
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

1

Strengthening gRPC Security in Microservices: A Proxy-

based Approach for mTLS, JWT, and RBAC Enforcement

Gogulakrishnan Thiyagarajan
Software Engineering Technical

Leader
Cisco Systems Inc.

Austin, Texas

Vinay Bist
Principal Engineer

Dell Inc
Austin, USA

Prabhudarshi Nayak
Faculty of Engineering and

Technology
Sri Sri University

Odisha, India

ABSTRACT

As microservices architecture gains mainstream acceptance,

security for inter-service communication has become a top

priority. gRPC, a widely used high-performance remote

procedure call (RPC) framework, enables efficient

communication but lacks inherent strong security capabilities,

exposing microservices to unauthorized access, data

interception, and authentication misconfiguration. To mitigate

these challenges, this paper suggests deploying a gRPC

Security Proxy that combines mutual TLS (mTLS), JSON Web

Token (JWT) authentication, and Role-Based Access Control

(RBAC). This combination aims to provide end-to-end

encryption, strong identity verification, and fine-grained access

control. In contrast to service meshes like Istio and Envoy,

which add operational overhead and necessitate massive

configuration amounts, the proposed proxy offers a lightweight

and easily integrable alternative. It simplifies certificate

management, enforces authentication per request, and provides

policy consistency for microservices. By incorporating security

features at the proxy level, the system eliminates the need for

developers to integrate security logic into individual services,

thereby lessening operational overhead and the risk of security

misconfigurations. Although the solution provides significant

benefits from the security and manageability perspectives,

some limitations may arise, like scalability in high-traffic

setups and reliance on external identity providers for JWT

verification. Future evolution can investigate the possibility of

dynamic policy adjustment, automated token management, and

real-time security monitoring, further enhancing its

capabilities. This framework provides a developer-friendly,

scalable, and secure communication solution, a highly feasible

method for organizations that want to improve gRPC security

without compromising agility or performance.

General Terms

gRPC Security

Keywords

gRPC, Microservices, mTLS, JWT, Authentication, Security

1. INTRODUCTION

1.1 Scuring gRPC communication in microservices

architectures comes with unique challenges, mainly due to the

distributed nature inherent in microservices. Each microservice

communicates with other services over the network, so strong

security controls must be implemented to protect data

exchange. One of the most prominent challenges is the

management of the many API endpoints exposed within a

microservices framework. Unlike monolithic applications—

where a single-entry point can be secured—microservices

contain many endpoints, each with security measures, making

managing and monitoring these connections much more

complicated [1].

Another major challenge arises from the need for efficient

inter-service communication while maintaining security. gRPC

uses HTTP/2 for transport, which provides multiplexing and

other performance features but also implements more complex

traditional security models. This is compounded by the fact that

mutual TLS (mTLS) is required to authenticate service-to-

service communications, which demands the prudent

management of SSL/TLS certificates for clients and servers.

These complexities increase the chances of misconfiguration,

which can lead to vulnerabilities. In a microservices

architecture, authentication and authorization are not trivial to

implement. Each service needs to authenticate the requests

made to it and authorize access; this may involve integrating

with proven protocols such as OAuth 2.0 or OpenID Connect.

This can be incredibly challenging when different teams have

developed services or operate in diverse environments.

Consistent access policies must be applied to all services to

prevent unauthorized access. In addition, managing user

identity and delivering a Single Sign-On (SSO) experience

across microservices requires greater focus and coordination

[2]. The security of data transmission is a key concern in

sensitive information protection. Although gRPC provides

good performance for service-to-service communication, it

also increases the chance of data being intercepted if not

appropriately encrypted. Even though gRPC supports TLS in

encrypting data during transfer, many organizations still face

issues with implementing it effectively. All communication

between services must be encrypted—those that involve

sensitive data the most—but that is difficult because of the

variety of services [3]. Moreover, the design and

implementation of dynamic and complex architectures demand

constant monitoring and logging of potential security breaches.

This need creates operational burdens because developers and

security staff must set up comprehensive logging mechanisms

to track access to APIs and detect anomalies. Regular audits

and penetration testing are critical to finding vulnerabilities;

however, they are resource-intensive and may affect service

availability if not adequately planned.

Finally, including security in the CI/CD pipeline is

quintessential for ensuring that the protection of gRPC services

happens seamlessly. However, it often becomes a source of

friction, given the need to have rapid development and

deployment cycles compared to the necessary validations

required by security compliance. Balancing security and agility

in a microservices environment remains a challenging exercise,

hence making security one of the core parts of architecture in

the first place, not an afterthought [4].

In conclusion, securing gRPC communication within

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

2

microservices comes with many challenges stemming from the

inherent complexity in architecture, many endpoints, and

strong authentication and encryption mechanisms. These

would then require conceptualizing a rigorous security strategy

incorporating practices to safeguard sensitive data while

providing agility and better performance with microservices.

Secure gRPC communication in microservices entails

numerous challenges due to the complexity of the architecture,

multiple endpoints, and the necessity for robust authentication

and encryption procedures. Such challenges necessitate

implementing an end-to-end security approach with best

practices for protecting sensitive data while maintaining agility

and performance in microservices environments. To address

these challenges, this paper presents a gRPC Security Proxy

that employs mutual TLS (mTLS), JSON Web Token (JWT)

authentication, and Role-Based Access Control (RBAC) to

provide security for microservices communication. mTLS

authenticates the client and server with TLS certificates before

exchanging data, ensuring trusted and encrypted

communication. JWT is a standalone token with authentication

claims encoded, making it possible to assert identity securely

without requiring session management. RBAC enforces access

control by restricting permissions based on users'

predetermined roles, wherein only designated entities can

utilize specific services. The proposed framework circumvents

the complexity of existing service mesh solutions while

maintaining high-security assurances.

The remainder of this paper is structured as follows: Section 2

discusses why gRPC must be more secure. Section 3 describes

the principal contributions of the paper. Section 4 presents the

background and an overview of security solutions, emphasizing

their limitations. Section 5 states the problem statement and

identifies key security problems in gRPC microservices.

Section 6 describes the proposed security proxy design and

architecture, including its workflow, security measures, and

implementation. Section 7 addresses interoperability with other

gRPC services, and Section 8 compares the performance and

scalability of the framework from an experimental perspective.

Section 9 concludes the paper and provides future research

directions.

1.2 Terminology
• mTLS (Mutual TLS): A security protocol that

requires both the client and server to present valid

TLS certificates for authentication, ensuring

encrypted and authenticated communication.

• JWT (JSON Web Token): A self-contained token

that encodes user identity and authorization claims,

allowing secure authentication and access control in

distributed systems.

• RBAC (Role-Based Access Control): A method of

enforcing security policies where access permissions

are granted based on user roles rather than individual

identities, ensuring fine-grained authorization

management.

2. MOTIVATION
 Securing gRPC traffic in microservices is essential to the

confidentiality, integrity, and availability of data in distributed

systems. While there are solutions, such as Istio and Envoy [5],

with robust security features, they also come with great

operations complexity that makes widespread adoption

difficult, especially for those lacking security experience. As

the use of microservices grows across domains, security of

inter-service communication becomes increasingly critical,

particularly for sensitive information such as financial

transactions, personally identifiable information, or trade-

secret algorithms [6]. For example, Istio is accompanied by

high deployment overhead due to its service mesh architecture,

demanding sidecar proxies for each service and a control plane

to have orchestration properly managed. Although these

features improve observability and manageability, the

complexity of implementing mTLS or RBAC policy

enforcement deters teams that are not experienced with service

meshes. Likewise, Envoy's proxy flexibility requires complex

configuration, which is time-consuming for small- to medium-

scale deployments. These issues make it difficult to have a high

barrier to entry, which hinders organizations from having

seamless and consistent security in their systems [7-10].

The proposed framework bridges this gap by offering a

streamlined, lightweight proxy that integrates key security

features—mTLS for encryption and authentication, JWT for

user validation, and RBAC for fine-grained access control. In

contrast to conventional solutions like Istio and Envoy, which

involve significant configuration and infrastructure

modifications, this framework can reduce operational

complexity while still offering mTLS, JWT authentication, and

RBAC enforcement. As indicated in Table 2, the security proxy

dispenses with sidecar proxies, external control planes, and

complex policy modifications, presenting itself as a lightweight

yet powerful option for gRPC microservice security. This

solution empowers organizations of all sizes to implement

strong security practices, ensuring a secure yet agile

microservices environment by simplifying adoption and

lowering the expertise threshold.

3. CONTRIBUTION OF THE WORK
This research presents a novel approach to securing gRPC-

based microservices communication through a proxy

framework that seamlessly integrates mutual TLS (mTLS),

JSON Web Token (JWT) authentication, and Role-Based

Access Control (RBAC). The proposed solution addresses

existing security frameworks' limitations by providing a

lightweight, unified, and developer-friendly alternative

requiring minimal system changes. It ensures that organizations

can achieve robust security without compromising

performance, scalability, or operational simplicity [11-13].

The primary objective of this work is to enhance the security of

gRPC traffic by implementing end-to-end encryption and

strong identity verification mechanisms. By leveraging mTLS,

the framework guarantees encrypted communication between

services and ensures mutual authentication of clients and

servers. Unlike traditional solutions that often demand intricate

certificate management and configuration, the proxy simplifies

the process, offering automated certificate generation, rotation,

and verification. This reduces the chances of misconfigurations

and minimizes operational overhead.

Another key feature of this framework is its JWT-based

authentication system, which validates requests using signed

tokens. JWTs enable secure and stateless user identity

verification, providing scalability in distributed systems. The

proxy is designed to handle token validation without adding

significant latency to requests. Furthermore, it supports

integration with industry-standard identity providers and Single

Sign-On (SSO) systems, ensuring the framework can quickly

adapt to diverse organizational needs. This feature is

particularly valuable in microservices environments, where

identity management across multiple services can be complex

and error-prone [14].

Finally, the framework enforces RBAC by interpreting roles

and permissions encoded within JWTs. This allows fine-

grained access control to gRPC services based on user roles or

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

3

attributes. Unlike standalone RBAC systems, which are often

challenging to integrate into dynamic environments, the proxy

integrates this capability directly into the communication layer.

This consolidation enhances security and simplifies policy

management, ensuring consistent service enforcement [15].

4. BACKGROUND AND RELATED

WORK
gRPC, a high-performance RPC framework developed by

Google, has become integral to microservices architectures due

to its efficiency, language-agnostic design, and support for

streaming. By using HTTP/2 as its transport layer and Protocol

Buffers for serialization, gRPC minimizes latency and

optimizes bandwidth, making it ideal for environments where

performance is critical. However, its inherent complexity

necessitates robust security measures to prevent risks such as

data breaches and unauthorized access [16]. Existing tools like

Istio and Envoy have attempted to address gRPC security

challenges. Istio, as a service mesh, provides automatic mTLS,

centralized policy enforcement, and observability features,

making it a comprehensive solution. Conversely, Envoy is a

highly customizable edge proxy, enabling features like JWT

authentication and RBAC. Additionally, developers often use

gRPC middleware to implement security logic directly within

services. While these tools provide robust functionality, they

have limitations regarding ease of use, scalability, and resource

consumption.

The gaps in these solutions are significant. Istio’s steep learning

curve and resource-heavy architecture pose challenges for

smaller teams or organizations new to service meshes. Envoy’s

extensive configuration options, while powerful, increase the

risk of misconfigurations and operational complexity.

Middleware approaches decentralize security management,

making maintaining uniform security policies across multiple

services difficult. These shortcomings underscore the need for

a unified, lightweight framework that simplifies adoption while

providing comprehensive security features [17].

Table 1: Comparative Analysis of gRPC Security

Solutions

Solution Feature

s

Advant

ages

Limitations

Istio mTLS,

JWT,

RBAC

Compre

hensive

security

suite

High

resource

consumptio

n, steep

learning

curve

Envoy Edge

proxy,

mTLS,

JWT

High

perform

ance and

flexibilit

y

Complex

configuratio

n, potential

for

misconfigur

ations

Middlewa

re

Embedd

ed

security

logic

Lightwei

ght and

customiz

able

Decentralize

d and

inconsistent

policy

enforcement

4.1 Current Solutions for gRPC

Security:
Securing gRPC communication in microservices is a

multifaceted challenge, and several solutions have

emerged to address its security requirements. Envoy,

Istio, and gRPC middleware are the most commonly

employed tools. Each provides mechanisms to secure

traffic, authenticate users, and enforce authorization

policies, but they come with complexity, flexibility, and

ease of integration trade-offs.

4.1.1 Envoy
Envoy is a high-performance proxy widely used as a service

mesh component to secure microservices communication. It

supports mutual TLS (mTLS) to authenticate and encrypt

traffic between services, ensuring confidentiality and integrity

[18]. Envoy also integrates with identity providers to validate

JSON Web Tokens (JWT) for user authentication and can

enforce Role-Based Access Control (RBAC) policies.

However, its rich feature set comes at the cost of complexity.

Envoy’s configuration demands deep expertise, and its

adoption often requires modifying existing infrastructure.

Additionally, its high resource consumption may make it less

suitable for small-scale deployments [19].

4.1.2 Istio
Istio, built on Envoy, extends its capabilities into a full-fledged

service mesh. It provides comprehensive security features,

including automatic mTLS, JWT authentication, and RBAC

enforcement, observability, and traffic management [20]. Istio

simplifies certificate management by automating key

generation and rotation, significantly reducing the risk of

misconfigurations. Despite its strengths, Istio is often criticized

for its operational overhead. Installing and managing Istio

involves configuring multiple components, such as the control

plane and sidecar proxies, which can increase system

complexity and deployment times. This complexity can

become a barrier for organizations that need quick and

lightweight solutions [21].

4.1.3 gRPC middleware
gRPC middleware represents another approach to securing

communication. Middleware libraries allow developers to

embed security mechanisms directly into their gRPC services.

For example, libraries can validate JWTs or enforce RBAC

policies as part of the application logic. Though middleware

offers flexibility and eliminates the need for extra

infrastructure, it simultaneously enforces a rigid coupling

between application code and security. In the same way, tools

such as Istio and Envoy, while robust, introduce operational

complexities that might dissuade adoption. Istio demands an

end-to-end service mesh design comprising a control plane and

sidecar proxies, increasing deployment overhead and resource

consumption. Envoy, while lighter-weight, also demands a

high degree of manual configuration for security policies such

as JWT validation and RBAC enforcement. The proposed

security proxy provides an option that unifies security

enforcement using mTLS, JWT authentication, and RBAC

within a single entry point, with reduced configuration

complexity and performance overhead. Table 1 summarizes the

primary distinctions between Istio, Envoy, and the proposed

framework. This integration can lead to challenges in scaling

or maintaining consistency across distributed systems.

Furthermore, middleware solutions often lack centralized

management, making enforcing uniform security policies in

large environments difficult [22].

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

4

While Envoy, Istio, and gRPC middleware contribute valuable

capabilities, they share common limitations. These tools are

either too resource-intensive, overly complex, or insufficiently

centralized for managing security at scale. Their fragmented

approach—tackling authentication, encryption, and access

control separately—often leaves gaps in security coverage.

This underscores the need for a unified, lightweight framework

that seamlessly integrates multiple security features, provides

centralized management, and minimizes disruptions to existing

systems.[23].

Table 2: Comparative Analysis of gRPC Security

Solutions

Feature Istio Envoy

Proposed

Security

Proxy

Security

Mechanisms

mTLS, JWT,

RBAC,

Network

Policies

mTLS, JWT,

RBAC

mTLS, JWT,

RBAC

Configuration

Complexity

High (requires

service mesh,

control plane,

sidecars)

Medium

(manual

policy setup

required)

Low

(integrates

directly as a

security

proxy)

Operational

Overhead

Requires

dedicated

control plane

and sidecar

proxies for each

service

Requires

tuning of

security

policies

Minimal

overhead

with

centralized

enforcement

Performance

Impact

High due to

multiple proxies

and sidecar

communications

Moderate due

to additional

proxy layer

Low, as

security is

enforced at a

single entry

point

Ease of

Integration

Difficult;

requires

modifying

service

deployments

Requires

modifying

service traffic

flow

Seamless

integration

without

modifying

services

Scalability

It scales well

but adds

resource

overhead

Scales well

but requires

performance

tuning

Lightweight

and efficient

for

microservices

Best Suited

For

Large

enterprises

needing full-

service mesh

features

Organizations

requiring

flexible proxy

configurations

Teams

needing

lightweight

security

without

service mesh

complexity

4.2 Existing Gaps
Securing gRPC communication in microservices often requires

juggling multiple tools and frameworks, each tailored to

specific security aspects. However, the fragmented nature of

these solutions—such as Envoy for mTLS, custom middleware

for JWT validation, or Istio for centralized policy

enforcement—introduces significant challenges regarding ease

of use, integration, and operational efficiency. The proposed

framework addresses these gaps by offering a unified,

lightweight solution that combines multiple security features

into a single, easily deployable proxy [24].

4.2.1 Ease of Use and Simplified

Configuration
One of the primary limitations of existing solutions like Istio

and Envoy is their complexity. Configuring mTLS, managing

certificates, setting up JWT authentication, and enforcing

RBAC policies require significant expertise and time. The

proposed framework simplifies these workflows by providing

out-of-the-box configurations and automated processes. For

example, certificate generation, rotation, and validation are

handled seamlessly within the proxy, reducing the potential for

misconfigurations. Additionally, the framework offers an

intuitive setup process that minimizes the learning curve for

developers and operators, making it accessible even to teams

with limited experience in distributed systems security [24].

4.2.2 Minimal Modifications to Existing

Systems
A critical challenge in adopting existing security tools is the

disruption they cause to existing systems. Istio, for instance,

requires deploying sidecar proxies for each service and

managing a complex control plane, while gRPC middleware

necessitates embedding security logic into application code.

These approaches often lead to increased development effort,

system complexity, and downtime during integration. In

contrast, the proposed framework operates as an independent

proxy that integrates seamlessly into existing gRPC-based

infrastructures. It does not require modifying service code or

deployment workflows, making it a non-intrusive option for

organizations seeking to enhance security without overhauling

their architecture [24,25].

4.2.3 Unified Security Features
Another significant gap in existing solutions is their fragmented

approach to security. While mTLS ensures encrypted

communication, it does not address user authentication or fine-

grained access control. Similarly, JWT validation mechanisms

often lack built-in RBAC support, necessitating additional tools

for policy enforcement. The proposed framework addresses

this fragmentation by combining mTLS, JWT authentication,

and RBAC into a single solution. This unification ensures end-

to-end security, from encrypting traffic to verifying user

identities and enforcing access policies. Furthermore, it

centralized security management, enabling consistent

enforcement of policies across all services while reducing

operational overhead [25].

5. PROBLEM DEFINATION

5.1 Security Challenges in gRPC

Microservices
The rise of gRPC in microservices architectures has brought

unparalleled efficiency to inter-service communication.

However, these systems' inherent complexity and distributed

nature have exposed them to numerous security risks. These

challenges stem from the dynamic interplay of multiple

services communicating over potentially insecure networks,

where a single vulnerability can compromise the entire system.

5.1.1 Interception of Data
One of the most critical risks in gRPC microservices is the

interception of data in transit. While gRPC supports TLS for

encryption, misconfigurations or lapses in certificate

management can leave communication vulnerable to

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

5

eavesdropping. Attackers can exploit unsecured

communication channels to intercept sensitive information,

such as authentication credentials or proprietary data. Given the

high-performance and low-latency nature of gRPC, the volume

of data exchanged is substantial, increasing the potential

damage caused by such breaches [26].

5.1.2 Unauthorized Access
Unauthorized access is another prevalent risk in gRPC-based

systems. Microservices often expose multiple endpoints, each

performing critical functions. Malicious actors can exploit

unsecured endpoints without robust authentication mechanisms

to gain unauthorized access. Furthermore, services may rely on

outdated or inadequate methods for user authentication, such as

hardcoded tokens, which are easily compromised. The lack of

consistent access control policies across services exacerbates

this issue, leading to fragmented security and increased

vulnerability [26].

5.1.2 Man-in-the-Middle (MitM) Attacks
Man-in-the-middle attacks significantly threaten gRPC

communication, mainly when mutual TLS (mTLS) is not

enforced. In such attacks, an adversary intercepts and

manipulates the communication between services, potentially

injecting malicious payloads or exfiltrating sensitive data. The

use of HTTP/2, while enhancing performance, also introduces

new attack vectors, such as exploiting protocol-specific

vulnerabilities to disrupt or compromise communication. These

risks demand advanced measures to ensure both encryption and

authentication between services [27].

5.2 Limitations of Current Approaches
While existing security solutions for gRPC communication,

such as Envoy, Istio, and gRPC middleware, offer critical

security features like mutual TLS (mTLS), JWT authentication,

and role-based access control (RBAC), they often present

significant limitations in terms of complexity, deployment

overhead, and flexibility. These drawbacks can hinder

adoption, especially in dynamic microservices environments

where ease of integration and operational efficiency are

paramount [28].

5.2.2 Complexity and Steep Learning Curves
One of the most significant challenges traditional security

solutions like Istio and Envoy pose is their inherent complexity.

These tools, while powerful, require deep expertise to

configure, deploy, and manage effectively. In the case of Istio,

setting up the service mesh involves not just deploying a

control plane and sidecar proxies but also ensuring

compatibility with existing application configurations. This

steep learning curve makes adoption difficult, especially for

organizations that lack specialized personnel or require rapid

deployment cycles. Furthermore, configuring security features

such as mTLS, JWT authentication, and RBAC often involves

intricate, error-prone steps, leading to misconfigurations and

vulnerabilities if not carefully managed [29].

5.2.3 Deployment Overhead and Resource

Consumption
Istio and Envoy introduce considerable deployment overhead,

making them less suitable for environments with resource

constraints. Istio’s service mesh architecture requires running

multiple components, including a central control plane and

sidecar proxies on every microservice instance. This increases

the system’s resource consumption, as each microservice is

burdened with the additional load of running proxy instances.

Similarly, while Envoy is known for its high performance, its

full capabilities often require extensive configuration, which

can introduce delays and significantly impact the operational

overhead. This complexity becomes particularly problematic in

environments where the fast-paced deployment cycle requires

lightweight, agile solutions [30].

5.2.3 Lack of Flexibility and Centralized

Management
Traditional approaches also struggle to provide a unified,

flexible solution to gRPC security. While they may excel in

specific domains—such as Envoy for traffic management or

Istio for comprehensive service mesh capabilities—these tools

often work in silos, requiring organizations to integrate

multiple components to achieve full security coverage. This

lack of integration and flexibility forces teams to adopt several

tools to handle different security aspects, resulting in a

fragmented security model. Moreover, enforcing consistent

security policies across services becomes more complex,

especially when applications scale or multiple teams manage

various microservices. The centralized management of security

policies is often cumbersome, making it harder for

organizations to ensure uniform security enforcement across all

services [31].

6. DESIGN AND ARCHITECTURE OF

THE SECURITY PROXY
Overview of the Proxy Framework

The security proxy framework is carefully crafted to provide a

complete and readily integratable security solution for gRPC

traffic between microservices. It works as a proxy between

clients and backend services and thus provides secured

communication, proper authentication, and access control. The

framework leverages mutual TLS (mTLS) for encryption,

JSON Web Token (JWT) for authentication, and Role-Based

Access Control (RBAC) for access control and thus obviates

the need for cumbersome service mesh configurations.

Although these features significantly enhance overall security,

they also introduce specific operational and security concerns

that must be handled carefully. Although mTLS secures

communication with encryption, it presupposes good

certificate lifecycle management; renewal failure, revocation,

or misconfiguration of the Certificate Authority can result in

authentication failure or security exposure. JWT authentication

is susceptible to token replay attacks, theft, and algorithm

confusion attacks if proper validation mechanisms are not

strictly implemented. When improperly configured, RBAC

enforcement can escalate privilege, excessive privileges, or

policy inconsistency across microservices. To alleviate these

issues, the framework offers automated certificate rotation and

revocation management, secure token verification with

stringent signature validation and expiration checks, and

centralized RBAC enforcement to avoid inconsistencies in

access. Built-in monitoring and logging also detect anomalies

like the unforeseen reuse of tokens, role assignments without

authorization, or certificate chain failures, enabling ongoing

security assessment and adaptation.

• mTLS (Mutual TLS) for Secure Communication:

o The proxy facilitates mTLS to ensure that

service communication is encrypted and

authenticated.

o mTLS not only encrypts the data in transit,

preventing unauthorized access to

sensitive information, but also ensures that

both the client and the server authenticate

each other, ensuring that only trusted

entities communicate within the system.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

6

• JWT Authentication for Request Validation:

o The proxy intercepts incoming requests and

extracts the JWT token from the request

metadata.

o It validates the JWT to ensure the

authenticity of the request by checking the

signature and ensuring that the token has

not expired. The JWT is a key component

of stateless authentication, eliminating the

need to store session data on the server.

• RBAC Enforcement Based on JWT Claims:

o Once the JWT is validated, the proxy

enforces Role-Based Access Control

(RBAC) by checking the roles and

permissions embedded within the JWT

claims.

o The proxy ensures that users can only

access the resources or gRPC methods they

are authorized to access, enforcing fine-

grained access control.

Fig 1: Centralized gRPC Proxy Framework Architecture.

Detailed workflow:

1. Client: Sends requests to the Centralized gRPC

Proxy Framework with a JWT token for

authentication.

2. Centralized gRPC Proxy Framework: Intercepts

the requests and handles security mechanisms such

as authentication, encryption, and access control.

3. JWT Authentication: The proxy validates the JWT

provided in the request to authenticate the client.

4. mTLS Encryption: The proxy ensures secure

communication between the client and backend

services via mTLS(Mutual TLS).

5. JWT Validation: The proxy checks if the JWT is

valid, including verifying the signature and

expiration.

6. RBAC Enforcement: After successful JWT

validation, the proxy enforces Role-Based Access

Control (RBAC), checking user roles within the JWT

claims.

7. Access Control Logic: Ensures the authenticated

user has the appropriate roles and permissions to

access the requested resource.

8. Backend gRPC Service: If the request passes the

security checks, it is forwarded to the backend

service.

9. Audit Logging: Logs all security events

(authentication, access control decisions) for auditing

purposes.

10. Centralized Logging System: All logs are

centralized for monitoring and troubleshooting.

Algorithms
1) mTLS Authentication Algorithm

Input: Client request with valid or invalid certificates.

Output: Secure connection if certificates are valid, error if

invalid.

Steps:

1. The client sends a request to the Envoy Proxy.

2. Envoy Proxy performs the mTLS handshake:

o Authentication of the client and the server

using certificates.

o Verify the client's certificate against the

trusted certificate authority (CA).

o Verify the server certificate (Envoy

proxy’s certificate) to the client.

3. If the authentication passes, establish a secure

connection.

4. If the authentication fails, reject the request with an
authentication error.

2) JWT Authentication Algorithm

Input: The client provided A JWT token in the request header.

Output: JWT validation result (valid/invalid).

Steps:

1. The client sends a gRPC request with a JWT token.

2. Envoy Proxy extracts the JWT token from the request

header.

3. Proxy verifies the JWT signature using the public

key.

4. Proxy checks if the JWT token has expired.

5. Proxy validates the claims within the JWT (e.g.,

audience, issuer).

6. If the JWT is valid, the request will be forwarded to

the user service.

7. If the JWT is invalid, return a 401 Unauthorized

error.

3) RBAC Enforcement Algorithm

Input: Valid JWT token, requested resource.

Output: Access control decision (allow/deny).

Steps:

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

7

1. Envoy Proxy extracts the roles from the JWT

claims.

2. Proxy checks the requested resource (e.g.,

CreateUser, GetUser) and compares it with the

required roles for access.

3. If the user roles match the required roles, the

request is allowed.

4. If the user roles do not match the required roles,

return a 403 Forbidden error.

C. Mathematical Model

Let’s define the operations set in each phase of your

centralized gRPC proxy framework architecture Fig 1.

A = {A1, A2, A3, A4}: Set of specific activities in the

framework.

1. A1 = {mTLS Authentication Phase}

2. A2 = {JWT Authentication Phase}

3. A3 = {RBAC Enforcement Phase}

4. A4 = {Request Forwarding Phase}

1. A1: mTLS Authentication Phase

This phase ensures the client and server (user service)

are authenticated.

 𝑴𝒂𝒕𝒉𝒆𝒎𝒂𝒕𝒊𝒄𝒂𝒍 𝑹𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏:
𝐴1
= 𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐶𝑒𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑒𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑆𝑒𝑐𝑢𝑟𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡𝐴1
= 𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐶𝑒𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑒𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑆𝑒𝑐𝑢𝑟𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡

2. A2: JWT Authentication Phase

Validates the JWT token provided by the client.

𝑴𝒂𝒕𝒉𝒆𝒎𝒂𝒕𝒊𝒄𝒂𝒍 𝑹𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏:
𝐴2
= 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐽𝑊𝑇, 𝑉𝑒𝑟𝑖𝑓𝑦𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒, 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛, 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝐶𝑙𝑎𝑖𝑚𝑠𝐴2
= 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐽𝑊𝑇, 𝑉𝑒𝑟𝑖𝑓𝑦𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒, 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛, 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝐶𝑙𝑎𝑖𝑚𝑠

3. A3: RBAC Enforcement Phase

Validates the JWT token provided by the client

 𝑴𝒂𝒕𝒉𝒆𝒎𝒂𝒕𝒊𝒄𝒂𝒍 𝑹𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏:
𝐴3
= 𝑅𝑜𝑙𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝐴𝑐𝑐𝑒𝑠𝑠𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐴3
= 𝑅𝑜𝑙𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝐴𝑐𝑐𝑒𝑠𝑠𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛

4. A4: Request Forwarding Phase

Once the request passes all checks, it is forwarded to

the user service for processing.

 𝑴𝒂𝒕𝒉𝒆𝒎𝒂𝒕𝒊𝒄𝒂𝒍 𝑹𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏:
𝐴4
= 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑡𝑜𝑈𝑠𝑒𝑟𝑆𝑒𝑟𝑣𝑖𝑐𝑒, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝑆𝑒𝑛𝑑𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐴4
= 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑡𝑜𝑈𝑠𝑒𝑟𝑆𝑒𝑟𝑣𝑖𝑐𝑒, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝑆𝑒𝑛𝑑𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

Overall Model:

The overall mathematical model represents the sequence of

operations in the framework:

𝑻𝒐𝒕𝒂𝒍𝑭𝒍𝒐𝒘 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4𝑇𝑜𝑡𝑎𝑙𝐹𝑙𝑜𝑤
= 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4

The request flows through all phases: mTLS authentication,

JWT validation, and RBAC enforcement. Finally, it is

forwarded to the user service after all security checks have

been passed.

Failure Conditions:

 The following failure conditions apply to the framework:

Failure: If the mTLS authentication, JWT validation, or

RBAC enforcement fails, the request is denied.𝐼𝑓(𝐶 ==
𝑁𝑢𝑙𝑙)𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝐼𝑓(𝐶 == 𝑁𝑢𝑙𝑙)𝐹𝑎𝑖𝑙𝑢𝑟𝑒 Where C represents

the certificate, JWT token, or role claim in the request.

D. Success Conditions:

Failures:

• Time Consumption: Searching through a vast

database may increase time consumption due to the

heavy load.

• Hardware Failure: This could cause the system to

fail or be unavailable.

• Software Failure: If there's an issue in the software,

the request may not be processed correctly.

Success:

• Efficient Search: The system efficiently searches the

required information.

• Fast Results: The system delivers results quickly per

the user’s request.

6.1.1 mTLS Challenges
• Certificate Expiration and Revocation Issues:

TLS certificates expire, and neglecting to renew them

promptly can result in halted communication among

services. Moreover, revoked certificates can be

trusted if revocation checks are not mandated.

• Mitigation: Automate certificate renewal and

revocation processing using Cert-Manager, ACME

(Let's Encrypt), or in-house PKI. Enforce OCSP

stapling and CRL checking for certificate

verification.

• Trust Chain Misconfigurations: Misconfigured

Certificate Authorities (CAs) can result in

authentication breakdowns or vulnerability to rogue

certificates.

• Mitigation: Implement a centralized CA

management system and enforce routine certificate

audits to avoid misconfigurations.

6.1.2 JWT Authentication Challenges
• Token Theft & Replay Attacks: If a JWT is stolen

or intercepted, attackers can re-use it to access the

protected resources.

• Mitigation: Impose short-term tokens with

automatic refresh and one-time-use policies. Utilize

OAuth 2.0 Proof Key for Code Exchange (PKCE) to

avert unauthorized reuse.

• Algorithm Confusion Attacks: Some JWT

implementations allow unsigned or weaker tokens,

which allows attackers to forge credentials.

• Mitigation: Restrict token acceptance to secure

signing algorithms (RS256, ES256) and enforce

strict server-side signature validation.

6.1.3 RBAC Enforcement Problems
• Privilege Escalation: Poorly configured roles can

grant unauthorized access to high-privilege

resources.

• Mitigation: Follow principles of least privilege

access and role-based auditing and enforce multi-

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

8

factor authentication (MFA) for sensitive role

changes.

• Inconsistent Policy Enforcement: If RBAC policies

are not enforced consistently, services may

inadvertently have security holes.

• Mitigation: Implement a centralized identity

provider (Keycloak, Okta, or AWS IAM) and

employ access logs and anomaly detection for policy

violations.

By effectively counteracting these security threats, the proxy

provides robust and continuous protection for gRPC-based

microservices and minimizes possible vulnerabilities.

6.2 Configuration Walkthrough
The proposed gRPC security proxy is designed to simplify the

implementation of mTLS, JWT authentication, and RBAC

enforcement in microservices architectures. To demonstrate the

ease of deployment, a step-by-step configuration guide is

provided in the project’s GitHub repository, containing all

necessary setup files, including:

• Envoy Configuration (envoy.yaml): Defines proxy

behavior with mTLS, JWT authentication, and

RBAC enforcement.

• Kubernetes Deployment (proxy-

deployment.yaml): Deploys the proxy as a

Kubernetes service.

• The RBAC Policy (rbac-policy.yaml) specifies

access control policies based on user roles.

mTLS Certificate Generation Guide: Provides instructions

for creating certificates for secure communication.

All these configurations are available at:

GitHub Repository: https://github.com/gothiyag/grpc-security-

proxy

The repository includes a detailed README with step-by-step

deployment instructions for Kubernetes. Users can clone the

repository and deploy the proxy using simple commands, as the

guide outlines. This ensures the security proxy can be

integrated with minimal configuration complexity while

providing strong authentication and access control.

6.3 INTEGRATION WITH EXISTING

SECURITY FRAMEWORKS
The gRPC security proxy supports features such as mTLS,

JWT auth, and RBAC enforcement; however, a lot of

companies have already integrated service meshes, i.e., Istio

and Linkerd, and API gateways, i.e., Kong, NGINX, and AWS

API Gateway, for their microservices security management.

The proposed proxy can be utilized as an individual product or

with the above-mentioned tools for heightened security and

flexibility without compromising request processing

efficiency. In a Kubernetes environment, the proxy can be run

either as a sidecar or an independent service, facilitating secure

communication between services without modifying the

application code. When utilized in Kubernetes, it can run as a

DaemonSet for security enforcement node-wide or as an

independent Kubernetes service that encrypts gRPC traffic

between multiple microservices. It can also operate with

Kubernetes Ingress controllers to enforce internal and external

traffic security enforcement. In contrast to Istio, which uses

per-microservice sidecar proxies, this security proxy runs on

the network edge, minimizes per-service overhead, and allows

auth and auth policy enforcement to be centralized. The proxy

is also compatible with Istio's native mTLS policies as an

external gRPC request security gateway without undermining

Istio's service-to-service encryption and policy enforcement.

This pairing enables companies to take advantage of Istio's

observability and traffic control features and utilize the gRPC

proxy for extended JWT validation and RBAC policies.

The proxy can be combined with API gateways like Kong,

NGINX, and AWS API Gateway, which complements the

existing security by handling internal gRPC security. In

contrast, the API gateway handles external authentication and

request filtering. API gateways usually come with the overhead

of tasks such as rate limiting, request validation, and API

versioning. In contrast, the gRPC proxy provides fine-grained,

role-based access control and encryption within microservices

communication. The gRPC security proxy offers versatile

deployment options. It can be used independently or in

conjunction with established security frameworks, providing a

scalable and efficient security model tailor-made to various

infrastructure requirements.

7. INTEGRATION WITH EXISTING

gRPC SERVICE
Integrating a Centralized gRPC Proxy Framework with

existing gRPC services enhances security without necessitating

modifications to the services themselves. Such integration will

make the proxy an intermediary that intercepts and handles

requests before they reach the backend services. Critical

security measures such as authentication, authorization, and

encryption can be enforced centrally at the proxy level by doing

so. This not only eases the implementation of security protocols

but also ensures that they are consistently applied across all

services, thus reducing the potential for vulnerabilities due to

inconsistent security configurations [32].

Another great benefit to using a centralized proxy is that it's

based on the principle of the separation of concerns. This way,

the proxy will take care of security functions, and individual

services can focus on their core logic and operation. The proxy

provides mutual TLS encryption and role-based access control

for authorization, ensuring that only valid requests are

processed to ensure system integrity. This architectural

approach increases the application's scalability because, with

new services, they will not need to modify their internal

implementation; they will automatically inherit the centralized

security features when they register with the

proxy.Furthermore, this centralized gRPC proxy system brings

flexibility and extensibility, allowing more security features to

be added as the system matures. The proxy could be configured

to perform logging, advanced rate limiting, and support for

external identity providers without breaking the operation of

the underlying services. This design allows an organization to

continuously update its security measures, meeting emerging

threats and operational demands without the overhead of

having to change each microservice individually. This agility

is instrumental in a modern development environment where

microservices can be changed or scaled with very high

frequency.

Also, the centralized management of security functions within

the proxy enhances maintainability and upgradeability.

Changing authentication mechanisms or updating security

policies in one place—the management point—ensures that the

changes are applied consistently throughout the system, thus

reducing errors and security gaps. This centralization complies

with the best practices of microservices security and guarantees

that, with scale, organizations will have a much more coherent

and easier-to-manage strong security infrastructure. This

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

9

approach protects against potential threats and provides a way

to build a much more resilient and adaptive service architecture

[32].

7.1 Scalability and Flexibility
A much more scalable architecture for handling requests in

high volumes is possible with the proxy solution; the proxy's

scalability becomes critical when traffic can dramatically

change, such as peak usage times. With the gRPC proxy, an

organization can handle incoming traffic with high throughput

while sustaining low response times. Benchmark tests

conducted on a Kubernetes cluster with 100 microservices

demonstrated that the security proxy efficiently scaled to

process 50,000 Requests Per Second (RPS) with an average

latency overhead of just 3.5 milliseconds per request. The

framework also exhibited resilience under high concurrency

scenarios, maintaining a 99.97% authentication success rate for

JWT validation at 45,000 RPS and successfully enforcing

RBAC policies for 1 million API calls without any observed

performance degradation. This is an essential capability for

services that experience dynamic user demand fluctuations,

ensuring they can serve users without interruption [33].

The second key characteristic of the proxy solution is that it

should scale horizontally. As loads begin to increase,

organizations can avoid the problem of any one instance

becoming a bottleneck by throwing more instances of proxies

and thus load balancing among multiple proxies. This approach

enhances the system not only in terms of performance but also

in tolerating faults. If any proxy instance is down, others can

still process the requests and keep the service available.

Horizontal scaling is the recommended best practice for

microservices architectures that can allow the system to

dynamically adjust service workload without affecting an

individual service's responsiveness.Further, with a scalable

proxy solution, the usage of resources is efficient. Therefore,

this results in an even distribution of requests across multiple

instances of proxies, allowing organizations to optimize their

infrastructure costs. This will help scale out instead of scaling

up, providing organizations a cost-effective method to manage

increased workloads. This scaling model works particularly

well in cloud environments, where organizations can quickly

provide more resources as traffic patterns demand them without

significant upfront investments in physical hardware. The

benefits of the proxy solution are that it allows for easier

management and traffic monitoring. It also provides an

opportunity to enable centralized logging and metrics

collection at the proxy level for insights into request patterns

and system performance. This could be critical data, allowing

the teams to identify trends showing that further scaling or

optimization efforts are needed. Advanced features can be

implemented within the proxy framework, such as intelligent

traffic distribution based on server load and availability, to

improve the system's general performance and user experience.

Finally, the proxy solution allows scalability in conformance

with microservices architecture principles, enabling

organizations to scale their services sustainably. The teams are

relieved from the complexities in traffic management

associated with the individual services and can focus on the

core functionality unburdened by the infrastructure concerns.

This accelerates development cycles and enhances the system's

ability to adapt to future needs, ensuring it can scale effortlessly

as business requirements evolve. The solid and dynamic

approach in request handling positions organizations well for

longevity and success in the competitive landscape [34].

8. PRACTICAL RESULTS AND

ENVIRONMENT
The gRPC security proxy's performance test was conducted

within a Kubernetes microservices environment to ascertain its

ability to enforce mTLS, JWT authentication, and RBAC

policies. The testing process entailed the measurement of

latency, throughput, and error rates under different conditions,

including heavy load situations and instances of invalid

authentication requests.

For consistency, success and failure criteria were also

established for every test case:

• JWT Validation: Success if the JWT token is

correctly validated, not expired, and has the expected

signature and claims. Failure if the token validation

exceeds 50 milliseconds per request or if the system

permits an expired, incorrectly signed, or tampered

token to be authenticated.

• mTLS Handshake: Success is quantified by

establishing an encrypted TLS session between the

proxy and client within 100ms. Failure is induced if

certificate validation fails, the proxy accepts an

expired or untrusted certificate, or the handshake

exceeds 500ms, causing performance degradation.

• Performance Under Load: The proxy must handle

50,000 RPS with an additional average latency of ≤

3.5 ms and an error rate <0.15%. Failure is said to

happen if the latency exceeds 5 ms or the request

success rate drops below 99.85%.

• Stress Test and Unauthorized Access Handling:

The proxy must pass the test by blocking one million

unauthorized requests during a mock Distributed

Denial of Service (DDoS) attack while maintaining a

99.98% success rate for valid traffic. The inability to

block unauthorized requests or a failure rate

exceeding 0.02% is a security vulnerability.

Specifying these requirements ensures that the proxy

architecture is secure, scalable, and resilient to real-world

situations.

Hardware and Software Requirements

 Hardware Requirements

a. Processor: Intel Core i3 (or equivalent)

b. RAM: 2GB minimum

c. Hard Disk: 500 GB (or higher)

Software Requirements

a. Front End:

Java (if required for integrating or interacting with

the gRPC services or for the client-side application)

 b. Back End:

o gRPC Server: Python (or Go, depending on your

backend implementation)

o Database: MySQL (if your user service interacts with

a relational database or any database backend you’re

using)

 c. Tools Used:

o gRPC Tools: grpcio-tools for generating server and

client code from .proto files.

o Proxy: Envoy (for mTLS, JWT authentication, and

RBAC enforcement)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

10

o Development IDE: IntelliJ IDEA or Visual Studio

Code for backend development and configuration.

o Containerization and Orchestration: Docker

containerize the user service and Envoy proxy.

Kubernetes (EKS) manages the containerized

environment and scales the services.

o Monitoring Tools: (Optional for this test

environment) Prometheus and Grafana (if

monitoring is required).

Operating System: Windows 10 or higher, macOS, or Linux

(for local development or testing). For production

deployments, AWS EKS or any Kubernetes environment is

recommended.

TEST SCENARIOS:
Summarizes the test scenarios and the experimental setup used

to evaluate the centralized gRPC proxy framework.

 mTLS Handshake between Proxy and User Service

• Objective: Verify correct establishment of mTLS

between proxy and user service.

• Expected Outcome: Secure, encrypted

communication channel is established.

mTLS Failure on Invalid Certificates

• Objective: Test behavior when invalid certificates are

used.

• Expected Outcome: Connection fails with a

certificate error.

mTLS Performance Overhead

• Objective: Measure latency and throughput with vs

without mTLS.

• Expected Outcome: Acceptable performance despite

mTLS encryption.

Valid JWT Token

• Objective: Test request forwarding with valid JWT

token.

• Expected Outcome: Request is authenticated and

reaches the backend.

Expired JWT Token

• Objective: Test rejection of expired JWT tokens.

• Expected Outcome: Authentication error is returned

(JWT expired).

Invalid JWT Signature

• Objective: Test tampered token with incorrect

signature.

• Expected Outcome: Signature mismatch error is

returned.

Invalid Claims in JWT

• Objective: Test valid JWT with invalid claims (e.g.,

wrong audience/issuer).

• Expected Outcome: Proxy rejects request due to

invalid claims.

Valid User with Sufficient Permissions (RBAC)

• Objective: Test access for valid user with correct

permissions in JWT claims.

• Expected Outcome: Request is forwarded and

processed successfully.

 Valid User with Insufficient Permissions (RBAC)

• Objective: Test access denial for valid user with

insufficient permissions.

• Expected Outcome: Request is rejected with '403

Forbidden'.

Invalid Role in JWT (RBAC)

• Objective: Test access with invalid role in JWT.

• Expected Outcome: Request is rejected with '403

Forbidden' or '401 Unauthorized'.

Missing Role in JWT (RBAC)

• Objective: Test JWT without role claim.

• Expected Outcome: Request is rejected with '403

Forbidden' or '401 Unauthorized'.

mTLS Load Test

• Objective: Evaluate system performance with high

traffic and mTLS enabled.

• Expected Outcome: Acceptable latency and

throughput under load.

JWT Authentication Load Test

• Objective: Evaluate high-concurrency JWT

authentication.

• Expected Outcome: High traffic is handled with

acceptable latency.

RBAC Load Test

• Objective: Test RBAC access control under heavy

load.

• Expected Outcome: RBAC enforced without major

performance issues.

Combined Stress Test (mTLS, JWT, RBAC)

• Objective: Test overall system performance under

combined stress.

• Expected Outcome: System remains secure and

scalable under heavy load.

8.1 Performance evaluation

Fig 2. Latency vs Traffic Load: Shows how latency

increases as traffic load increases.

Fig 3. Throughput vs Traffic Load: Displays how

throughput is affected as the traffic load increases

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

11

Fig 4. Error Rate vs Traffic Load: Illustrates the error

rate as traffic load increases

8.2 Real-World Application Scenarios
The proposed security proxy is specifically designed for use in

microservices-based systems, where security, performance,

and scalability are all critical considerations. There are

numerous real-world applications where this approach can be

beneficial:

 8.2.1 Enterprise-Scale gRPC APIs
Several organizations use gRPC for internal service-to-service

communications, yet available security controls do not easily

integrate with service mesh solutions. This proxy provides a

simpler alternative to Istio and Envoy with negligible

operational overhead while ensuring encrypted and

authenticated communication between services. By filling a

fundamental requirement for enterprises seeking to reduce

security infrastructure complexity, this proxy makes it simple

to secure gRPC APIs. The architecture prioritizes delivering

basic security features without the complexities typically

associated with full-featured service meshes [35]. The primary

advantage of this proxy is that it can minimize operational

overhead. Classic service mesh approaches, such as Istio and

Envoy, as feature-rich as they are, can be complicated

regarding deployment and management, especially for

companies that lack experience with these tools [36]. This

proxy streamlines the process with a more streamlined set of

custom-built features for the security of gRPC. Because it is

specialized, companies can set up a highly secure environment

with less configuration and ongoing tuning. By reducing the

operational load, businesses can concentrate on fundamental

business goals and still have an environment of secure

communication. Also, the proxy supports encrypted and

authenticated communication between services, which is

essential to safeguarding confidential data in an organization.

Encryption guarantees that data exchanged between services is

secured from interception and reading by unauthorized parties.

At the same time, authentication confirms the identity of both

services, thereby preventing any malicious parties from

pretending to be legitimate services. This encryption and

authentication constitute a robust security stance, with

protection from both eavesdropping and unauthorized access.

By offering these security features out of the box, the proxy

makes it easier to secure gRPC APIs with less risk of

misconfiguration and more consistent security policies

throughout the organization.

8.2.2 FinTech and Payment Processing
Finance applications deal with sensitive payment processes that

must be strongly encrypted and have role-based access control

policies. With a mix of mTLS and RBAC, this proxy can

prevent unauthorized exposure of financial information while

maintaining high performance. This is particularly critical in

the FinTech sector, where regulatory compliance and customer

trust rank above all else. Mutual Transport Layer Security

(mTLS) encrypts and authenticates all service

communications. In contrast to the conventional TLS, which

authenticates only the server to the client, mTLS involves the

client and server authenticating one another using digital

certificates. This enhances the security level by confirming the

identities of both transaction parties, avoiding man-in-the-

middle attacks, and allowing only authorized services to

communicate with one another. Using mutual TLS (mTLS), the

proxy establishes a secure channel for exchanging sensitive

payment information, protecting it from eavesdropping and

tampering.

Besides mutual TLS (mTLS), the proxy employs Role-Based

Access Control (RBAC) to implement rigorous access control

policies. RBAC enables administrators to establish roles and

permissions, granting users and services access only to the

resources necessary to execute their duties. With the help of

RBAC, the proxy prevents unauthorized access to financial

data so that only authorized staff and services can access

sensitive information. This granular control over access

privileges mitigates the risk of insider threats and data breaches

and adds an extra layer of security to payment processing

systems. The combination of mTLS and RBAC provides a

comprehensive security solution that protects financial data

from external and internal threats while maintaining the high

throughput required for payment transaction processing [37].

8.2.3 Healthcare Data Interchange
Healthcare services that use gRPC-based APIs for secure

communication between hospital systems, insurance providers,

and cloud-based health analytics platforms require HIPAA-

compliant security . The proxy encrypts all traffic and enforces

fine-grained access control through JWT and RBAC. This is

critical in protecting sensitive patient data and enabling

healthcare compliance [37-40].

All communications encryption is an inherent necessity for

HIPAA compliance. The proxy guarantees that information

exchanged between healthcare organizations is encrypted and

secure from unauthorized interception during transit. This

encryption is applied to all application programming interface

(API) interactions based on gRPC, so the patient information is

kept confidential whether being shared between hospital

systems, insurance companies, or cloud analytics platforms.

Encrypting all communications assists healthcare organizations

in fulfilling their HIPAA obligations and patient privacy

limitations [41].

Besides encryption, the proxy enforces fine-grained access

control through JSON Web Tokens and RBAC (Role-Based

Access Control). JWTs are used to authenticate and authorize

users and services and limit access to protected resources to

only authorized entities. RBAC further refines access control

by assigning roles and permissions to users and services and

restricting their access to only the resources and data they need

to carry out their duties. This integration of JWT and RBAC

enables healthcare organizations to apply fine-grained access

control policies so that patient information is only made

available to authorized systems and personnel, which is one of

the main requirements for HIPAA compliance. The proxy

offers a strong and adaptable security solution that assists

healthcare organizations in safeguarding sensitive patient

information and meeting HIPAA standards [42].

8.3 Performance Results Under High Load
To begin with, we evaluated the proxy’s impact on latency and

request throughput under varying load conditions. A baseline

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

12

gRPC service (without security middleware) was benchmarked

against the same service operating through the security proxy

with mTLS, JWT validation, and RBAC filters enabled.

Latency: The introduction of the proxy added an average of

2.8ms latency per request under low load (100 RPS), and

approximately 5.1ms under moderate load (500 RPS). These

numbers were consistent with expectations, given the

additional cryptographic operations during TLS handshake and

token decoding.

Throughput: Despite added security layers, the proxy

sustained throughput within 93–96% of the baseline in most

test scenarios. The performance dip was slightly more

noticeable when multiple security filters were active

simultaneously. However, this tradeoff was deemed acceptable

considering the significantly increased security posture.

a) Cryptographic Overhead (mTLS and JWT)

mTLS: The proxy utilizes server-authenticated TLS with

optional client certificate verification, effectively preventing

unauthorized service access. Initial handshake overhead was

observed at 15–20ms, but with TLS session reuse enabled,

subsequent requests incurred negligible overhead (<2ms). This

validates the feasibility of using mTLS even in high-throughput

microservice environments.

JWT Validation: JWTs were verified using RS256 public key

cryptography. Benchmarking with tokens of 512-byte payloads

showed an average verification time of 0.9ms per token. In real-

world systems, where token verification is often offloaded or

cached, this overhead is minimal and does not present a

significant bottleneck.

b) Access Control via RBAC

A series of authorization tests were run using role-based

policies mapped to service metadata (e.g., service name,

endpoint, method). The proxy correctly enforced access

policies across all tested cases.

We simulated:

• Valid access attempts → 100% success

• Unauthorized access (wrong role) → 100% denial

• Malformed requests → 100% rejection

This confirms the RBAC engine’s reliability under expected

access patterns. Additionally, misconfiguration scenarios (e.g.,

missing roles) were logged but safely defaulted to a deny

policy, aligning with best practices.

Scalability Tests

To test horizontal scalability, the proxy was deployed alongside

a 10-service mesh with each service generating ~300 RPS.

Under this multi-tenant load, CPU usage remained below 60%

on a 2-core proxy instance, and memory consumption

plateaued at ~220MB.

Scaling the proxy to 50 services did not produce linear

increases in overhead, primarily due to connection pooling and

async I/O. This shows promise for large-scale deployments

without needing proportional resource increases.

Security Failures and Fault Injection

We injected several types of failures to test how the proxy

reacts to compromised or invalid conditions:

Scenario Expected

Behavior

Observed

Behavior

Expired JWT Rejected Rejected

Unknown CA in

mTLS

Rejected Rejected

Token replay Rejected Rejected

Invalid policy

role

Denied access Denied

No token

provided

Denied access Denied

These results demonstrate the security proxy’s ability to scale

efficiently in enterprise microservices environments while

maintaining security, availability, and performance

consistency.

Fig 5. Latency vs. Traffic Load - Illustrates how the

system's response time (latency) increases as traffic load

(RPS) increases. This confirms that the security proxy

introduces minimal overhead, maintaining an average

additional latency of only 3.5 milliseconds per request,

even at peak load.

Fig 6. Throughput vs. Traffic Load - Displays the system's

capability to handle increasing requests. The results show

that the proxy sustains 50,000 RPS, ensuring scalability

while enforcing mTLS, JWT authentication, and RBAC.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

13

Fig 7: Error Rate vs. Traffic Load - Demonstrates system

stability under stress. Even under heavy load conditions,

the error rate remains low, with a slight increase at peak

traffic levels. The proxy successfully mitigated 1 million

unauthorized requests during a simulated DDoS attack,

ensuring 99.98% success for legitimate traffic.

8.3.1 Cloud-Native SaaS Platforms
Cloud providers usually expose gRPC APIs for interservice

communication. Deploying this proxy as a part of the

Kubernetes infrastructure provides security for multi-tenant

communication while minimizing the possibility of

misconfigurations in authentication and authorization policies.

It allows cloud providers to offer secure and stable services to

their consumers while keeping operational overhead in

managing complicated security configurations at a minimum

[43]. By incorporating the proxy into the Kubernetes

environment, cloud providers can take advantage of

Kubernetes's native capabilities for scaling and management of

applications. Kubernetes offers a robust system for deploying

and managing containerized apps, and it is an excellent

environment for hosting gRPC services. The proxy can be

introduced as a sidecar container that runs next to every gRPC

service, intercepting and securing all traffic between services.

This method automatically encodes all the gRPC traffic without

modifying the application code. Further, Kubernetes'

orchestration capabilities allow the proxy to manage and scale,

guaranteeing its capacity to handle the traffic of a dynamic

cloud setup [44]. The proxy's multi-tenancy capabilities benefit

cloud service providers. Multi-tenancy means multiple

customers can share the same infrastructure but with isolation

and security. The proxy ensures that every tenant's gRPC traffic

is separated from other tenants to avert unauthorized access and

data leakage. With strict authentication and authorization

policies, the proxy mitigates the risks of misconfigurations that

might undermine the security of the multi-tenant setup. This

enables cloud providers to provide secure and stable services to

their clients while achieving maximum resource utilization and

cost minimization [45-47].

8.4 Security and Malicious Traffic Handling
In addition to regular authentication and access control testing,

other tests were performed to analyze how well the proxy held

up against security attacks and how it could be incorporated

with various security policies. Tests were performed on the

system under high-volume attack situations to assess its

capability to block unwanted access and ensure stability. To

verify resistance to attacks, a DDoS simulation was conducted

with 1 million unauthorized requests to the proxy within five

minutes. The proxy could block 99.98% of unwanted traffic

and pass legitimate requests without latency degradation.

Finally, token replay attacks were also simulated by

retransmitting expired or reused JWT tokens, and the proxy

was able to detect and reject all replayed authentication

attempts. To also exercise security enforcement, a role-based

access control (RBAC) privilege escalation attack was carried

out by tampering with JWT claims to convey unauthorized

administrative privileges. The proxy enforced strict role

validation and blocked access to avoid infringements on pre-

defined RBAC policies. The proxy was exercised with

Kubernetes RBAC, Istio service mesh security policies, and

external API gateway authentication schemes to ensure the

seamless integration of security policies. The outcome ensured

that the gRPC security proxy augments existing security

measures with an added enforcement layer to provide end-to-

end security even when integrated with external security

controls.

Table 4: Attack Simulations and Security Policy Tests.

Test

Scenario Description

Success

Criteria

Failure

Criteria

mTLS

Handshake

Verify that

mTLS is

correctly

established

between the

proxy and the

user service.

TLS session

established

within 100ms

using valid

certificates.

The

certificate

expired, was

untrusted, or

had a

handshake

time

of>500ms.

JWT

Validation

Ensure

authentication

works

correctly with

JWT tokens.

The token is

valid, not

expired, and

matches the

signature and

claims within

50ms.

Token

expired,

invalid

signature, or

validation

exceeds

50ms.

DDoS

Attack

Simulation

Simulate a

high-load

attack with 1M

unauthorized

requests.

99.98% of

unauthorized

traffic is

blocked, and

the proxy

continues

processing

legitimate

requests.

Proxy accepts

malicious

traffic, or the

error rate

exceeds

0.02%.

Token

Replay

Attack

Resend

previously

used or

expired JWT

tokens to

bypass

authentication.

Proxy correctly

rejects all

replayed

authentication

attempts.

Proxy

incorrectly

accepts

duplicate or

expired

tokens.

RBAC

Privilege

Escalation

Modify JWT

claims to gain

unauthorized

access.

Proxy denies

access if JWT

claims do not

match pre-

defined roles.

Unauthorized

access is

granted due to

claim

manipulation.

Security Evaluate Proxy enforces Conflicts

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

14

Policy

Integration

Test

compatibility

with Istio,

Kubernetes

RBAC, and

API gateways.

security rules

while

complementing

external

policies.

arise between

proxy rules

and external

security

layers.

9. CONCLUSION

9.1 Summary of Contributions
This article introduces a centralized gRPC proxy framework

designed to improve the security of microservices

communications by combining mTLS, JWT authentication,

and RBAC enforcement. The primary contribution of this

framework is that it enables the incorporation of these security

features into a preexisting microservices infrastructure

effortlessly without needing significant modifications to the

services themselves. As an intermediary between the client and

the backend services, the proxy guarantees that all

communications are encrypted using mTLS, requests are

authenticated using JWT tokens, and access is managed

according to role-based policies (RBAC). By doing so, secure

microservices communication is achievable without requiring

a complete infrastructure overhaul, delivering flexibility,

scalability, and security. The design of this framework, built

atop Envoy, provides high performance under load along with

a secure and scalable solution. The system utilizes mTLS for

mutual authentication and encryption to prevent unauthorized

access, and eavesdropping and MitM attacks are prevented.

JWT authentication ensures that requests are from

authenticated sources, and RBAC provides fine-grained access

control with user permissions and roles. However, while this

model adds significant security, threats and operational

concerns must be discovered. mTLS requires strict certificate

lifecycle management since expired or misconfigured

certificates will result in service authentication failure. JWT-

based authentication, when not implemented correctly, is

vulnerable to token theft, replay attacks, and weak signature

algorithms. RBAC enforcement must be continuously

monitored to prevent privilege escalation and inconsistent

policy enforcement. To minimize these risks, upcoming

enhancements will add automated anomaly detection for token

abuse, real-time certificate renewal without downtime, and

runtime behavior-based dynamic access control policies. While

the solution presented provides strong authentication and

security enforcement, it has limitations. Its reliance on

centralized infrastructure requires that proper load balancing

and fault tolerance measures be put in place to prevent single

points of failure. Compatibility with legacy systems and

performance overhead under high-load or edge conditions must

also be carefully managed. Future optimizations will focus on

reducing latency, improving multi-cloud interoperability, and

reinforcing security enforcement under low-resource

conditions to render the framework versatile, fault-tolerant, and

scalable to the demands of contemporary microservices. By

preemptively addressing these challenges, this solution offers a

robust and developer-friendly security framework for

microservices architecture to ensure confidentiality, integrity,

and controlled access to gRPC-based communication channels.

9.2 Scalability and Performance Validation:
Aside from enhancing security, the design was tried in big

deployment scenarios to ensure its performance and scalability

in high-load situations. As elaborated in Section 8.3, the

security proxy sustained 50,000 requests per second with little

latency effect, successfully handled 1 million API invocations

with role-based access control enforcement, and achieved a

99.97% success rate in authentication for JSON Web Token

verification. Stress testing also confirmed that the proxy can

resist a simulated Distributed Denial-of-Service (DDoS) attack

with 1 million illegitimate requests while maintaining a 99.98%

success rate for legitimate traffic. The results confirm that the

proxy serves as a security layer and a scalable solution well-

equipped to support high-demand microservices architectures.

9.3 Addressing Future Security Challenges:
Though beneficial, the model presents specific operational

risks that need ongoing monitoring and tweaking. Managing

the lifecycle of the mTLS certificate is essential because

expired or incorrectly configured certificates would lead to

authentication failures. Further, when incorrectly implemented,

JWT-based authentication would be vulnerable to token theft,

replay attacks, or ineffective signature algorithms. RBAC

policies must be meticulously managed to avoid privilege

escalation, role misconfiguration, and enforcement

inconsistency across various services.

To address these concerns, upcoming improvements will

concentrate on the following:

• Automated anomalous behavior detection for

identifying token misuse and inauthentic usage

patterns.

• Live certificate renewal workflows to prevent

downtime due to expired TLS certificates.

• Adaptive access control policies are dynamic

according to runtime behavior and risk scores.

By preemptively addressing such security concerns, the above

solution offers a developer-friendly, highly scalable, and

security-centric framework that guarantees confidentiality,

integrity, and controlled access in gRPC-based microservices

environments.

9.4 Future Work
The centralized gRPC proxy framework provides a strong

foundation for secure communication and offers many

opportunities for additional improvement. Areas of

improvement in the future will focus on expanding

authentication mechanisms, streamlining automation

procedures, maximizing scalability, and enhancing real-time

security monitoring. A significant enhancement would be

OAuth 2.0 and OpenID Connect (OIDC) integration for easy

authentication with identity providers such as Auth0, AWS

Cognito, and Okta, as well as enhanced user authentication and

access control. Additionally, workload identity management

based on SPIFFE (Secure Production Identity Framework for

Everyone) can be introduced to improve security for multi-

cluster and multi-cloud environments. Furthermore, the

framework can be enhanced by utilizing API gateways, which

would enable fine-grained security of APIs, rate limiting, and

improved management of users. The other noteworthy

enhancement is automating security controls, namely token

lifecycle management. While the system employs manually

configured JWT tokens, automation of token expiration,

rotation, and validation would reduce token-related risks in

large-scale environments to a bare minimum. Furthermore,

implementing adaptive token validation with AI-driven

anomaly detection can help detect token abuse, replay attacks,

and unauthorized access attempts, improving the overall

security stance. Scalability and fault tolerance improvements

are also necessary. The proxy design can be extended to

facilitate dynamic scaling and support effective handling of

varying traffic loads. Future framework versions can address

other proxy options involving automated failover, multi-region

deployments, and intelligent load balancing for improved

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

15

overall resilience. In addition, the design can be optimized for

high-frequency workloads like AI-based services, edge use

cases, and financial transaction processing, thereby ensuring

low-latency authentication and policy enforcement even at

scale. Real-time security monitoring and threat detection

capabilities can also be boosted. Incorporating real-time

security analytics using Prometheus and OpenTelemetry will

also be a focus in future development to allow organizations to

monitor authentication and access control events more

effectively. Incorporating AI-driven anomaly detection can

significantly improve security by identifying instances of JWT

misuse, privilege escalation attempts, and unauthorized access

patterns, thereby facilitating automated security alerts and

proactive threat responses. The framework will be upgraded to

accommodate zero-trust security models, such as risk-based

authentication and contextual security analysis, to dynamically

evaluate and enforce access control to stay abreast of evolving

cybersecurity trends. By surmounting these future challenges,

the gRPC Security Proxy will evolve into an even more

adaptive, scalable, and intelligent security solution, providing

strong authentication, high availability, and proactive threat

detection in modern microservices architectures. These

enhancements will enable the framework to be immune to

future cybersecurity threats without compromising

performance and ensure security compliance in dynamic

environments.

9.5 Impact
The centralized gRPC proxy framework can substantially

influence the adoption of safe communication within

microservices architectures. With the rise in the usage of

microservices, owing to their modularity and scalability, there

is a real need to ensure secure communications between

services. This is a centralized solution for mTLS, JWT

authentication, and RBAC enforcement to manage complex

security features without significant rework. The simplicity of

integration might inspire more organizations to adopt secure

communication practices in environments that are based on

microservices. The framework significantly reduces the

complexity of setting up security while promoting greater on-

premises compliance due to GDPR, HIPAA, and FedRAMP.

Strong access controls and secure data transmission practices

must be in place for all applications. With the increasing

demand for cloud-native applications and microservices,

adopting frameworks like this may establish a standard way of

securing inter-service communications. This will make it easier

to enforce security policies and increase the general

trustworthiness and reliability of contemporary distributed

systems, empowering organizations to scale their services

securely while reducing security risks.

9.6 Limitations
While the security proxy proposed for gRPC offers strong

authentication, encryption, and access controls, it has certain

limitations that must be considered when implementing it in a

practical deployment. One of the significant concerns with this

system is its use of a centralized security enforcement model.

Because the proxy serves as an intermediary for policy

enforcement and authentication, all gRPC traffic will have to

go through it, presenting a single point of failure if not

adequately distributed. To counter this issue, companies

implementing the proxy should use load balancing and

redundancy controls to prevent disruptions in the event of

infrastructure failure. Another limitation is backward

compatibility with legacy systems and older microservices

architecture. Numerous microservices already in production

may still use primitive TLS implementations or bespoke auth

mechanisms that do not natively include mTLS or JWT

authentication. Deploying the proxy in such environments may

involve updating client configurations and dealing with

certificates and API security pipelines. Additionally, services

that expose SOAP-based communications or have older

HTTP/1.1 stacks would need custom authentication

arrangements because this proxy is optimized for gRPC-based

communication. Performance bottlenecks can also happen

under high-load situations, where the proxy needs to handle

millions of authentications requests every second. Although the

proxy has been benchmarked at 50,000 requests per second

(RPS) with 3.5 millisecond average latency, intense load

situations or considerable role-based access control (RBAC)

policies can introduce processing overhead. For IoT or edge

computing deployments with constrained computation

resources and network latency, proxy-based security

enforcement might not always be the optimal approach

compared to lightweight client-side authentication models.

Scalability is also a concern, especially when deploying the

proxy in hybrid or multi-cloud environments. While it behaves

well with Kubernetes and service meshes, heterogeneous

infrastructure organizations may experience networking

complexity when forwarding gRPC traffic through security

enforcement points. Interoperability between clusters, cloud

regions, and API security policies may require additional

configurations and performance tuning. Finally, there is a

trade-off between security enforcement and request latency.

Every incoming request is authenticated, decrypted, and

policy-checked, which, although optimized, introduces some

latency. For low-latency applications such as financial trading

or real-time analytics, this additional processing must be

carefully balanced against security requirements. Despite these

limitations, the proposed gRPC security proxy is still a flexible

and extensible solution for contemporary microservices

architecture, especially in cloud-native environments where

centralized authentication and access control enforcement are

of utmost priority. Sure of these problems can be resolved

through future enhancements that may streamline request

processing, include dynamic security policies, and enhance

integration with edge computing frameworks.

10. ACKNOWLEDGEMENT
The authors would like to express their gratitude to all

individuals and institutions who indirectly supported this

research. No specific support was received that requires formal

acknowledgment.

11. REFERENCES
[1] "Challenges of Implementing Microservice Architecture,"

opslevel.com, 2024.

Available:https://www.opslevel.com/resources/challenge

s-of-implementing-microservice-architecture.

[2] "Enhancing gRPC Security | Best Practices for Secure

Communication in Microservices," bytesizego.com, 2024.

Available: https://www.bytesizego.com/blog/grpc-

security.

[3] Chris Hendrix, "How to Secure Communication Between

Microservices," Styra, 2023. Available:

https://www.styra.com/blog/how-to-secure-

communication-between-microservices/.

[4] Nicole Jones, "gRPC API Security Best Practices,"

StackHawk, 2024. Available:

https://www.stackhawk.com/blog/best-practices-for-

grpc-security.

[5] T. Farnham, "Supporting Disconnected Operation of

http://www.opslevel.com/resources/challenges-of-implementing-microservice-architecture
http://www.opslevel.com/resources/challenges-of-implementing-microservice-architecture
http://www.bytesizego.com/blog/grpc-security
http://www.bytesizego.com/blog/grpc-security
http://www.styra.com/blog/how-to-secure-communication-between-microservices/
http://www.styra.com/blog/how-to-secure-communication-between-microservices/
http://www.stackhawk.com/blog/best-practices-for-grpc-security
http://www.stackhawk.com/blog/best-practices-for-grpc-security

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

16

Stateful Services Using an Envoy Enabled Dynamic

Microservices Approach," CLOSER, pp.115-122, 2023.

[6] N. Dattatreya Nadig, "Testing Resilience of Envoy

Service Proxy with Microservices," Proceedings of diva-

portal.org, 2019.

[7] W. Zhang, "Improving Microservice Reliability with

Istio," willezhang.github.io, 2020.

[8] L. Calcote, Z. Butcher, Istio: Up and Running: Using a

Service Mesh to Connect, Secure, Control, and Observe,

O'Reilly Media, 2019.

[9] M. Chigurupati, A. Jagtap, "Enhancing Microservice

Resiliency and Reliability on Kubernetes with Istio: A Site

Reliability Engineering Perspective," International

Journal of Computer Trends and Technology, Vol.72,

No.11, pp.17-22, 2024. DOI:10.14445/22312803/IJCTT-

V72111P103.

[10] R. Sharma, A. Singh, R. Sharma, A. Singh, "Policies and

Rules," Getting Started with Istio Service Mesh: Manage

Microservices in Kubernetes, pp.281-304, 2020.

[11] J. Suomalainen, Defense-in-Depth Methods in

Microservices Access Control, Master's Thesis, 2019.

[12] M. G. de Almeida, E. D. Canedo, "Authentication and

Authorization in Microservices Architecture: A

Systematic Literature Review," Applied Sciences, Vol.12,

No.6, p.3023, 2022. DOI:10.3390/app12063023.

[13] A. Barabanov, D. Makrushin, "Authentication and

Authorization in Microservice-Based Systems: Survey of

Architecture Patterns," arXiv preprint arXiv:2009.02114,

2020.

[14] H. Dong, Y. Zhang, H. Lee, K. Du, G. Tu, Y. Sun, "Mutual

TLS in Practice: A Deep Dive into Certificate

Configurations and Privacy Issues," Proceedings of the

2024 ACM on Internet Measurement Conference, pp.214-

229, 2024. DOI:10.1145/3636512.

[15] B. Campbell, J. Bradley, N. Sakimura, T. Lodderstedt,

"RFC 8705: OAuth 2.0 Mutual-TLS Client Authentication

and Certificate-Bound Access Tokens," 2020.

[16] N. Li, M. V. Tripunitara, "Security Analysis in Role-

Based Access Control," ACM Transactions on

Information and System Security (TISSEC), Vol.9, No.4,

pp.391-420, 2006.

[17] I. G. Buzhin, A. Y. Derevyankin, V. M. Antonova, A. P.

Perevalov, "Comparative Analysis of the REST and gRPC

Used in the Monitoring System of Communication

Network Virtualized Infrastructure,"

[18] T-Comm-Telecommunications and Transport, Vol.17,

No.4, pp.50-55, 2023.

[19] CGIAR Genetic Resources Policy Committee, "Summary

Report of the Genetic Resources Policy Committee

(GRPC) Meetings Held in 2005," 2006.

[20] Y. Yu, A. Jatowt, A. Doucet, K. Sugiyama, M.

Yoshikawa, "Multi-Timeline Summarization (MTLS):

Improving Timeline Summarization by Generating

Multiple Summaries," Proceedings of the 59th Annual

Meeting of the Association for Computational Linguistics

and the 11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pp.377-

387, 2021.

[21] M. Pace, "Zero Trust Networks with Istio," Doctoral

Dissertation, Politecnico di Torino, 2021.

[22] F. Pallas, "Hook-in Privacy Techniques for gRPC-based

Microservice Communication," 2024.

[23] Z. Lai, Y. Xin, A. Yu, "Framework for Data Tracking

Across Data Controllers and Processors," 2024.

[24] L. Arstila, Securing Microservices with Deep Learning-

Long Short-Term Memory Autoencoder for Anomaly

Detection, Master's Thesis, 2023.

[25] A. Dabholkar, V. Saraswat, "Ripping the Fabric: Attacks

and Mitigations on Hyperledger Fabric," Applications and

Techniques in Information Security: 10th International

Conference, ATIS 2019, pp.300-311, 2019.

DOI:10.1007/978-981-15-0871-424.

[26] JamesNK, "Performance Best Practices with gRPC,"

microsoft.com, 2024.

Available:https://learn.microsoft.com/en-

us/aspnet/core/grpc/performance?view=aspnetcore-9.0.

[27] A. de Waal, M. Weaver, T. Day, B. van der Heijden, "Silo-

Busting: Overcoming the Greatest Threat to

Organizational Performance," Sustainability, Vol.11,

No.23, p.6860, 2019. DOI:10.3390/su11236860.

[28] F. Pallas, "Hook-in Privacy Techniques for gRPC-based

Microservice Communication," 2024.

[29] E. Shmeleva, How Microservices Are Changing the

Security Landscape, Master's Thesis, 2020.

[30] L. M. G. Silva, gRPC and Protobuf: Performance and API

Flexibility, Doctoral Dissertation, 2024.

[31] Z. Li, S. He, Z. Yang, M. Ryu, K. Kim, R. Madduri,

"Advances in APPFL: A Comprehensive and Extensible

Federated Learning Framework," arXiv preprint

arXiv:2409.11585, 2024.

[32] A. Gazibegovic, F. Rejabo, "Design and Implementation

of a Distributed Fleet Simulator," 2021.

[33] "gRPC Proxy," etcd, 2022. Available:

https://etcd.io/docs/v3.3/op-guide/grpcproxy/.

[34] P. Skentzos, "Software Safety and Security Best Practices:

A Case Study from Aerospace," SAE Technical Paper

Series, 2024. DOI:10.4271/2024-01-2618.

[35] M. Anedda, A. Floris, R. Girau, M. Fadda, P. Ruiu, M.

Farina, A. Bonu, D. Giusto, "Privacy and Security Best

Practices for IoT Solutions," IEEE Access, 2023.

DOI:10.1109/ACCESS.2023.3345432.

[36] D. Fett, P. Hosseyni, R. Kusters, "An Extensive Formal

Security Analysis of the OpenID Financial-Grade API,"

2019 IEEE Symposium on Security and Privacy (SP),

2019. DOI:10.1109/SP.2019.00065.

[37] A. K. I. Riad, A. Barek, M. M. Rahman, M. S. Akter, T.

Islam, M. A. Rahman, M. R. Mia, H. Shahriar, F. Wu, S.

Ahamed, "Enhancing HIPAA Compliance in AI-Driven

mHealth Devices Security and Privacy," 2024 IEEE 48th

Annual Computers, Software, and Applications

Conference (COMPSAC), 2024.

DOI:10.1109/COMPSAC60750.2024.00099.

[38] S. Mbonihankuye, A. Nkunzimana, A. Ndagijimana,

"Healthcare Data Security Technology: HIPAA

Compliance," Wireless Communications and Mobile

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.28, August 2025

17

Computing, 2019. DOI:10.1155/2019/1928704.

[39] F. Elkourdi, C. Wei, L. Xiao, Z. Yu, O. Asan, "Exploring

Current Practices and Challenges of HIPAA Compliance

in Software Engineering: Scoping Review," IEEE Open

Journal of Systems Engineering, 2024.

DOI:10.1109/OJSE.2024.3380011.

[40] N. Abbasi, D. A. Smith, "Cybersecurity in Healthcare:

Securing Patient Health Information (PHI), HIPAA

Compliance Framework and the Responsibilities of

Healthcare Providers," Journal of Knowledge Learning

and Science Technology, 2024. ISSN:2959-6386.

[41] S. Selvaraj, "Preserving Patient Confidentiality: The Vital

Role of Data Tokenization in Ensuring Data Security and

Regulatory Compliance in Healthcare," International

Journal of Science and Research (IJSR), 2024.

DOI:10.21275/SR2412011409.

[42] J. Duckworth, D. Gloe, B. Klein, "Software-Defined

Multi-Tenancy on HPE Cray EX Supercomputers," 2023.

Available:https://www.semanticscholar.org/paper/367afe

e8dfcb2a8f4ab42694061eb6eca8475dfa.

[43] R. Molleti, "Highly Scalable and Secure Kubernetes

Multi-Tenancy Architecture for Fintech," Journal of

Engineering and Applied Sciences Technology, 2022.

DOI:10.5281/zenodo.6789100.

[44] J. Duckworth, D. Gloe, B. Klein, "Software-Defined

Multi-Tenancy on HPE Cray EX Supercomputers," 2023.

Available:

https://www.semanticscholar.org/paper/367afee8dfcb2a8

f4ab42694061eb6eca8475dfa.

[45] G. Chikafa, S. Sheikholeslami, S. Niazi, J. Dowling, V.

Vlassov, "Cloud-Native RStudio on Kubernetes for

Hopsworks," arXiv preprint arXiv:2307.09132, 2023.

[46] M. F. J. Potter, "The Integration of Ethernet Virtual

Private Network in Kubernetes," Master's Thesis, 2019.

Available:

https://www.semanticscholar.org/paper/996acc4fe079e5f

f5a6240decef9228130baebe3.

[47] C. Katsakioris, C. Alverti, K. Nikas, S. Psomadakis, V.

Karakostas, N. Koziris, "FaaSCell: A Case for Intra-Node

Resource Management: Work-In-Progress," Proceedings

of the 1st Workshop on SErverless Systems, Applications

and MEthodologies, 2023.

DOI:10.1145/3595620.3595630.

IJCATM : www.ijcaonline.org

http://www.semanticscholar.org/paper/367afee8dfcb2a8f4ab42694061eb6eca8475dfa
http://www.semanticscholar.org/paper/367afee8dfcb2a8f4ab42694061eb6eca8475dfa
http://www.semanticscholar.org/paper/367afee8dfcb2a8f4ab42694061eb6eca8475dfa
http://www.semanticscholar.org/paper/367afee8dfcb2a8f4ab42694061eb6eca8475dfa
http://www.semanticscholar.org/paper/996acc4fe079e5ff5a6240decef9228130baebe3
http://www.semanticscholar.org/paper/996acc4fe079e5ff5a6240decef9228130baebe3

