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ABSTRACT 
Polarimetric Synthetic Aperture Radar (PolSAR) data 

collection has evolved considerably over the years. Access to 

PolSAR data was initially limited due to its high cost, but now 

an increasing amount of free data is available, greatly 

advancing progress in the field. PolSAR, a microwave remote 

sensing technology, provides invaluable insights into Earth's 

surface through the analysis of polarimetric properties of radar 

signals. PolSARPro and SNAP are widely utilized free and 

open-source software programs developed by the European 

Space Agency (ESA). They include a few classifiers like 

Wishart (in PolSARPro), Support Vector Machine (in 

PolSARPro) and Random Forest (in SNAP). However, these 

programs have some limitations like they can only apply one 

classifier at a time for a specific area, and in PolSARPro, 

classifiers can be applied on coherency [T3] or covariance 

[C3] matrices, not on stacked decomposed images or various 

features. Additionally, these software tools do not support 

parallel computing. To address these issues a new user-

friendly GUI-based tool: MATSAR, is proposed to make 

PolSAR data processing easy for everyone from experienced 

researchers to novices. By integrating advanced processing 

capabilities with an intuitive interface, MATSAR aims to 

facilitate broader and more effective utilization of PolSAR 

data, offering a solution to the current limitations faced in the 

field. 
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1. INTRODUCTION 

Remote sensing remotely collects Earth surface data with 

airborne or spaceborne sensors and consists of Optical and 

Microwave Remote Sensing. Microwave Remote Sensing, 

unlike optical methods, operates in all weather conditions by 

penetrating dust and clouds. Synthetic Aperture Radar (SAR) 

produces high-resolution images by simulating a large antenna 

along its trajectory, while Polarimetric SAR (PolSAR) 

provides an extension to SAR by transmitting and receiving 

signals in various polarizations, perceiving more surface 

characteristics. PolSAR data processing requires special 

software like PolSARPro and SNAP (ESA), in addition to 

software like MIDAS (ISRO) and libraries like pyroSar, 

SARsen, and SARpy for Python. But PolSARPro only 

supports classification of coherency (T3) and covariance (C3) 

matrices using Wishart and SVM classifiers only, while SNAP 

provides more classifiers like Random Forest, KNN, KDTree 

KNN, Maximum Likelihood, and Spectral Angle Mapper. 

Machine learning has been utilized by some researchers for 

PolSAR classification, like Decision Trees, which have been 

used on SAR data [1][2], and Random Forest [3], which 

outperformed decision trees for crop identification. Neural 

networks and fuzzy logic have also been utilized [4][5][6] and 

SVMs for land cover mapping [7][8]and Fuzzy SVM, an 

extension of conventional SVM [9] introduced a generalized 

ML model which avoids feature extraction and is suitable for 

use in multiple geographic areas. To overcome current 

limitations, MATSAR is introduced as an advanced classifier 

tool, which classifies coherency (T3), covariance (C3) 

matrices, stacked decomposed images, and other 

characteristics like texture. It offers comparative investigation 

between decomposition techniques and ML classifiers with 

hyperparameter tuning. MATSAR can be parallel processed 

and GPU-accelerated and speeds up the computation to a 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.3, May 2025 

24 

great extent. With classifiers such as SVM, Random Forest, 

Decision Tree, and ANN. 

2. DATASET AND GROUND TRUTH 
The paper utilizes ALOS PALSAR-2 data for Mumbai city. 

Table 2 details the data specifications. Mumbai is an island 

connected to Thane district and bordered by the Arabian Sea. 

The city’s elevation ranges from 10 m to 15 m, averaging 14 

m, with its northern region reaching up to 450 m in height.  

The field work of Mumbai was carried out by authors in May 

2024, it shows that there are no major changes in the 

geographical region of Mumbai as compared to 2015 [10]. 

This was confirmed by comparing it with the ground truth 

taken in 2015. Figure 1 shows PauliRGB image obtained from 

ALOS PALSAR-2 Mumbai image acquired on 5 March 2015 

with ground truth information. The PauliRGB images and 

corresponding photographs taken during the field work along 

with latitude and longitude are shown in Figure2 Mangroves 

(Lat 19.23432° Long 72.822409°) are located on the banks of 

Gorai Creek.  

 
Figure 1: ALOS PALSAR-2 Mumbai image acquired on 5 

March 2015 (19.0760° N, 72.8777°E) 

 

Table 1: Current Software in the field of PolSAR Data Processing 
SOFTWARE USED FOR PolSAR DATA PROCESSING 

SOFTWARE FEATURES ADVANTAGES LIMITATIONS 

PolSARPro Supports various data formats. (e.g., 

ALOS, RADARSAT). 

Efficient processing for large 

datasets.  

Commercial software with licensing 

costs. (Lee et.al, 2008) 

Time series analysis capabilities. Leverages the power of GPUs. (Lee 

et.al, 2008; Cloude et.al, 2010) 

Limited processingcapabilities for non-

polarimetric data. (Cloude et.al,2010) 

SNAP User-friendly interface with various 

plugins. 

Open-source and free to use. 

 

May require scripting knowledge for 

complex workflows.  

Supports multi-mission data. Limited advanced processing 

capabilities for polarimetric data. 

MIDAS Extensive visualization and analysis 

tools. 

Flexible and customizable platform 

for various image processing tasks.  

 

Steeper learning curve compared to 

user-friendly GUI-based software. 

Supports integration with external 

software. 

Requires programming knowledge for 

advanced functionalities.  

Pyro SAR is an object-oriented Python library designed for 

intuitive workflows, offering efficient processing for large 

datasets and leveraging GPU power. However, it requires 

familiarity with object-oriented programming and has fewer 

built-in functions compared to SARpy. SARsEN, an open-

source and free library, provides a user-friendly interface for 

common SAR tasks and integrates well with scientific Python 

libraries. Despite this, it has limited capabilities for advanced 

polarimetric and interferometric processing and may require 

coding for complex workflows. SARpy supports various data 

formats and offers extensive functionalities for SAR 

processing, but it has a steeper learning curve and can be 

computationally demanding for complex tasks on limited 

hardware.

Table 2: Dataset used 

 

Area Sensor Date of Acquisition Band Polarization Resolution 

Mumbai ALOS PALSAR-2 05 March 2015 L-Band Quad 8.7m x 5.3m 
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 (a) Pauli RGB Image  (b) Photograph During Field Work 

Figure2: Mangroves at Gorai Creek (Lat 19.23432° Long 72.822409°) 

3. GRAPHICAL USER INTERFACE 

As shown in Figure3, the interface includes various buttons, 

figures, input box and checkboxes. Initially, the user uploads 

the PolSARPro generated PauliRGB image by clicking on the 

‘Upload’ button. Subsequently, the user is prompted to select 

the data file and enter the number of classes. 

Upon clicking the ‘Input’ button, a dialog box appears, 

instructing the user to input the number of training areas and 

assign a color to each class. Following this, the user can select 

the option of ‘ROI’, leading to a pop up of the PauliRGB 

image for selecting subsequent training areas. The validation 

button helps the user to select ROI for test accuracy, here the 

user is also asked by the directory where he would like to save 

classified image files once all the training and testing ROI is 

selected. The next step involves choosing classifiers; users can 

select single or multiple classifiers by checking the 

corresponding boxes. The results will be displayed adjacent to 

each other for easier comparison.  

For accuracy assessment, two buttons are provided for each 

training and testing accuracy. Features like Confusion Matrix, 

Accuracy, Precision, Recall and F1 score are provided. 

Fig3presents the conceptual framework of the final interface; 

Fig 4 shows the application interface. 

4. METHODOLOGY 
The objective of MATSAR is to give users or researchers the 

option to apply more non-parametric classifiers, the ability to 

classify the decomposed images, and provide comparative 

analysis—creating an add-on support for PolSARPro and 

SNAP. This tool is designed to be flexible and accessible, 

enabling researchers to explore different decomposition and 

classification techniques without being restricted to a single 

approach. 

Initially, the PolSAR data is processed using PolSARPro, 

which includes standard preprocessing steps such as 

calibration, speckle filtering, and matrix generation. In this 

work, Lee Refined filter (3×3 window) is used to reduce 

speckle noise and obtain a filtered [T3] coherency matrix, 

which serves as a fundamental input for further decomposition 

and classification. 

On this filtered [T3] matrix, various decomposition techniques 

are applied, including: 

1. Gulab Singh 4-component (G4U) decomposition 

2. Gulab Singh 6-component (6SD) decomposition 

3. Gulab Singh 7-component (7SD) decomposition 

4. Yamaguchi 3-component decomposition 

These decompositions provide insight into different scattering 

mechanisms and improve the feature representation of the 

data. The output files of these decompositions, along with the 

filtered [T3] matrix and the corresponding PauliRGBimage, 

are saved in .bin format for further processing and 

classification. The PauliRGB image is particularly useful for 

visually inspecting the scene and selecting Regions of Interest 

(ROI) for training and validation. 

As illustrated in Figure 5, the workflow of MATSAR begins 

by uploading the [T3], decomposed files, and PauliRGB 

image into the GUI. The GUI is designed to be interactive and 

user-friendly. The PauliRGB image is displayed to assist the 

user in manually selecting ROIs based on visual interpretation 

and ground truth knowledge. The user is prompted to specify: 

1. The number of classes 

  
Figure 3: Framework Figure4: Interface 
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2. Number of training areas (ROIs) 

3. Name of each class 

4. Color code for visualization 

The ROI selection is crucial and assumes that the selected 

region entirely belongs to the respective class, relying on 

ground truth knowledge or prior information. Once the ROIs 

are defined, MATSAR extracts the corresponding pixel values 

from each stacked feature file (e.g., [T3], 6SD, etc.). These 

values are vertically concatenated and labeled, forming the 

training dataset in the shape of M × N, where M is the total 

number of pixels across all ROIs and N is the number of 

stacked features or channels (e.g., N=9 for [T3], N=7 for 

7SD). 

For classification, the user can select from a variety of 

machine learning classifiers implemented in the backend: 

1. Decision Tree (DT): Uses the Gini Index as a splitting 

criterion. The tree has no depth restriction, and pruning 

is disabled to preserve maximum detail. 

2. Random Forest (RF): Implements bagging with 50 trees, 

also using the Gini Index. This ensemble method helps 

reduce overfitting and improve generalization. 

3. Artificial Neural Network (ANN): A three-layer 

network (Input–Hidden–Output). The Input layer is 

dynamically set based on the number of input features. 

The Hidden layer has 20 neurons with a Log-

Sigmoidactivation function, and the Output layer uses 

a Linear activation function based on the number of 

classes. 

4. Support Vector Machine (SVM): Uses a Radial Basis 

Function (RBF) kernel and implements the one-vs-one 

coding scheme for multi-class classification. 

Due to the large volume of PolSAR data, training and 

prediction tasks can be computationally intensive when run 

sequentially. To address this, MATSAR is designed to 

leverage parallel computing using a Graphical Processing 

Unit (GPU). An algorithm detects the availability of a GPU on 

the host system. If a GPU is present, computations are 

offloaded to it; otherwise, the application defaults to running 

on the CPU. GPU acceleration significantly improves the 

speed of model training, prediction, and post-classification 

operations such as: 

 Color coding of the classified image 

 Element-wise operations 

 Reshaping and formatting output data for 

visualization 

MATSAR also includes a built-in interface for visual 

comparison of classifier outputs. Results from different 

classifiers are displayed side by side, enabling users to 

interpret and analyze classification performance with ease. 

Additionally, the application allows flexibility in choosing the 

classes to be compared, based on user interest. 

After classification, accuracy assessment is performed using 

both training and test regions. Standard metrics such 

as overall accuracy, per-class accuracy, and confusion 

matrix are generated to evaluate the performance of the 

selected classifier. These insights assist users in determining 

the best-suited classifier and decomposition combination for 

their specific application or dataset. 

This modular, extensible, and user-centric methodology 

allows MATSAR to serve as a powerful add-on for PolSAR 

image classification, giving users the freedom to explore, 

analyze, and compare multiple classification strategies 

efficiently. 
 

 

Figure 5: Flowchart for MATSAR 

 

Figure 6: RF Classification (Accuracy 93.73%) 

5. RESULTS 
Testing has been performed on ALOS PALSAR-2 L-band data 

of Mumbai. The classification is performed on the subset of 

Mumbai area for four classes namely settlement (C1), forest 

(C2), water body (C3) and mangroves (C4). The results are 

shown as follows for [T3] and various decompositions namely 

YAMA3, G4U, 6SD and 7SD with classifiers DT, RF, ANN 

and SVM. 

 

5.1 Coherency Matrix [T3]  
The results of the classification applied using RF have been 

shown in Figure6.Table 3 shows the performance metrics of 

[T3] when classified using the DT, ANN, RF and SVM 

classifiers. The highest overall accuracy, 97.90% is achieved 

when the [T3] is classified using the Random Forest followed 

by Decision Tree with 96.32%. 

 

Table 3:Performance Metrics  

[T3] Matrix 

Classifier Overall Accuracy (%) Precision Recall F1 Score Kappa Coefficient 

Decision Tree (DT) 93.21 0.994 0.996 0.995 0.992 

Artificial Neural Network (ANN) 93.73 0.975 0.965 0.970 0.953 

Random Forest (RF) 92.84 0.999 0.999 0.999 0.999 

Support Vector Machine (SVM) 87.69 0.983 0.894 0.936 0.965 
 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.3, May 2025 

27 

5.2 Yamaguchi 3-Decomposition 
The results of the classification applied using ANN have been 

shown in Figure7. Table 4: shows the performance metrics of 

YAMA3 when classified using the DT, ANN, RF and SVM 

classifiers. The highest overall accuracy, 93.25% is achieved 

when the YAMA3 decomposed image was classified using the 

Support Vector Machine followed by Random Forest with 

91.40%. 

Table 4: Performance Metrics (YAMA3 Decomposition Method)

 

Classifier Overall Accuracy (%) Precision Recall F1 Score Kappa Coefficient 

Decision Tree (DT) 93.65 0.977 0.973 0.975 0.976 

Artificial Neural Network 93.91 0.936 0.873 0.903 0.912 

Random Forest (RF) 92.75 0.844 0.962 0.899 0.894 

Support Vector Machine 93.83 0.998 0.998 0.998 0.998 

 

5.3 Gulab Singh 4-Decomposition  
The results of the classification applied using RF have been 

shown in Figure 8. Table 5 shows the performance metrics of 

G4U decomposed image when classified using DT, ANN, RF 

and  

SVM classifiers. The highest overall accuracy, 97.49% is 

achieved when the G4U decomposed image was classified 

using the Random Forest followed by Decision Tree with 

96.44%.

  

Figure7: ANN Classification (Accuracy 93.91%) Figure8:RF classification (Accuracy 96.14%) 

Table 5: Performance Metrics  

G4U Decomposition Method 

Classifier Overall Accuracy (%) Precision Recall F1 Score Kappa Coefficient 

Decision Tree (DT) 92.29 0.980 0.971 0.975 0.981 

Artificial Neural Network (ANN) 92.31 0.972 0.881 0.925 0.943 

Random Forest (RF) 96.14 0.882 0.672 0.763 0.889 

Support Vector Machine (SVM) 94.87 0.983 0.982 0.983 0.985 

5.4 Gulab Singh 6-Decomposition 
The results of the classification applied using SVM on 6SD 

have been shown in Figure9and Table 6 shows the 

performance metrics of 6SD decomposed image when 

classified using DT, ANN, RF and SVM classifiers. The 

highest overall accuracy, 96.52% is achieved when the 6SD 

decomposed image is classified using the Random Forest 

followed by Support Vector Machine with 95.74%. 

Table 6: Performance Metrics  

6SD Decomposition Method 

Classifier 
Overall Accuracy 

(%) 
Precision Recall F1 Score Kappa Coefficient 

Decision Tree (DT) 95.88 0.999 0.998 0.998 0.994 

Artificial Neural Network (ANN) 96.55 0.983 0.978 0.980 0.970 

Random Forest (RF) 96.77 0.995 0.996 0.995 0.992 

Support Vector Machine (SVM) 97.16 0.996 0.992 0.994 0.971 

 

5.5Gulab Singh 7-Decomposition 
The results of the classification applied using SVM on 7SD 

have been shown in Figure10and Table 7 shows the 

performance metrics of 7SD decomposed image when 

classified using DT, ANN, RF and SVM classifiers. The 

highest overall accuracy, 96.07% is achieved when the 7SD 

decomposed image was classified using the Random Forest 

followed by Support Vector Machine with 94.09%.
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Figure9: SVM Classification (Accuracy 97.16%) Figure10: SVM Classification (Accuracy 98.05%) 

 

Table 7: Performance Metrics 

7SD Decomposition Method 

Classifier Overall Accuracy (%) Precision Recall F1 Score Kappa Coefficient 

Decision Tree (DT) 95.33 0.983 0.983 0.983 0.983 

Artificial Neural Network (ANN) 96.11 0.963 0.848 0.902 0.918 

Random Forest (RF) 97.34 0.921 0.888 0.904 0.918 

Support Vector Machine (SVM) 98.05 0.992 0.994 0.993 0.994 

5.6   Accuracy Analysis 
Table 8 (a), (b), (c) and (d) display a comparative study of the test 

accuracy obtained for Class 1 (Settlements), Class 2 (Forest), 

Class 3 (Water) and Class 4 (Mangroves) respectively.  

Table 9 compares the overall accuracy achieved from these 

classifiers when implemented on the decomposed images.

Table 8: Test Accuracy (%) 

(a) Class 1 – Settlements 

CLASSIFIERS 
DECOMPOSITION METHODS 

[T3] YAMA3 G4U 6SD 7SD 

DT 88.96 89.92 84.04 86.02 90.50 

ANN 89.53 90.09 84.23 91.19 91.12 

RF 74.69 88.63 89.55 88.11 94.72 

SVM 77.17 88.97 83.49 88.66 94.72 

(b) Class 2 – Forest 

CLASSIFIERS 
DECOMPOSITION METHODS 

[T3] YAMA3 G4U 6SD 7SD 

DT 90.08 91.17 85.50 97.50 90.83 

ANN 91.88 90.09 85.00 95.83 93.33 

RF 96.67 92.35 95.00 99.00 94.66 

SVM 77.17 92.98 96.00 100 97.50 

(c) Class 3 – Water 

CLASSIFIERS 
DECOMPOSITION METHODS 

[T3] YAMA3 G4U 6SD 7SD 

DT 100 100 100 100 100 

ANN 100 100 100 100 100 

RF 100 100 100 100 100 

SVM 100 100 100 100 100 

(d) Class 4 – Mangroves 

CLASSIFIERS 
DECOMPOSITION METHODS 

[T3] YAMA3 G4U 6SD 7SD 

DT 93.80 93.5 99.61 97.50 100 

ANN 93.51 90.01 100 95.83 100 

RF 100 93.27 100 100 100 

SVM 100 93.57 100 100 100 

 

Table 9: Overall Accuracy 

Overall Accuracy (%) 

CLASSIFIERS 
DECOMPOSITION METHODS 

[T3] YAMA3 G4U 6SD 7SD 

Decision Tree (DT) 93.21 93.65 92.29 95.88 95.33 

Artificial Neural Network (ANN) 92.84 93.91 92.31 96.55 96.11 

Random Forest (RF) 92.84 92.75 96.14 96.77 97.34 

Support Vector Machine (SVM) 87.69 93.83 94.87 97.16 98.05 

 

Table 10:Comparative Analysis of Classification Accuracy (%) for Various Target Decompositions Using Random Forest 

CLASSES 
DECOMPOSITION METHODS 

[T3] YAMA3 G4U 6SD 7SD 

Water 100 100 100 100 100 

Settlement 77.17 88.97 83.49 88.66 94.72 

Forest 77.17 92.98 96.00 100 97.50 

Mangroves 100 93.57 100 100 100 

Overall Accuracy 87.69 93.83 94.87 97.16 98.05 

 

As shown in Table 8 (a), a 7SD decomposed image when 

classified using the RF and SVM classifier gives the highest 

accuracy of 94.72% for settlements. From Table 8 (b), 6SD 

image when classified using SVM classifier gives the highest 
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accuracy (100%) for forest. It is also observed from Table 8 

(c) that the water class gives 100 % accuracy for all the 

classifiers and decomposition techniques. From Table 8 (d), it 

is observed that the highest accuracy obtained is 100.00% for 

Mangroves, when a YAMA3 decomposed image is classified 

using ANN and SVM classifiers.  

As shown in Table 9 7SD gives the highest classification 

accuracy (98.05%) when classified using SVM, followed by 

RF classifier (97.34%).The second-highest classification 

accuracy is achieved by 6SD when classified using SVM 

(97.16%) followed by RF (96.77%). 

Table 10demonstratesthe performance of SVM classifier on 

different decompositions. It is observed that for all classes 

except forest 7SD gives the highest accuracy and 6SD gives 

the highest accuracy for the forest class. 

6. CONCLUSION 
In conclusion, the development of MATSAR represents a 

significant advancement in the field of remote sensing. By 

offering a user-friendly interface and a comprehensive set of 

classifiers, the tool empowers both novice and expert users to 

analyze PolSAR data with ease and accuracy. The unique 

feature of simultaneous application of multiple classifiers 

enables efficient comparative analysis, facilitating informed 

decision-making in data interpretation. 

MATSAR, offers a user-friendly interface that allows users to 

choose any input data (such as [T3], [C3], or stacked features) 

and select one or multiple machine learning algorithms with 

ease. It also offers flexibility to adjust and fine-tune 

parameters for training and utilizing machine learning models. 

Users can apply multiple classifiers simultaneously using this 

tool on a particular geographical region for same training 

areas which helps them to do comparative analysis. These 

experiments have demonstrated the robustness and 

effectiveness of the tool on ALOS2-PALSAR Mumbai dataset 

and various classifiers for different target decomposition 

techniques. The result showsSVM emerging as a standout 

performer in terms of accuracy. Additionally, the superior 

performance of 7SD decomposition highlights the versatility 

of this tool in handling different data processing tasks. The 

tool’s support for parallel computing and the utilization of 

Graphics Processing Units (GPUs), significantly speeds up the 

processing time. This provides advantages over other free 

software available. 

The future scope of MATSAR holds promise for further 

enhancements, including the capability to process raw data 

formats directly and apply more machine learning classifiers. 

This development will streamline the data processing 

workflow and enhance the tool’s independence from existing 

software applications, thereby improving efficiency and 

usability. 

Overall, the machine learning based PolSAR data processing 

tool represents a valuable contribution to the remote sensing 

community, paving the way for advanced analysis and 

interpretation of PolSAR data in various applications ranging 

from environmental monitoring to disaster management and 

beyond. 
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