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ABSTRACT
Real-world acoustic scene data has a complex structure that leads
to high levels of overlap within an acoustic scene class. This over-
lap stems from various similar factors, such as different recording
devices and recording locations or cities, which act as confound-
ing factors. On the other hand, the same set of confounding fac-
tors would be present across different acoustic scene classes and
can be considered as a common link across them. Utilizing this
common structure, it is possible to perform multi-block analysis
to learn the representation of these common links. Two formula-
tions are proposed for the multi-block analysis of acoustic scene
data, employing a common orthogonal basis extraction algorithm.
The proposed formulations enhance the performance of the acous-
tic scene classification system by reducing the information pertain-
ing to the recording devices and cities from the learnt acoustic
scene representations. Experiments were conducted on five stan-
dard Detection and Classification of Acoustic Scenes and Events
(DCASE) datasets. Across all datasets, the classification perfor-
mance achieved using features derived from the multi-block for-
mulations surpassed that of features not incorporating these formu-
lations.
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1. INTRODUCTION
Acoustic scene classification (ASC), which is a component of
acoustic scene analysis, has been a well-researched problem for a
number of years now [28]. The aim of an ASC system is to identify
the environment from where an audio recording has been obtained,
based on the sounds present in it [2]. Some of the challenges faced
by ASC systems include high intra-class variation and the pres-
ence of similar sounds across different acoustic scenes. There can
be several factors that cause variation in audio data that represents
acoustic scenes. These can include the inherent variability of com-
plex environments. For example, the interior of a moving bus might
sound different from the interior of the bus at a bus stop. Also, dif-
ferences could arise due to different recording devices and record-
ing locations. Each device imparts its own specific characteristics

to the recorded audio signal and thus can be considered as a direct
source of variation. Additionally, the recording location referring to
the city where the acoustic scene is captured, can be considered as
an indirect source of variation. For example, the buses commonly
used in London might be different (and sound different) from the
buses used in Barcelona. Previous work [26] supports the consider-
ation of city information as a variation causing-factor for the prob-
lem of ASC.
This work addresses the variations introduced by differing record-
ing conditions, including various recording devices and cities, by
using a multi-block subspace-based approach. Through subspace-
based approaches, acoustic scene data is transformed to reduce un-
wanted variations, resulting in more discriminative acoustic scene
representations. These methods’ main objective is to compute the
basis vectors of the subspace, which offer a concise and insightful
representation of the data. Subspace analysis techniques include
multi-block methods, which are designed to compute data repre-
sentations by learning an optimal subspace by exploiting the natu-
ral linkage across multiple blocks of the data. Face image datasets
are a type of multi-block data, where the facial images that share
a common pose or illumination across different subjects naturally
creates an association among them [33]. This common information
is not useful for the task of face recognition.
For ASC, the Detection and Classification of Acoustic Scenes and
Events (DCASE) 2018, 2019 and 2020 datasets include device and
city labels for their acoustic scene data recordings, enabling the use
of multi-block formulation. These labels act as separate sources of
linkage across different data blocks representing different acoustic
scene classes. In this work, domain is described as the common
linking factor present in all the blocks, and common and individual
feature extraction (CIFE) multi-block analysis method [33] is ap-
plied to remove this domain information. For acoustic scene clas-
sification, device and city information act as domain information.
Similarly, for device and city classification tasks, the acoustic scene
information acts as domain information. This work aims to learn
representations where the domain information is suppressed, and
discriminative information is enhanced.
The key contributions of this paper are summarized as follows:

(1) This work presents a multi-block formulation of acoustic scene
data where the data corresponding to different acoustic scene
classes constitute different blocks and the recording conditions
(city and device) of these acoustic scene classes provide a com-
mon source of association between these different blocks.
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(2) Two methods for constructing a multi-block matrix are pre-
sented. In the first formulation, acoustic scene data from all
devices or cities are considered together to form a multi-block
matrix. In the second formulation, acoustic scene data from
different devices or cities are considered separately to form
multiple multi-block matrices (one corresponding to each de-
vice or city).

(3) The multi-block formulation results in the construction of dis-
criminative acoustic scene representations which in turn im-
proves the accuracy of an ASC system. The multi-block for-
mulation is also applied to the auxiliary tasks of device classi-
fication and city classification [3] using acoustic scene data.

The remainder of this manuscript is organized as follows: In sec-
tion 2 a few subspace-based methods for ASC are briefly reviewed.
The multi-block formulation for ASC data along with the compre-
hensive overview of the common and individual feature extraction
framework and Common Orthogonal Basis Extraction algorithm
are described in section 3. Section 4 presents the experimental de-
tails. Finally, the conclusion is presented in section 5 of the paper.

2. RELATED WORK
Several subspace-based methods have been proposed in the acous-
tic scene literature. Notably, the authors in [5] demonstrate the ef-
fectiveness of unsupervised features derived from matrix factor-
ization techniques like Principal Component Analysis (PCA) and
Non-negative Matrix Factorization (NMF) [30] for acoustic scene
classification. The same work also investigates the performance of
the sparse [8], kernel [31] and convolutive [19] variants of these
methods. Authors in [5] also, focus on learning dictionary elements
from spectrograms of training data and use the features obtained by
projecting data onto the learned dictionary for classifying different
acoustic scene classes. Another work of the same authors [6] is built
upon a supervised matrix factorization method called task-driven
dictionary learning (TDL) [16], where a non-negative formulation
of TDL is proposed for ASC.
Another form of subspace-based methods are the multi-block anal-
ysis methods which include canonical correlation analysis (CCA)
[12]. CCA maximizes the correlation between random variables.
For classification tasks, these methods have been widely used in
computer vision [24], natural language processing [22] and speech
processing [1]. In this paper, an attempt is made to formulate the
classification of various acoustic scene classes as a multi-block
problem by using the CIFE framework [33]. A related method is
nuisance attribute projection or NAP which attempts to remove un-
wanted (or nuisance) components through projections [23]. NAP
has been used earlier [27] for ASC, though in a different context.
Recently, some works like [25] in ASC have addressed the presence
of differing recording conditions such as recording cities and de-
vices in the acoustic scene data. Typically, data augmentation meth-
ods such as random temporal cropping [17] [13], mixup [32], spec-
trum correction [14], and specaugment [20] are effective in coun-
tering variations due to recording devices. To address variations due
to difference in recording cities authors in [3] applied a multi-task
learning framework, while [4] used a convolutional neural network
(CNN)-based classifier. The task of city classification based on au-
dio has evolved from acoustic scene classification [4, 15], but has
remain relatively underexplored.

3. MULTI-BLOCK FORMULATION
Real-world data often occurs in the form of multiple block ma-
trices either implicitly or explicitly. For instance, a single matrix

B = [B1B2 · · ·BC ] can be constructed by concatenating multi-
ple linked block matrices Bc ∈ Rd×NBc where c ∈ [1 · · ·C] de-
notes the block index. Here each column of Bc represents a d-
dimensional example and there are NBc such examples. The ex-
istence of a common link between the block matrices allows the
application of multi-block analysis methods. The common and in-
dividual feature extraction (CIFE) [33] framework exploits such
structure. As a part of this framework, Common Orthogonal Basis
Extraction (COBEC) algorithm is used to compute the representa-
tion of this common linkage, termed as common basis. The com-
mon basis represented by D∈Rd×k (k denotes number of common
components) is obtained by applying COBEC on B as described in
Algorithm 1. Basically, the optimal D is estimated by performing

Algorithm 1 COBEC Algorithm
Input : B = [B1B2 · · ·BC ] (multi-block matrix),

k (number of common components)
Output: D (common basis)
(1) QR decomposition on Bc = QcUc

where Qc ∈ Rd×d, Uc ∈ Rd×NBc and c ∈ [1 · · ·C].
(2) Randomly initialize Zc ∈ Rd×k

(3) while until convergence do
(4) P =

∑
c QcZc

(5) [E,Λ,V] = tSVD(P, k) // truncated SVD

(6) D = EVT

(7) Zc ← QT
c D

(8) end while
(9) return D

QR decomposition on each block matrix Bc, followed by truncated
singular value decomposition (tSVD) and iterative updates with re-
spect to a randomly initialized matrix Zc. The readers are referred
to [33] for more details about the algorithm.
The obtained common basis is used to segregate each block matrix
Bc into its common and specific matrix components as:

Bc = Cc + Sc (1)

where Cc ∈ Rd×NBc contains the common features and Sc ∈
Rd×NBc contains the specific features. The splitting of each block
matrix Bc is performed as per the following steps:

(1) The common matrix Cc which contains the common features
corresponding to block matrix Bc is determined by using D as
an orthogonal projection matrix:

Cc = D(B⊺
cD)⊺ (2)

(2) The specific matrix Sc containing the specific features is ob-
tained by subtracting the common matrix Cc from the block
matrix Bc which contains the original features:

Sc = Bc −Cc (3)

Compared to the common matrix Cc, the specific matrix Sc con-
tains the discriminating information and is therefore better suited
for the task of classification.
Two variants of the multi-block formulation all-domains-multi-
block formulation and domain-wise-multi-block formulation are
now presented, in which the multiple block matrices are connected
through a common source of linkage or belong to the same domain.
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Dataset Cities Devices

DCASE 2018 Subtask A
Barcelona, Helsinki, London, Paris, Stockholm,

Vienna
Device A (Soundman OKM II Klassik/studio A3)

DCASE 2018 Subtask B
Barcelona, Helsinki, London, Paris, Stockholm,

Vienna

Device A, Device B (Samsung Galaxy S7), and

Device C (iPhone SE)

DCASE 2019 Subtask A
Barcelona, Helsinki, London, Paris, Stockholm,

Vienna, Lisbon, Lyon, Milan, Prague
Device A

DCASE 2019 Subtask B
Barcelona, Helsinki, London, Paris, Stockholm,

Vienna, Lisbon, Lyon, Milan, Prague
Devices A, B and C

DCASE 2020
Barcelona, Helsinki, London, Paris, Stockholm,

Vienna, Lisbon, Lyon, Milan, Prague

Devices A, B, C and 6 simulated devices

namely : S1, S2, S3, S4, S5, S6

Table 1. : Overview of Detection and Classification of Acoustic Scenes and Events (DCASE) datasets

3.1 All-domains-multi-block formulation
Different examples from all domains can be rearranged in the form
of multiple blocks as presented in figure 1. A multi-block matrix B
is constructed by concatenating C block matrices as follows:

B = [B1 B2 · · · BC ] (4)

where each block matrix Bc corresponds to the cth class and C
is the total number of classes. In this formulation, the columns of
each block matrix contain the data domain-wise as:

Bc = [B1
c B2

c · · · BL
c ] (5)

where Bl
c ∈ Rd×N

Bl
c corresponds to the data of the cth class for the

lth domain, l ∈ [1 · · ·L] where L is the total number of domains.
It is assumed that the common basis D, learnt from the multi-block
matrix B contains the domain information (pertaining to all do-
mains) present across the data of multiple classes. Thus, D rep-
resents the domain information that is not helpful for the classifica-
tion task.
Using D, the common feature matrix Cc is computed as described
in equation 2. These common features are then subtracted from
each block matrix Bc to obtain a specific matrix Sc as described
in equation 3; thus the specific features are computed by subtract-
ing the domain information from each block matrix. After this, the
columns of Sc represent the examples with reduced domain infor-
mation; which presumably reduces the difficulty in the classifica-
tion task.

3.2 Domain-wise-multi-block formulation
A natural extension of the above formulation would be to construct
multi-block matrices for each domain separately by making use of
the domain labels; it can be considered as a more fine-grained ver-
sion of the above formulation. Figure 2 shows the multi-block con-
struction for this formulation in which a set of common basis is de-
termined for each domain separately. Thus, the domain-wise-multi-
block formulation is the all-domains-multi-block formulation re-
peated L times, with each multi-block matrix containing the data
of one domain only.
A multi-block matrix Ll is constructed for each domain as follows
:

Ll = [Bl
1 Bl

2 · · · Bl
C ] (6)

where Ll ∈ Rd×NLl and NLl is the number of examples across all
the classes from the lth domain.
Corresponding to every Ll multi-block matrix, a set of common
basis Dl ∈ Rd×k is obtained which represents the lth domain. The
CIFE framework splits each block matrix Bl

c into its common and
specific counterparts as:

Bl
c = Cl

c + Sl
c (7)

where Cl
c corresponds to the common features containing the do-

main information and Sl
c corresponds to the specific features which

contain the class information. The specific features Sl
c are obtained

as:

Sl
c = Bl

c −Cl
c (8)

where Cl
c is obtained via orthogonal projection similar to equation

2. Thus, Cl
c does not provide any useful information for classifica-

tion, but Sl
c contains the discriminative information that is vital for

the task.

4. EXPERIMENTAL EVALUATION
This section presents the experimental details and results for clas-
sification using the multi-block formulation. It begins with an
overview of the datasets used and a description of the feature ex-
traction process. Subsequently, results are outlined for three related
tasks: acoustic scene classification, recording device classification,
and recording city classification. The baseline and proposed sys-
tems are then described, followed by an analysis of the results and
additional insights.

4.1 Dataset Description
The experiments were conducted using five datasets from the De-
tection and Classification of Acoustic Scenes and Events (DCASE)
challenges, spanning the years 2018 to 2020 and encompassing
Subtasks A and B. These datasets contain audio recordings from
ten distinct acoustic scenes: ‘airport (air)’, ‘metro’, ‘metro station
(m-st)’, ‘bus’, ‘park’, ‘tram’, ‘street traffic (s-tr)’, ‘street pedestrian
(s-ped)’, ‘public square (p-sq)’ and ‘shopping mall (s-mall)’. Over
the years, the datasets have increased in complexity, incorporating
a broader range of cities and recording devices.
Additionally, these acoustic scenes can be grouped into three
broader categories: indoor, outdoor, and vehicle. The vehicle cat-
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(Class 1) (Class 2) (Class    )

COBEC

Common
Basis

Multi-block
Matrix

Fig. 1: All-domains-multi-block formulation; each block Bc contains data from one class and different colors in each block represents data
from different domains. For example, in context of acoustic scene classification, different blocks correspond to different acoustic scenes and
different colors in each block represent the common information pertaining to all cities, which we aim to suppress.

Class 1 Class 2 Class 

(Domain 1)

(Domain 2)

(Domain L)

COBEC

Common
Basis

COBEC

COBEC

Fig. 2: Domain-wise-multi-block formulation; each multi-block matrix Ll

distinguished by different colors represents data from a single domain.
Within each multi-block matrix, separate block matrices Bl

c represent data
for separate classes. For example, in context of acoustic scene classifica-
tion, different multi-block matrices represent data from different cities and
the common information is learned separately for each city.

egory includes bus, tram, and metro scenes; the indoor category
consists of airport, metro station, and shopping mall; and the out-
door category includes park, public square, street pedestrian, and
street traffic.
A detailed overview of the datasets, including the cities covered
and devices used, is provided in table 1. DCASE 20181, and 20192

datasets primarily focus on recordings from a smaller set of de-
vices, while DCASE 20203 introduces additional simulated de-
vices, making it more complex dataset as compared to 2018 and
2019.

4.2 Feature Extraction
The experiments are performed using Patchout faSt Spectrogram
Transformer (PaSST)4 as a frozen feature extractor. PaSST has the
transformer-based architecture and is an optimized version of the
Audio Spectrogram Transformer (AST) [10], pre-trained on Ima-
geNet [7] and fine-tuned on the Audioset [9] dataset. The network

1https://dcase.community/challenge2018/index
2https://dcase.community/challenge2019/index
3https://dcase.community/challenge2020/task-acoustic-scene-
classification
4https://github.com/kkoutini/PaSST

takes a raw audio signal as input and returns a feature vector of di-
mension 768. These feature representations are referred as original
features in the subsequent sections.
As mentioned previously, that DCASE dataset has labels for acous-
tic scene, city, and device, allowing for three separate classifica-
tion tasks: acoustic scene classification, device classification, and
city classification. This structure also enables both all-domains and
domain-wise multi-block approaches, where the domain can be
chosen based on the task at hand. For example, in acoustic scene
classification, the recording device or city can be considered as the
domain.
Subsections 4.3.1 and 4.3.2 cover acoustic scene classification with
device and city as domains, while subsections 4.4 and 4.5 describe
device and city classification tasks by considering acoustic scene
as the domain. The multi-block formulations capture and subse-
quently remove domain information to refine the discriminative
features for the respective classification tasks. The features ob-
tained by using multi-block formulations are referred to as specific
features as per equations 3 and 8.

4.3 Acoustic Scene classification (ASC)
For ASC, the recording device and city information act as con-
founding factors and negatively impact the classification perfor-
mance. To address this, the confounding factors are considered as
domains and multi-block formulations are applied to learn the bases
representing the domain information present across different acous-
tic scenes. In subsection 4.3.1, the problem of ASC is framed with
device as domain, while subsection 4.3.2 frames it using city as
domain.

4.3.1 Device as domain. For this scenario, the different record-
ing devices are considered as different domains and all-devices and
device-wise multi-block formulations are used to learn informa-
tion pertaining to recording devices, which is not useful for clas-
sification. In the former formulation, the multi-block matrix B is
constructed by concatenating data from all devices, facilitating the
learning of a common basis D that captures the information per-
taining to all devices. In contrast, the latter formulation, constructs
separate multi-block matrices and learns basis Dl for each device
separately.
Table 2 presents the ASC results for DCASE 2018 Subtask B,
2019 Subtask B, and DCASE 2020 datasets using both original and
specific features. Original features don’t use multi-block formula-
tions, while specific-all-devices and specific device-wise features
are obtained using all-domains and domain-wise multi-block for-
mulations respectively. The number of domains (L) is set to 3 for
2018, 2019 and 6 for the 2020 dataset. The values for number of
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common components (k) are chosen through validation data and
are mentioned with the classification results in table 2.

4.3.2 City as domain. Similar to devices, recording cities also in-
troduce variations in the acoustic scene data. City information is
extracted using both multi-block formulations. This information is
then removed from the original features to construct specific-all-
cities features using the all-domains method and specific-city-wise
features using the domain-wise formulation. Table 2 presents the
results obtained using original, specific-all-cities and specific-city-
wise features for DCASE 2018 Subtask A, 2019 Subtask A and
2020 datasets. When city is considered as the domain, the optimal
value of k is determined using validation data, with L set to 6 for
the 2018 dataset and 10 for the 2019 and 2020 datasets.

4.4 Device Classification
Acoustic scenes captured with different recording devices contain
device-specific characteristics. For device classification, the acous-
tic scene information can be considered as a source of variation.
Multi-block formulations can be applied to minimize scene-specific
similarities by viewing acoustic scenes as domains and considering
data from different devices as different blocks.
The results for device classification using original, specific-all-
scenes, and specific-scene-wise features are shown in Table 2, for
the DCASE 2018 Subtask B, 2019 Subtask B, and 2020 datasets.
The values k = 10 and L = 10 were chosen for all datasets, with
L corresponding to the number of domains, i.e., acoustic scenes.

4.5 City Classification
City classification is relatively new and a related task to ASC. Com-
pared to ASC this task is a harder problem as there are greater vari-
ations within the city data due to scene-specific similarities [11]. To
reduce these similarities, multi-block formulations can be used by
considering different acoustic scenes as different domains and data
corresponding to different cities as different blocks.
Removing acoustic scene information will result in features better
suited for city classification. The classification results using origi-
nal, specific-all-scenes, and specific-scene-wise features are shown
in Table 2, for the DCASE 2018 Subtask A, 2019 Subtask A, and
2020 datasets. L is fixed to 10, and k is arbitrarily set to 10, as city
classification is considered an auxiliary task.

4.6 Systems Description
For all three tasks, two systems are proposed: the first uses features
derived from the all-domains multi-block framework, and the sec-
ond uses features from domain-wise framework. The baseline sys-
tems for the respective tasks use original features and a deep neu-
ral network (DNN). The DNN architecture consists of two hidden
layers with 128 and 64 neurons each and ReLU activation func-
tion, and a classification layer with neurons equal to the number
of classes for each task. To ensure a fair comparison, the archi-
tecture, training hyperparameters, and validation data remain con-
sistent across both the baseline and proposed systems. The DNN
is trained using standard procedures, including categorical cross-
entropy loss and the ADAM optimizer.

4.7 Results and Discussion
The all-domains-multi-block formulation processes the training
data of all classes from all domains together. On the other hand, the
domain-wise-multi-block formulation processes the training data
of all classes for each domain separately. Each column in Sc as per

Fig. 3: t-SNE visualization of original features vs. specific-domain-wise
features. Figures (a) and (b) represent embeddings from the DCASE 2019
Subtask B test dataset, showcasing data from the scene ‘airport’, and two
devices distinguished by different colors. Figures (c) and (d) represent em-
beddings from the DCASE 2020 test dataset, presenting data from the scene
‘airport’ and three cities distinguished by different colors.

equation 3 represents a class example after reducing the informa-
tion pertaining to all domains whereas each column in Sl

c as per
equation 8 represents a class example with the information of a
single domain reduced. The multi-block formulation in this paper
utilized the domain information as the common link between the
various blocks. The following main inferences can be drawn from
the results obtained as per table 2:

(1) The use of specific features led to improved classification per-
formance for the primary task of acoustic scene classification,
as well as for the two secondary tasks of device and city clas-
sification. In the DCASE 2020 dataset, however, city classifi-
cation accuracy decreases slightly may be due to the increased
variability introduced by a wider range of devices, simulated
as well as real. Device classification could not be performed
on this dataset because the test data includes unseen devices.

(2) For ASC, using all-domains features resulted in a relative im-
provement of 3% on average as compared to the original fea-
tures. This observation is also supported by the t-SNE plot for
four acoustic scene classes of DCASE 2020 test data presented
in figure 4 which shows the formation of tight clusters for all-
cities and all-devices embeddings as compared to the original
features.

(3) Additionally, domain-wise features provide a further improve-
ment of 2% over all-domains features, which indicates the ef-
fectiveness of domain-wise embeddings. This improvement is
supported by the t-SNE plot in figure 3 which shows the re-
moval of city and device information from the original fea-
tures. This is evident from the intermingling of colors, indi-
cating the merging of devices and cities in the specific-device-
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Datasets
Acoustic Scene Classification Accuracy (%)

Device as Domain

Device Classification Accuracy (%)

Acoustic Scene as Domain

Original Specific-All-Devices Specific-Device-Wise Original Specific-All-Scenes Specific-Scene-Wise

DCASE 2018 SB 69.49 72.24 (k=5) 72.86 (k=10) 98.54 98.89 99.17

DCASE 2019 SB 68.96 71.72 (k=10) 72.14 (k=5) 97.42 97.87 98.37

DCASE 2020 57.95 61.35 (k=10) NA NA NA NA

Datasets
Acoustic Scene Classification Accuracy (%)

City as Domain

City Classification Accuracy (%)

Acoustic Scene as Domain

Original Specific-All-Cities Specific-City-Wise Original Specific-All-Scenes Specific-Scene-Wise

DCASE 2018 SA 71.13 72.95 (k=10) 74.70 (k=5) 47.02 49.44 51.35

DCASE 2019 SA 72.35 74.55 (k=10) 76.11 (k=5) 35.65 37.78 40.29

DCASE 2020 57.95 60.75 (k=5) 64.86 (k=5) 30.42 29.55 30.09

Table 2. : Comparison of classification results for different tasks across five DCASE datasets, with and without multi-block formulation.
‘Original’ denotes results without multi-block, while ‘Specific’ corresponds to the multi-block formulation. NA stands for not applicable as
DCASE 2020 dataset consists of unseen test devices.
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Fig. 4: t-SNE visualization of data for four acoustic scene classes namely: ‘metro’, ‘metro station’, ‘public square’ and ‘tram’ represented as
class 1 , 2 , 5 and 8 respectively for DCASE 2020 test data: (a) original features, (b) specific-all-cities, and (c) specific-all-devices.

Datasets
Classification Accuracy (%)

Proposed (Best) Other Methods

DCASE 2018 SA 74.70 77.5 [21] 71.2 [26]

DCASE 2018 SB 72.86 70.6 [21] 58.2 [18]

DCASE 2019 SA 76.11 76.8 [21] 70.5 [26]

DCASE 2019 SB 72.14 76.6 [25] 72.8 [21]

DCASE 2020 64.86 70.9 [25] 63.9 [29]

Table 3. : Comparison of classification performance of proposed systems
with other non-ensemble-based systems.

wise embeddings (Figure 3 (b)) and the specific-city-wise em-
beddings (Figure 3 (d)) respectively.

(4) In comparison, the device variation is better reduced than the
city variation, as the improvement using device as the domain
is slightly more than with city as the domain for the respective
datasets.

Table 3 compares the performance of multi-block formulations
with systems of similar complexity and ASC systems based on non-
ensemble methods such as those proposed in [21], [26], [18], [25]
and [29]. For some cases, the proposed systems provided better
performance while for some it provided comparable performance.
Furthermore, figure 5 (a) represents the confusion matrix for
domain-wise-multi-block formulation using city as the domain for
DCASE 2020 dataset. An observation is made that the model ex-
hibits difficulty in distinguishing certain classes. For instance, the
‘street traffic (s-tr)’ category is often misclassified as ‘public square
(p-sq)’ or ‘park’. Similarly, the ‘bus’ class is frequently confused
with ‘tram’ or ‘airport (air)’. Among all categories, ‘park’ achieves
the highest classification accuracy, while ‘bus’ records the lowest.
Figure 5 (b) displays the classification performance at a higher cat-
egorical level (see section 4.1 for grouping criteria), revealing that
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Fig. 5: 10-class confusion matrix (top panel) and 3-class confusion matrix
(bottom panel) for the proposed domain-wise-multi-block formulation us-
ing city as the domain for DCASE 2020 dataset.

the system has greater difficulty in differentiating vehicle acoustic
scenes as compared to indoor and outdoor ones.

5. CONCLUSION
In this paper, it is demonstrated that multi-block formulations
can be used to remove unwanted domain information, and hence
improve the classification performance. The domain information
present in DCASE data formed the common link between the mul-
tiple blocks. Using domain-wise information provided improve-
ments over information about all-domains. Both these formulations
outperformed the baseline systems, and are comparable to systems
of similar complexity. For the domain-wise-multi-block formula-
tion, it is assumed that the domain of the test example is known at
the test time. Out of all the DCASE datasets, DCASE 2020 proved
to be most challenging as it contained data from unseen recording
devices as well.
The scope of this work is limited to mitigate domain information
from either city or device at a time. As part of future work, it is
planned to use the proposed methods for simultaneously suppress-
ing the domain information from both types of domains.
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