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ABSTRACT 

Dyslexic children faces many persistent challenges in learning 

Tonal languages such as Vietnamese, Chinese, Koeran where 

visual, phonetic, and orthographic components interact in 

complex ways. This paper introduces a new approach VALF 

(Vietnamese Adaptive Learning Framework), a novel 

educational AI prototype that uses Cellular Learning Automata 

(CLA) to generate adaptive multimedia content for Vietnamese 

language instruction. VALF integrates a reinforcement 

learning-driven virtual pen for character rendering, tone marker 

placement, and audio pronunciation to enhance learners' visual, 

auditory, and motor integration. Designed for primary school 

children with dyslexia, the system simulates personalized 

learning through games, quizzes, and pronunciation feedback. 

The proposed VALF model can also able to produce long texts 

and sentences using Vietnamese Word Generation algorithm. 

Main objectives of VALF’s efficacy is to promote literacy and 

self-confidence in dyslexic learners. Future work includes 

implementing VALF in gaming platform to support and 

integrate deep learning for natural speech synthesis and 

feedback. 

General Terms 

Artificial Intelligence, Cellular Learning Systems, Adaptive 

Learning, Reinforcement Learning, Language Learning. 

Keywords 

Vietnamese language learning, Educational AI, Reinforcement 

learning, Cellular Learning Automata (CLA), Dyslexia, 

Computer-assisted language learning (CALL), Adaptive 

learning systems, Child education technology, Multimodal 

learning, Tone-based script modelling. 

1. INTRODUCTION 
Language learning poses distinct challenges to children 

diagnosed with dyslexia, a neurodevelopmental disorder 

characterized by persistent difficulties in accurate and fluent 

word recognition, poor spelling, and decoding abilities. These 

challenges are amplified when learning tonal languages such as 

Vietnamese, where the integration of phonemic, orthographic, 

and tonal elements significantly impacts the readability and 

comprehensibility of written and spoken forms. Recent studies 

have underscored that adaptive digital learning systems driven 

by artificial intelligence (AI) can significantly enhance 

language acquisition among learners with special educational 

needs by providing personalized, responsive instructional 

environments. 

In response to this need, computer-assisted language learning 

(CALL) frameworks, underpinned by various machine learning 

methods, have seen increasing adoption. Among these, 

reinforcement learning (RL) methodologies stand out due to 

their ability to iteratively adapt content and learning 

interactions based on learner feedback, without dependence on 

extensive labelled datasets typically required by supervised 

learning techniques. One notable example is the Reinforcement 

Adaptive Learning Framework (RALF) introduced by 

Minoofam et al. [1], which utilizes Cellular Learning Automata 

(CLA), a form of reinforcement learning combined with 

cellular automata, for Persian language instruction tailored 

specifically to dyslexic children. Their study demonstrated that 

reinforcement learning frameworks significantly improved 

reading literacy and engagement among learners with dyslexia 

compared to conventional teaching methods, highlighting the 

promise of CLA-based adaptive learning systems. 

However, despite this promising development, few studies 

have explored the application of such adaptive reinforcement 

learning models to tonal languages—such as Vietnamese—

which present unique phonological and orthographic 

complexities due to their tone-dependent meaning structure. 

Vietnamese employs six distinct tonal markers, and slight 

variations in tone or orthographic structure can drastically alter 

meaning, adding complexity that substantially impacts 

language acquisition for learners with dyslexia. Thus, there is 

an acute need for specialized adaptive learning environments 

capable of effectively addressing these unique linguistic 

demands. 

To bridge this gap, the current study proposes the Vietnamese 

Adaptive Learning Framework (VALF), a novel CLA-based 

reinforcement learning model tailored explicitly to teaching 

Vietnamese to dyslexic primary school learners. VALF 

systematically extends the pioneering approach of RALF by 

incorporating the complexities of Vietnamese tones, character 

structure, and pronunciation. The system generates adaptive 

educational content dynamically, employing a virtual pen to 

illustrate precise character formation sequences, audio-visual 

feedback for tonal accuracy, and interactive games that 

reinforce the integrative skills of reading, writing, and 

speaking. 

This paper aims to evaluate the effectiveness of VALF through 

a simulated case study, analysing its potential in terms of 

learner engagement, skill acquisition, and instructional 

adaptability. By drawing on related literature from the domain 

of reinforcement learning in education [2], multimodal 

instructional technology [3], and adaptive systems for learners 

with special educational needs [4], we situate our work within 

a robust theoretical and practical context. 

The remainder of this paper is organized as follows: Section II 

reviews relevant literature on reinforcement learning 

applications in CALL and dyslexia-focused adaptive systems. 

Section III presents foundational concepts, including 

characteristics of the Vietnamese language, particularly tonal 

and orthographic structures, alongside the theoretical 
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underpinnings of Cellular Learning Automata. Section IV 

elaborates on the VALF system's architecture and adaptive 

content generation processes. Section V presents a simulated 

evaluation of VALF’s educational efficacy. Section VI 

discusses implications, challenges, and limitations, and Section 

VII provides concluding remarks and directions for future 

research. 

2. LITERATURE REVIEW 
In recent years, computer-assisted language learning (CALL) 

has become a key area of educational technology research, 

driven by the widespread integration of machine learning (ML) 

and artificial intelligence (AI) methods. These technologies 

significantly enhance learner engagement, personalize learning 

experiences, and improve educational outcomes. Particularly, 

reinforcement learning (RL), a subset of machine learning, has 

demonstrated exceptional potential for creating adaptive, 

personalized learning environments without the need for 

extensive labeled datasets [2]. Reinforcement learning’s 

capacity to dynamically adapt based on learner responses 

makes it particularly suitable for applications in special 

education contexts, including dyslexia intervention. 

2.1 Reinforcement Learning for Dyslexia 

Intervention 
The recent work by Minoofam et al. [1], which introduced the 

Reinforcement Adaptive Learning Framework (RALF), is 

particularly significant. RALF utilized Cellular Learning 

Automata (CLA), a specialized form of RL that integrates 

cellular automata with learning automata to generate adaptive 

Persian-language content specifically for dyslexic learners. 

This system adapted character generation, word formation, and 

sentence composition, significantly enhancing literacy and 

learner engagement compared to traditional classroom 

methods. Results indicated a near 27% improvement in 

learning performance among dyslexic children, demonstrating 

the substantial promise of CLA for targeted educational 

interventions. 

RALF's success was partly due to its innovative integration of 

visual, auditory, and interactive gaming elements, an approach 

supported by findings in educational multimedia research [3], 

[5]. The framework provided direct, immediate feedback and 

dynamic adjustment of difficulty, which proved particularly 

beneficial for dyslexic learners who commonly struggle with 

conventional educational techniques [4]. 

2.2 Computer-Assisted Tonal Language 

Learning 
However, tonal languages such as Vietnamese present 

additional complexity for learners, especially dyslexic children. 

Vietnamese orthography involves six distinct tones, with subtle 

pronunciation variations significantly changing meaning. 

Traditional CALL systems rarely address these specific 

phonetic and orthographic challenges comprehensively. 

Prior studies into CALL for tonal languages often focus 

primarily on Mandarin Chinese. For instance, Peng et al. [6] 

developed a 3D virtual talking head system for Mandarin 

learners, significantly improving pronunciation through visual-

auditory integration. Although highly successful, their 

approach relied on supervised learning, requiring extensive 

training datasets—something less feasible for resource-

constrained contexts or when developing systems for learners 

with special educational needs. 

 

2.3 Policy Gradient Methods 
Policy Gradient (PG) methods represent a fundamental class of 

reinforcement learning algorithms that aim to directly optimize 

the policy function, which maps states to action probabilities. 

Rather than estimating the value of each state-action pair as in 

value-based methods (e.g., Q-learning), PG methods learn a 

parameterized policy that maximizes expected cumulative 

reward by ascending the gradient of the performance objective 

with respect to policy parameters. 

Mathematically, the policy is typically represented as 

πθ( 𝑎 ∣ 𝑠 ) , where θ denotes the parameters of the policy 

network. The optimization objective is defined as 𝐽(θ) = 𝐸[𝑅], 
where R is the return obtained from following the policy πθ. 

Using the REINFORCE algorithm [7], the policy gradient can 

be estimated as: 

∇θ𝐽(θ) ≈ 𝐸[∇θ log πθ ( 𝑎 ∣ 𝑠 ) ⋅ 𝑅]           (1) 

The procedural steps of this method are illustrated in Figure 1. 

The diagram shows how the agent gathers training data by 

interacting with the environment during an episode. At the end 

of each episode, the observed rewards are used to compute the 

return, which is then utilized to compute the loss and update the 

policy network. This cycle continues for multiple epochs to 

refine the agent's behavior. 

 

Figure 1. Workflow of policy gradient reinforcement 

learning 

The agent gathers training data by interacting with the 

environment. After each episode, returns are computed using 

observed rewards. The policy network then computes the loss 

and updates its parameters to improve future performance. 

This approach is particularly beneficial in continuous or high-

dimensional action spaces where value-based methods may 

struggle. Policy gradient methods are widely applied in 

robotics, natural language generation, and complex decision-

making environments due to their flexibility and capacity to 

handle stochastic policies. 

However, in the context of adaptive educational systems such 

as VALF, which targets Vietnamese language learning for 

dyslexic children, the limitations of standard policy gradient 

methods become apparent. First, PG methods typically suffer 

from high variance in gradient estimates, leading to unstable 

learning. Second, they often require substantial amounts of 

interaction data, which is impractical in educational 

environments where learner time and cognitive load are 

constrained. Third, the lack of interpretability in neural policy 

representations poses challenges for educational stakeholders 

who require transparency in system behaviour. 

Given these constraints, VALF employs Cellular Learning 

Automata (CLA), a lightweight, interpretable reinforcement 

learning model that aligns well with the symbolic and spatial 

characteristics of Vietnamese script and tonal structure. Unlike 

policy gradient methods, CLA updates policies at the cell level 

through discrete actions and localized feedback, enabling fine-
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grained control over character rendering and tone placement 

while maintaining computational efficiency and explainability. 

This makes CLA a more pedagogically appropriate choice for 

developing personalized, accessible learning tools for dyslexic 

learners. 

2.4 Q-Learning 
Q-learning is one of the most widely used value-based 

reinforcement learning algorithms, originally proposed by 

Watkins in 1989 [8]. It is an off-policy temporal difference 

(TD) learning method that enables an agent to learn the optimal 

action-selection policy by estimating the value of state-action 

pairs, known as Q-values. The core idea of Q-learning is to 

iteratively update the Q-values using the Bellman equation: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾 max
𝑎′

𝑄 (𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]    (2) 

where: 

• s and a are the current state and action, 

• r is the reward received, 

• s' is the next state, 

• γ is the discount factor, 

• α is the learning rate. 

By repeatedly applying this update rule, the agent converges to 

the optimal policy, even without prior knowledge of the 

environment model. 

 
Figure 2. Working process of the Q-learning algorithm 

The agent iteratively updates the Q-table based on rewards 

received after performing actions in the environment. Over 

multiple iterations, the policy converges toward optimal 

behaviours. 

Q-learning has been applied in numerous domains such as 

robotics, game playing, recommendation systems, and control 

tasks [10], [11]. Its success is largely attributed to its simplicity, 

model-free nature, and guaranteed convergence under certain 

conditions [9]. 

However, Q-learning also presents several challenges when 

applied to complex or high-dimensional environments. It 

requires maintaining a Q-table whose size grows exponentially 

with the number of states and actions, making it impractical for 

large state spaces. This limitation has led to extensions such as 

Deep Q-Networks (DQN), which use neural networks to 

approximate Q-values [11]. 

In the context of educational applications like VALF, Q-

learning’s tabular formulation is not ideally suited for tasks 

involving structured symbolic representations such as 

Vietnamese orthography and tone placement. Additionally, Q-

learning assumes discrete action and state spaces, whereas 

educational content generation may involve more complex 

dependencies between visual, phonetic, and auditory elements. 

Given these constraints, VALF instead employs Cellular 

Learning Automata (CLA), which offers localized, explainable 

decision-making and better aligns with the spatial and symbolic 

structure of language learning tasks. 

2.5 Deep Q-Networks (DQN) 
Deep Q-Networks (DQN) represent a major advancement in 

reinforcement learning by combining Q-learning with deep 

neural networks to handle environments with high-dimensional 

or continuous state spaces. The concept was popularized by the 

seminal work of Mnih et al. [11], where a convolutional neural 

network (CNN) was used to approximate Q-values for playing 

Atari 2600 games directly from raw pixel input. 

In traditional Q-learning, a Q-table is used to store Q-values for 

all state-action pairs. However, this becomes infeasible in 

environments with large or continuous state spaces. DQN 

addresses this limitation by using a neural network 

parameterized by θ to approximate the Q-function: 𝑄(𝑠, 𝑎; θ). 

The network takes a state as input and outputs Q-values for all 

possible actions. 

Key innovations introduced in DQN include: 

• Experience Replay: A buffer stores transitions (s, a, 

r, s'), and the network is trained on random batches 

from this buffer, breaking correlations between 

sequential observations (Lin, 1992). 

• Target Network: A separate network is used to 

compute target Q-values, and its parameters are 

updated periodically, stabilizing training (Mnih et al., 

2015). 

The training objective in DQN minimizes the difference 

between the predicted Q-value and the target Q-value using the 

loss function: 

𝐿(θ) = 𝐸 [(𝑟 + γ max
𝑎′

𝑄 (𝑠′, 𝑎′; θ−) − 𝑄(𝑠, 𝑎; θ))

2

] (3) 

 where θ⁰ denotes the parameters of the target network. 
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Figure 3. Deep Q-Network (DQN) architecture and 

training process 

The agent interacts with the environment, storing transitions in 

the experience pool, which are sampled to train the eval 

network. A target network is periodically updated to stabilize 

training. 

DQN and its extensions—including Double DQN [13], 

Dueling DQN [14], and Prioritized Experience Replay [15]—

have achieved state-of-the-art performance in a wide range of 

tasks such as video game playing, robotic control, and 

autonomous navigation. 

Despite its success, DQN also faces challenges such as 

overestimation bias, sample inefficiency, and slow 

convergence. In educational applications like VALF, DQN’s 

complexity and lack of interpretability pose limitations. Since 

VALF emphasizes transparent, symbolic, and spatial learning 

for dyslexic students, using a black-box model like DQN may 

obscure the learning logic and hinder pedagogical trust. 

Instead, VALF leverages Cellular Learning Automata (CLA), 

which allows fine-grained, cell-level updates and visual 

traceability in educational contexts. 

2.6 Actor-Critic Methods 
Actor-Critic methods are a class of reinforcement learning 

algorithms that combine the benefits of both value-based and 

policy-based approaches. Instead of learning a value function 

or a policy in isolation, Actor-Critic architectures learn both 

simultaneously: the actor updates the policy function to select 

actions, and the critic evaluates the actions taken by estimating 

the value function [16]. The actor is responsible for learning the 

policy π(a|s; θ), which maps states to action probabilities, while 

the critic learns a value function 𝑉(𝑠; 𝑤)  or an action-value 

function 𝑄(𝑠, 𝑎;  𝑤) that provides feedback to improve the 

actor's policy. The two components are trained jointly using 

policy gradients and temporal difference (TD) errors. The 

policy is updated by ascending the gradient: 

          ∇θ𝐽(θ) = 𝐸[∇θ log π ( 𝑎 ∣ 𝑠; θ ) ⋅ δ]        (4) 

where δ = 𝑟 + γ𝑉(𝑠′; 𝑤) − 𝑉(𝑠; 𝑤) is the TD error estimated 

by the critic. Actor-Critic algorithms address some of the 

limitations of pure policy gradient methods (e.g., high 

variance) and pure value-based methods (e.g., poor 

exploration). Variants such as Advantage Actor-Critic (A2C), 

Asynchronous Advantage Actor-Critic (A3C) [17], Deep 

Deterministic Policy Gradient (DDPG) [18], and Soft Actor-

Critic (SAC) [19] have been successfully applied to continuous 

control tasks, robotics, and video game AI. 

 
Figure 4. Actor-Critic reinforcement learning architecture 

The actor selects actions based on a policy, while the critic 

evaluates the actions by estimating the value function. The 

advantage function computed as 𝐴(𝑠, 𝑎)  =  𝑄(𝑠, 𝑎)  −  𝑉(𝑠) 

is used to refine the policy updates. 

Despite their flexibility, Actor-Critic methods are 

computationally intensive, often requiring careful tuning and 

large amounts of training data. In educational applications like 

VALF, where transparency and low computational overhead 

are critical, the complexity of Actor-Critic models may be 

inappropriate. Moreover, their reliance on deep neural 

networks limits explainability—a key requirement when 

designing AI tools for learning-impaired students. 

Instead, VALF opts for Cellular Learning Automata (CLA), 

which offers transparent, grid-based learning suited to 

symbolic tasks like character construction, tone placement, and 

phonetic association in Vietnamese language learning. 

2.7 Proximal Policy Optimization (PPO) 
Proximal Policy Optimization (PPO) is a modern 

reinforcement learning algorithm that builds on the advantages 

of policy gradient methods while addressing their stability and 

efficiency issues. Introduced by Schulman et al. [20], PPO has 

become one of the most widely used algorithms in 

reinforcement learning due to its simplicity, robustness, and 

state-of-the-art performance across various domains. 

PPO belongs to the class of Actor-Critic methods but improves 

policy updates by limiting the change in policy between 

successive iterations, thereby avoiding performance collapse 

due to overly large updates. Unlike Trust Region Policy 

Optimization (TRPO), which relies on complex second-order 

optimization [21], PPO introduces a clipped surrogate 

objective: 

𝐿CLIP(θ) = 𝐸[min(𝑟𝑡(θ)∇θ,  clip(𝑟𝑡(θ), 1 − ϵ, 1 + ϵ)∇θ)](5) 

where 𝑟𝑡(θ) =
πθ( 𝑎𝑡∣∣𝑠𝑡 )

πθold
( 𝑎𝑡∣∣𝑠𝑡 )

, and ε is a hyperparameter 

controlling the update step size (typically 0.1 to 0.3). The 

clipping mechanism ensures conservative updates, improving 

training stability without compromising performance. PPO has 

been successfully applied to a wide range of tasks, including 

robotics, continuous control, and video game playing. It played 

a central role in the OpenAI Five system that achieved expert-

level performance in Dota 2 [22], and it is also the default 

algorithm in many reinforcement learning libraries such as 

Stable-Baselines3 and OpenAI Baselines [23]. 
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Figure 5. Workflow of Proximal Policy Optimization 

(PPO) 

The actor network samples actions from states to interact with 

the environment, while the critic estimates the Q-value to guide 

policy gradients. The advantage function is used to stabilize 

policy updates. 

Despite its performance, PPO still inherits some limitations of 

policy gradient methods, such as sample inefficiency and 

difficulty in interpretability. For educational applications like 

VALF, where model transparency and low-resource execution 

are priorities, PPO's reliance on neural network policies and the 

abstract nature of its update rules make it less ideal. 

VALF, therefore, adopts Cellular Learning Automata (CLA), 

which enables localized, rule-based learning better suited to 

structured, symbol-rich educational contexts like Vietnamese 

orthography. 

2.8 Deep Deterministic Policy Gradient 

(DDPG) 
Deep Deterministic Policy Gradient (DDPG) is an off-policy, 

model-free reinforcement learning algorithm designed for 

environments with continuous action spaces. Introduced by 

Lillicrap et al. [24], DDPG extends the deterministic policy 

gradient (DPG) method [25] by integrating deep neural 

networks and incorporating key techniques from Deep Q-

Networks (DQN), such as experience replay and target 

networks. 

Unlike stochastic policy gradient methods that output action 

distributions, DDPG learns a deterministic policy μ(𝑠; θ) that 

directly maps states to specific actions. The algorithm employs 

two neural networks: 

• Actor network μ(𝑠; θ): selects the action given a 

state. 

• Critic network 𝑄(𝑠, 𝑎;  𝑤): estimates the Q-value 

for a state-action pair. 

The actor is updated using the deterministic policy gradient: 

∇θ𝐽 ≈ 𝐸[∇𝑎𝑄(𝑠, 𝑎; 𝑤)|𝑎=μ(𝑠) ⋅ ∇θμ(𝑠; θ)]    (6) 

To improve learning stability, DDPG uses target networks μ' 

and Q', which are soft copies of the actor and critic networks 

and are updated slowly using a Polyak averaging technique: 

θ′ ← τθ + (1 − τ)θ′ (7) 

 

Figure 6. Architecture of Deep Deterministic Policy 

Gradient (DDPG) 

The actor (policy) network outputs deterministic actions, while 

the critic (value function) evaluates their quality using 

temporal-difference (TD) error. Updates are stabilized with 

target networks. 

DDPG has demonstrated strong performance in continuous 

control problems such as robotic manipulation, autonomous 

driving, and physics simulations. It has also laid the foundation 

for more advanced algorithms, including Twin Delayed DDPG 

(TD3) [26] and Soft Actor-Critic (SAC) [27]. 

However, DDPG is known to be sensitive to hyperparameters 

and exploration strategies, often requiring noise injection (e.g., 

Ornstein-Uhlenbeck process) for effective exploration. Its 

black-box neural architecture and training complexity make it 

less suitable for applications requiring transparency and low 

computational cost. 

In educational settings like VALF, where interpretability, 

robustness, and symbolic traceability are essential, DDPG’s 

deep and opaque learning process poses challenges. Instead, 

VALF adopts Cellular Learning Automata (CLA) to achieve 

transparent, rule-based, and symbol-sensitive reinforcement 

learning adapted to Vietnamese language education. 

Research Gap and Motivation 
Despite extensive studies in CALL for general language 

learning and reinforcement learning in special education, 

several significant gaps remain. First, no published studies have 

systematically investigated the application of reinforcement 

learning, particularly CLA-based adaptive systems, to the 

unique challenges of Vietnamese language learning. Second, 

while frameworks such as RALF have demonstrated the 

potential of CLA in dyslexia interventions, their extension to 

tonal languages remains unexplored. 

This research directly addresses these gaps. The Vietnamese 

Adaptive Learning Framework (VALF) aims to utilize CLA’s 

proven capabilities (as demonstrated by RALF) to tackle the 

phonetic, orthographic, and tonal complexities of Vietnamese, 

specifically targeting primary school-aged dyslexic learners. 

3. THE PROPOSED MODEL: 

CELLULAR LEARNING AUTOMATA 

BASED VIETNAMESE ADAPTIVE 

LEARNING FRAMEWORK 
This section introduces VALF model, a CLA-based 

reinforcement learning model specifically developed to support 

Vietnamese language acquisition among dyslexic primary 

school learners. VALF is designed as a modular system that 

integrates multiple sensory modalities—visual, auditory, and 

motor—through adaptive instruction. The framework 

combines Cellular Learning Automata (CLA) with a virtual pen 
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rendering engine, synchronized audio feedback, and 

personalized reinforcement strategies. 

3.1 Dyslexia and Vietnamese Language 

Learning process 
Very few adaptive computer-assisted language learning 

(CALL) systems specifically target Vietnamese language 

learning for dyslexic children. Duong and Vo [28] examined 

the use of online platforms to foster learner autonomy and 

enhance reading comprehension among Vietnamese EFL 

learners. Their findings suggest that digital tools can 

significantly improve students’ reading skills and promote 

autonomous learning behaviours. However, the platforms 

discussed lacked adaptive capabilities and did not employ 

reinforcement learning to dynamically adjust learning paths. 

Recent studies on dyslexia interventions further support the use 

of adaptive frameworks—particularly those that offer real-time 

feedback and interactive components—as a means of 

significantly enhancing both learner autonomy and educational 

outcomes. For example, Smith and Hattingh [29] conducted a 

systematic literature review highlighting the effectiveness of 

assistive technologies for students with dyslexia, emphasizing 

the value of responsive, individualized learning systems. 

Similarly, Taskov and Dushanova [30] demonstrated 

neurological benefits of visual training interventions for 

learners with dyslexia, reinforcing the importance of 

multimodal engagement in adaptive platforms. These insights 

suggest that integrating adaptive reinforcement learning (RL)-

based technologies specifically addressing the linguistic 

structure and tonal complexity of Vietnamese could 

significantly advance research and development in this domain. 

Doing so would allow for more inclusive educational 

technologies tailored to the cognitive profiles of learners with 

dyslexia in tonal language environments. 

3.2 Word Training 
The VALF system implements an adaptive word training 

mechanism based on Cellular Learning Automata (CLA) to 

support Vietnamese script acquisition among dyslexic primary 

school learners. This module simulates stroke-by-stroke 

character rendering using a virtual pen, synchronizing visual 

cues with auditory pronunciation to reinforce the phonological 

and orthographic structure of Vietnamese words. 

Algorithm: CLA- Vietnamese Word Generation(VWG) 

Inputs: Previous character, Main tone marks, Extension of 

characters as P,M,E respectively. 

Outputs: Graphical Shape of the Vietnamese characters    

begin                                                                                 

Define CA(state-set, current state,M,Prev.C,Next.C,P); 

Select relevant feature in M based on the current state 

Move forward based on P; 

Activate the cell near to the start corordinate in M 

while(an active state exists) do 

        choose an action according to the probabaility vector 

        announce the reward / penalty of the action; 

If (not the end of character) then, 

Go ahead by filling the corresponding feature pixel; 

end while 

end. 

3.2.1 Character and Tone Marker Generation 
Vietnamese script is built from Latin letters modified by 

diacritical tone marks. Each syllable consists of a consonant–

vowel–tone triplet, where the vowel carries one of six tones: 

ngang (level, unmarked), sắc (acute), huyền (grave), hỏi (hook 

above), ngã (tilde), or nặng (dot below) [31]. The CLA model 

initializes a two-dimensional lattice in which each cell may be 

active (drawing), inactive (background), or designated for tone 

overlay. Characters are deconstructed into sequential strokes, 

and CLA agents iteratively learn optimal stroke sequences 

through reinforcement signals guided by proximity to a 

reference template [32]. 

Tone markers, being non-linear visual components, are handled 

separately. Once the base letter is completed, the appropriate 

tone is rendered as an overlay above, below, or beside the 

vowel depending on the tone type. This layered rendering 

strategy enhances clarity and reduces perceptual confusion—

critical for dyslexic learners [31]. 

3.2.2 Virtual Pen Simulation 
A virtual pen simulates the motor dynamics of handwriting by 

traversing the CLA grid in real-time. Each movement (up, 

down, left, right) is decided by localized feedback from the 

environment. Correct actions are rewarded, while erroneous 

ones are penalized, reinforcing accurate stroke formation [32]. 

This animated pen helps learners internalize stroke order and 

letter structure through visual-motor coupling. Prior research 

indicates that tracing letters enhances memory encoding and 

activates multiple neural pathways in reading acquisition [33]. 

3.2.3 Pronunciation Integration 
As characters are rendered, VALF concurrently plays the 

word’s pronunciation using a built-in speech engine. When the 

entire syllable is formed, the full audio with appropriate tone 

inflection is replayed. This multimodal feedback integrates 

auditory and visual pathways, reinforcing the association 

between graphemes and phonemes. For dyslexic learners, such 

synchrony between sound and visual input enhances recall and 

comprehension [34], [35]. 

3.2.4 Procedural Learning Loop 
The training sequence in VALF follows a four-step loop: 

1. Display a target image or word prompt. 

2. Activate CLA-driven rendering of the character. 

3. Synchronize stroke rendering with audio 

pronunciation. 

4. Log learner response time, accuracy, and errors for 

adaptive feedback. 

This structure promotes both passive observation and active 

participation. By coupling sensory channels—visual, auditory, 

and kinaesthetic—VALF aims to develop robust letter-sound 

associations and spatial awareness essential for literacy. 

In summary, VALF generates each Vietnamese syllable 

through an incremental process: base characters are rendered 

stroke-by-stroke via CLA, tone markers are added in a 

secondary phase, and audio is synchronized throughout. This 

structured, multisensory approach aligns with evidence-based 

dyslexia intervention methods and supports enhanced learning 

outcomes in Vietnamese language acquisition. 

3.3 Lesson Selection 
The lesson structure in VALF is aligned with the Vietnamese 

national primary school curriculum for Grades 1 to 3, ensuring 

that instructional content is age-appropriate and pedagogically 

relevant [36]. Each unit corresponds to a thematic module—

such as family, animals, or school life—drawn from the official 
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Vietnamese language textbooks. These units introduce a 

progression of linguistic complexity, starting with basic 

consonants and vowels, followed by tone mark application, and 

eventually full syllable composition and simple sentence 

construction. This alignment ensures systematic coverage of all 

literacy skills required in the early primary years [36], [37]. 

Each lesson integrates multiple learning modalities to support 

dyslexic learners: 

• Contextual Imagery and Stroke Animation: 

Lessons begin with a relevant contextual image, 

followed by the animated rendering of Vietnamese 

words using a CLA-driven virtual pen. The system 

draws each letter and tone mark stroke-by-stroke 

along a horizontal writing line, helping students 

internalize character structure and tone placement 

[37]. 

• Vocabulary Lists and Sentences: The lesson 

interface displays vocabulary words and short 

example sentences. Key graphemes and tones are 

visually emphasized. Accompanying English 

translations or pictorial cues aid comprehension. 

Learners can tap any word or sentence to hear its 

correct pronunciation, supporting auditory 

reinforcement of written content [37]. 

• Synchronized Audio Feedback: As each character 

is procedurally generated, the system plays 

synchronized audio of the corresponding sound. This 

tightly couples the learner’s visual and motor 

attention with auditory feedback, strengthening 

grapheme-phoneme associations [37]. 

VALF employs a mastery-based progression system. 

Learners must first complete the instructional lesson before 

accessing associated exercises or quizzes. These components 

remain locked until the required content has been reviewed. To 

advance to the next unit, students must achieve a passing score 

(e.g., minimum accuracy threshold), which ensures 

comprehension before moving forward [37]. The system 

records key metrics such as response accuracy, latency, and 

attempt frequency. Based on this data, VALF can recommend 

repetition of weak areas or permit faster progression for 

mastered skills [37]. 

The interface is designed for ease-of-use and accessibility: 

• Bilingual Support: A toggle allows switching 

between Vietnamese and English labels, instructions, 

and prompts—beneficial for young learners and 

bilingual classrooms [37]. 

• Iconic Navigation: Interactive functions (e.g., 

lessons, games, quizzes) are represented using large, 

intuitive icons such as books, speakers, and pencils. 

This visual format minimizes cognitive load and 

enhances usability [37]. 

• Dyslexic-Friendly Design: The UI uses clean sans-

serif fonts, wide spacing, and high-contrast colors. 

Text instructions are supplemented with audio 

narration. The interface avoids excessive textual 

content, instead relying on imagery and speech, 

aligning with best practices in dyslexia support [37]. 

In summary, VALF's lesson selection system promotes 

structured, multimodal, and accessible learning. It leverages 

curriculum alignment, progressive unlocking, and real-time 

learner adaptation to support reading development in dyslexic 

children. 

3.4 VALF process as a Game Task 
In VALF, each learning task is implemented as a small 

interactive game to enhance engagement and promote 

multisensory learning. Learners participate in activities such as 

picture-to-word matching, drag-and-drop assembly of syllables 

or words, and multiple-choice quizzes focused on phonics and 

vocabulary. These mini-games are scored, often include a 

countdown timer, and reward players with stars or points for 

correct responses, transforming routine practice into a playful 

and goal-oriented challenge [38]. 

Real-time feedback is a core component of the exercise design. 

Correct answers are immediately reinforced through visual 

highlights and celebratory audio cues, while incorrect 

responses prompt instant correction or encouragement (e.g., 

color change with a gentle prompt to retry) [38]. To support 

learners with dyslexia, every textual or visual element in the 

exercise is accompanied by synchronized audio narration. 

Letters and words are pronounced aloud when displayed or 

clicked, and game outcomes are reinforced through distinct 

success or failure sounds [39]. This combination of visual, 

auditory, and interactive feedback has been shown to 

significantly aid phonological decoding by strengthening the 

link between graphemes and phonemes [39] [40]. 

VALF further enhances effectiveness by adapting the difficulty 

level dynamically based on learner performance. Each exercise 

functions within a CLA-based reinforcement learning loop: if 

a student consistently answers correctly and rapidly, the system 

interprets this as a positive signal and increases the challenge—

e.g., by introducing unfamiliar vocabulary, reducing response 

time, or adding more distractors. Conversely, if the learner 

struggles, VALF adapts by repeating simpler exercises, 

offering visual cues, or providing additional hints [41] [38]. 

This adaptive scaffolding approach ensures that learners 

remain within their zone of proximal development, avoiding 

both boredom from under-stimulation and frustration from 

excessive difficulty. 

Evaluations of similar educational game systems show that 

learners enjoy this format and benefit from difficulty 

calibration that responds to their real-time performance [41]. 

Teachers and students report higher motivation when tasks are 

gamified and scaled appropriately [38] [41]. Thus, VALF’s 

game-based exercises combine the benefits of instant 

correction, audio-visual reinforcement, and performance-

driven personalization—providing a motivating, accessible, 

and effective platform for Vietnamese language learning in 

dyslexic students. 

3.5 Multimedia Exam 
VALF integrates a multimedia-based exam system that 

evaluates learner progress using a combination of text, image, 

and audio formats to ensure accessibility for dyslexic students. 

The exam includes four-option multiple-choice questions, 

picture–word association tasks, and listening-based 

comprehension items. For example, in a picture–word task, the 

learner is shown an image and asked to choose the 

corresponding Vietnamese word from a set of textual options—

an approach proven effective for reinforcing vocabulary and 

lexical recognition [42]. 

Each question-and-answer choice is supported by synchronized 

audio narration. The system plays the spoken version of the 

question and its corresponding options while displaying the text 

and visuals. This dual-mode delivery leverages multisensory 
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learning principles, allowing learners to process information 

through both visual and auditory channels [42]. 

To maintain an optimal level of challenge, the exam is adaptive. 

Question difficulty dynamically adjusts in response to learner 

performance. Correct responses lead to progressively harder 

questions, while incorrect responses result in easier follow-ups. 

This ensures that the test remains appropriate to the learner’s 

ability while promoting gradual skill advancement [43]. 

Feedback is delivered in real time. Upon selecting an answer, 

the learner receives immediate confirmation. Correct choices 

are reinforced through audio repetition or visual highlights, 

while incorrect answers prompt the display of the correct 

response or a hint. This immediate corrective feedback is 

essential for dyslexic learners, enhancing their awareness of 

errors and supporting the development of accurate 

phonological decoding skills [42]. Spoken feedback is 

especially valuable, as it has been shown to significantly 

improve recognition, attention, and retention in students with 

reading difficulties [44]. 

All responses are scored and recorded automatically. At the 

conclusion of each exam session, VALF generates a summary 

report detailing overall accuracy, response times, and common 

error types. This performance data is fed back into the CLA-

based learning engine to inform adaptive content delivery and 

track long-term learning progress. 

By combining multiple question types, synchronized audio 

narration, real-time adaptive difficulty, and personalized 

feedback, VALF’s multimedia exam provides an effective and 

inclusive assessment tool tailored to the needs of Vietnamese 

primary learners with dyslexia. 

4. CONCLUSION AND FUTURE 

DIRECTIONS 
In this research, the proposed model VALF as a learning 

framework for Vietnamese students with dyslexia to improve 

their reading literacy. It will provide a complete straight 

forward platform for learning alphabets along with tone 

pronunciations in Vietnamese language. VALF generates each 

character by a simple font, through reinforcement process by 

considering the Vietnamese writing method such as tone 

symbols, right-to-left directions, and exact alphabets usage in 

various forms. Finally, this flexible VALF model can also use 

to prepare accurate style of letters, various writing speeds along 

with corrosiveness and helps in improving good reading skills 

for primary Vietnamese children. In the future version of this 

article, real time implementation of the proposed VALF model 

in gaming platform with more interactive features for the 

dyslexia children were planned to execute.  
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