulation for Monte Carlo 

Study 
To investigate the performance of our proposed and existing 

estimators when multicollinearity is present, this study 

considers a multiple linear regression model of the form: 
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𝑌 = 𝑋𝛽 + 𝜀                                                                       (39)   

(39) 

where Y is an n × 1 vector of response variable, X is a known 

n × p full rank matrix of explanatory variables, β is an p × 1 

vector of unknown regression parameters, ɛ is an n × 1 vector 

of errors such that 𝐸(𝜀) = 0 and 𝑉𝑎𝑟(𝜀) = 𝜎2𝐼𝑛. The number 

of explanatory variables (p) used were four (4) and seven (7). 

The sample sizes considered vary to assess estimator 

performance across small and large datasets. Specifically, the 

sample sizes considered are: 10, 15, 20, 30, 40, 50, 100, and 

250. 

2.1.2 Procedure for Generating Explanatory 

Variables 
The simulation procedure used by McDonald and Galarneau 

(1975) [10], Wichern and Churchill (1978) [37], Gibbons 

(1981) [38], Kibria (2003) [15], Dorugade and Kashid (2010) 

[39], Dorugade (2016) [40], and Lukman et al (2018) [32], 

Amalare et al. (2023) [41], is also be used to generate 

explanatory variables in this study. This is given as: 

𝑋𝑡𝑖 = (1 − 𝜌2)
1

2𝑍𝑡𝑖 + 𝜌𝑍𝑡𝑝                                                (40)  

(40) 

t=1, 2, 3…, n. i=1, 2,…,p. 

Where 𝑍𝑡𝑖’s are independent standard normal random variables 

with mean zero and unit variance, ρ is the correlation between 

any two explanatory variables and p is the number of 

explanatory variables. The ρ is specified so that the correlation 

between any two regressors is given as  𝜌2. These explanatory 

variables are then standardized so that the matrix  𝑋1𝑋 is in 

correlation form. 

2.1.3 Criterion for Investigation of the 

Performance of Estimators 
The quality and efficiency of each estimator are evaluated using 

the Mean Squared Error (MSE) criterion, a widely accepted 

metric to quantify the accuracy and variability of parameter 

estimates. The MSE of an estimator 𝛼̂ for the true parameter 𝛼 

is given as  

𝑀𝑆𝐸(𝛼̂) =
1

1000
∑ (𝛼̂ − 𝛼)1(𝛼̂ − 𝛼)1000

𝐼=1                             (41)  

(41) 

Where 𝛼̂ is the estimates of any of the estimators being studied. 

For each simulated sample generated at given levels of 

multicollinearity, error variance, and sample size, the 

estimators are applied, and estimates 𝛼̂ are obtained. The 

estimated MSE is computed by averaging the squared 

deviations of 𝛼̂ from 𝛼 across replications. The estimator 

achieving the smallest estimated MSE under given simulation 

conditions is considered the best-performing estimator. 

All simulation routines, including the generation of explanatory 

variables, estimation of parameters for each estimator 

considered, and computation of MSEs, were implemented in 

the statistical software R (version 4.5.0). To ensure the MSE 

estimates were stable and reliable, 1000 simulation replications 

for each combination of sample size, number of explanatory 

variables, multicollinearity level, and error variance, were 

conducted. The Statistical Package for the Social Sciences 

(SPSS version 29.0) was used after simulation to perform 

ranking of estimators based on their computed MSE values. 

This facilitated a clear identification of the most efficient 

estimators across varying scenarios. 

3. RESULTS 
 

 

TABLE 1: Frequency of the Principal Component Ridge 

and Principal Component Liu estimators Over the Levels 

of Multicollinearity and Error Variance at Each Sample 

Size When There is Multicollinearity for p=4 

 Sample size (n) 

Estimator 10 15 20 30 40 50 100 250 Total Rank 

RHKMAWPC 7 4 4 2 3 2 1 0 23 1 

RFAMAWPC 3 3 2 2 3 2 2 0 17 2 

LUHMWPC 0 3 4 2 0 2 1 1 13 3 

LUMIWPC 5 1 0 3 1 1 0 0 11 4 

RFAMIWPC 0 0 0 2 2 1 3 1 9 5.5 

RHKMIWPC 0 0 0 0 2 0 2 5 9 5.5 

RHKGNWPC 0 0 0 0 2 1 1 3 7 7 

RFAGMWPC 0 0 1 1 1 1 1 1 6 8 

RFAAMWPC 0 1 1 1 0 0 1 0 4 9.5 

RHKMDWPC 0 0 2 1 0 0 0 1 4 9.5 

RFAHMWPC 0 0 0 1 0 2 0 0 3 11 

RFAGNWPC 0 0 0 0 0 1 0 1 2 12 

LUGMWPC 0 0 0 0 0 0 0 1 1 16 

RHKAMWPC 0 1 0 0 0 0 0 0 1 16 

RHKMRWPC 0 1 0 0 0 0 0 0 1 16 

RFAMDWPC 0 0 0 0 1 0 0 0 1 16 

RHKGMWPC 0 0 0 0 0 1 0 0 1 16 

RHKHMWPC 0 0 0 0 0 0 1 0 1 16 

LUGNWPC 0 0 0 0 0 0 0 1 1 16 

Total 15 14 14 15 15 14 13 15   

 

NOTE: Estimator with highest frequency is bolded. 
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Figure 1: Graphical Representation of the Frequency of 

the Most Efficient Estimators Under Mean Square Error 

Criterion at Different Sample Sizes When There is 

Multicollinearity and p=4. 

TABLE 2: Frequency of the Principal Component Ridge 

and Principal Component Liu estimators Over the Levels 

of Multicollinearity and Error Variance at Each Sample 

Size When There is Multicollinearity for p=7 

 Sample Size (n) 

Estimator 10 15 20 30 40 50 100 250 Total Rank 

RHKMAWPC 5 5 5 2 2 0 0 0 19 1 

RFAMAWPC 3 2 2 4 2 2 1 0 16 2 

LUHMWPC 0 0 2 1 4 3 3 1 14 3 

LUMIWPC 4 4 0 0 0 0 1 1 10 4 

RHKGMWPC 0 0 0 2 1 2 3 1 9 5 

RFAGNWPC 0 0 1 2 1 2 0 1 7 6.5 

RHKMIWPC 0 0 0 0 0 0 2 5 7 6.5 

RFAGMWPC 0 1 0 0 2 0 2 1 6 8.5 

RHKGNWPC 0 0 1 0 1 1 1 2 6 8.5 

LUGMWPC 0 0 0 4 0 0 0 1 5 10.5 

RFAMIWPC 0 0 0 0 1 1 2 1 5 10.5 

RHKAMWPC 2 1 1 0 0 0 0 0 4 12.5 

RFAAMWPC 0 1 1 0 1 1 0 0 4 12.5 

LUMAWPC 0 0 0 0 0 1 0 1 2 14 

RFAMRWPC 0 0 1 0 0 0 0 0 1 16 

RFAHMWPC 0 0 0 0 0 1 0 0 1 16 

RHKHMWPC 0 0 0 0 0 1 0 0 1 16 

Total 14 14 14 15 15 15 15 15 117  
 

NOTE : Estimators with highest frequencies are bolded. 

 

Figure 2: Graphical Representation of the Frequency of 

the Most Efficient Estimators Under Mean Square Error 

Criterion at Different Sample Sizes When There is 

Multicollinearity and p=7 

4. DISCUSSION 
Tables 1 and 2 present a summary of the frequency with which 

each estimator produces the minimum mean squared error 

(MSE) when counted across varying levels of multicollinearity 
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and error variance at each examined sample size. Table 1 

corresponds to the case when the number of explanatory 

variables p=4, while Table 2 corresponds to the case when p=7. 

In Table 1, the frequencies of estimators achieving the 

minimum MSE across combinations of multicollinearity levels 

and error variances at different sample sizes are shown for p=4. 

The results indicate that the estimator RHKMAWPC, which is 

the principal component ridge estimator with the maximum 

variant of the biasing parameter proposed by Hoerl and 

Kennard (1970), achieves the lowest MSE most frequently 

among all estimators considered. This makes RHKMAWPC 

the most consistently efficient estimator under these settings. 

The second most frequent efficient estimator is RFAMAWPC, 

which is the principal component ridge estimator with the 

maximum variant of the biasing parameter proposed by Fayose 

and Ayinde (2019). Within the family of Principal Component 

Liu estimators, the harmonic mean variant LUHMWPC 

demonstrates superior efficiency, having the highest frequency 

for the number of times it achieves the lowest mean squared 

error. It is followed in lowest MSE performance frequency by 

the minimum variant LUMIWPC. These results illustrate the 

relative performance of different biasing parameter forms used 

with the principal component ridge and Liu estimators 

when p=4. 

Figure 1 is a graphical representation of the results in Table 1. 

It represents the frequency of the four most efficient estimators 

under the mean squared error criterion at different levels of 

multicollinearity and error variance at each sample size when 

multicollinearity exists and p=4. From the graph, the estimator 

that had the lowest mean squared error the most times is 

RHKMAWPC. 

In Table 2, the frequencies of estimators achieving the 

minimum MSE across combinations of multicollinearity levels 

and error variances at different sample sizes are shown for p=7. 

The pattern here is consistent with that observed for p=4; 

specifically, for the principal component ridge estimators, 

RHKMAWPC remains the estimator that most frequently 

attains the minimum MSE compared with the other estimators 

under consideration. It is again followed by RFAMAWPC in 

terms of frequency of achieving minimum MSE. Among the 

Principal Component Liu estimator variants, the harmonic 

mean form LUHMWPC continues to hold the highest 

efficiency, with the minimum variant LUMIWPC ranking 

second. 

Figure 2 is a graphical representation of the findings of Table 

2. It shows the frequency of each estimator being the most 

efficient at different multicollinearity levels, error variances, 

and sample sizes when p=7. This figure visualizes the sustained 

superior performance of RHKMAWPC as the sample size and 

parameter count increase. 

These tables and figures demonstrate that the choice of biasing 

parameter form significantly affects estimator efficiency. 

RHKMAWPC, employing the maximum variant of the biasing 

parameter with the principal component ridge estimator, 

consistently provides the most efficient estimates in terms of 

minimum MSE among all estimators for different numbers of 

explanatory variables considered, under various levels of 

multicollinearity, error variance, and sample sizes. The 

harmonic mean variant LUHMWPC remains the most efficient 

among Principal Component Liu estimators for the settings 

considered. 

 

 

5. CONCLUSION 
Multicollinearity is a common problem in linear regression. It 

occurs when the explanatory variables are highly correlated. 

This causes traditional estimation methods like OLS to produce 

estimates that are inefficient and unstable. The use of biasing 

parameters in estimators yields estimates with less variance at 

the expense of a small increase in bias. Biasing estimators are 

incorporated in both the PCRE and PCLIU estimators. 

Research has shown that the performance of a biasing estimator 

depends on the form and value of its biasing parameters. This 

study evaluated the efficiency of different forms of the biasing 

parameter for both the Principal Component Ridge (PCRE) and 

Principal Component Liu (PCLIU) estimators for linear 

regression models under different conditions of 

multicollinearity, sample sizes, and error variances. Among the 

seven different forms of the biasing parameter considered, the 

maximum form produced the most efficient estimates when 

used with the principal component ridge estimator. This 

estimator, RHKMAWPC, had the smallest MSE for the 

Principal Component Ridge estimator. The estimator 

LUHMWPC, which is the harmonic mean form when used with 

the Principal Component Liu estimator, provided the most 

efficient estimates for the principal component Liu estimator. 

Overall, RHKMAWPC was the most efficient estimator for 

both principal component estimators since it had the lowest 

MSE across the different model settings that were considered. 

This study highlights the importance of selecting an appropriate 

form of the biasing parameter tailored to the estimator and data 

structure at hand. The results obtained suggest that while both 

PCRE and PCLIU estimators offer improvements over 

traditional methods, choosing the correct form of the biasing 

parameter can further improve performance. Model prediction 

and interpretability are enhanced when the efficiency of an 

estimator is improved. Future study can assess the robustness 

of these estimators when heteroscedasticity is found to exist in 

the model. 
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