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ABSTRACT 

The increasing of interesting in exploration of the underwater 

environment unknown and complexity, accentuated the need of 

the underwater vehicles with trusted robust control systems. 

Over a few pasts dedicates, much of researchers and scholars 

shown a huge racing for designing and implementing 

navigation systems supporting autonomy for underwater 

vehicles. 

This paper will explore the basic concepts of Autonomous 

Underwater Vehicle (AUV) control systems and terms. Two 

different criteria of algorithms for AUVs' path trajectory will 

discussed and explained (Path Following and Path Planning). 

Also, some path trajectory algorithms which have been 

designed with aiding of AI techniques are discussed through 

this research work; Where the study shows the similarities and 

differences between different types, and then assesses the 

benefits gained from the use of AI technology. 

General Terms 

Path following – Path planning, Reinforcement Learning – 

Deep Reinforcement Learning – degrees of freedom (DoF). 

Keywords 
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1. INTRODUCTION 
With the development of large-scale and complicated 

automation systems, networked control has attracted 

significant attention in the past two decades. In view of various 

applications, coordinated motion control serving as an 

important branch of networked control has been widely studied 

[1]. Roughly speaking, in recent years, the role of autonomous 

unmanned vehicle (AUV) has become more and more 

important. Equipped with a series of various technical sensors, 

AUV can conduct continuous operation without human 

supervision in specific environment. In addition, it can work 

independently adjusting to the changes of the environment to 

complete its goal task. Due to the remarkable maneuvering 

characteristics and high cost-effective advantages, AUV can 

replace personnel in high-risk environments [2]. In general, the 

less investment, good maneuverability and flexible control, 

give AUV wide applied in many fields, such as scientific 

observation, resource investigation, oil and gas engineering, 

military applications etc., [3]. With the continuous 

development and maturity of AUV technology, developing 

algorithms to address AUV tasks has become a research hotspot 

in the latest years. Generally, AUV is advantageous over 

human due to its deployment simplicity, low cost and low risk, 

and can even complete dangerous tasks in unknown complex 

environments that might be inaccessible to human beings [4]. 

 

2. AUTONOMOUS VEHICLES 
The term autonomous agent generally refers to an entity that 

makes its own choices about how to act in a specific 

environment without any influence from a leader or a global 

plan. According to Craig W. Reynolds on his article [5]: {The 

term “autonomous agent” is used in many contexts, so the 

following is an attempt to locate the terminology of this paper 

in relation to other fields of study. An autonomous agent can 

exist in isolation, or it can be situated in a world shared by other 

entities. A “data mining” agent is an example of the former, and 

a controller for a power grid is an example of the latter. A 

situated agent can be reactive (instinctive, driven by stimulus) 

or it can be deliberative (“intellectual” in the classic AI sense). 

An autonomous agent can deal exclusively with abstract 

information (“softbot”, “knowbot”, or “information agent”) or 

it can be embodied in a physical manifestation (a typical 

industrial robot or an autonomous vehicle). Combinations of 

situated, reactive, and embodied define several distinct classes 

of autonomous agents}. 

2.1 Definitions and Terms 
There is, as of yet, a lack of consistency in the nomenclature 

and taxonomy of unmanned vehicles (UVs). As per the précis 

authors of [6] and the Expert commentators of their work; they 

have adopted the following terms. Here is an exploration of 

common acronyms, synonyms and key terms as per Brendan 

Gogarty et. al. collection in their article [6]: 

2.1.1 UVs 
Any vehicle which operates without a human direct physical 

contact. 

2.1.2 UV variants  
The four acronyms used to describe UVs operating in different 

environments are: 

2.1.2.1 UAVs (unmanned aerial vehicles),  

2.1.2.2 UGVs (unmanned ground vehicles),  

2.1.2.3 USVs (unmanned [water] surface vehicles), and  

2.1.2.4 UUVs (unmanned underwater vehicles). 

2.1.3 UCV variants 
Refers to weaponized UVs. UVs designed specifically for this 

purpose usually include the term ‘combat’ within the acronym; 

hence a UCAV is an unmanned combat aerial vehicle. 

2.1.4 Drones 
The term ‘drone’ is arguably the most common and widespread 

synonym for UVs. In particular it is used to refer to unmanned 

aerial vehicles (UAVs). 
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2.1.5 Remote vehicles 
These generally refer to vehicles over which a human has 

direct, albeit remote, control. For instance, a human operator 

receives visual images from cameras or sensors on-board a UV 

and steers it by cable (tethered control) or wireless signal 

(remote control). This form of human/machine interface is 

referred to as ‘teleoperated’ control. 

2.1.6 Robotics 
The more autonomous forms of UVs are often referred to as 

robots or robotic systems. The Oxford English Dictionary 

(OED) describes a robot as “a machine … designed to function 

in place of a living agent, esp. one which carries out a variety 

of tasks automatically or with a minimum of external impulse”.  

2.2 Vehicle Autonomy 
Unmanned Vehicles (UVs) vary in their form and complexity, 

but perhaps the most important distinguishing feature is how 

much a UV can operate wisely without human control and 

direction. 

Modern UVs are all ‘controlled’ to one degree or another; 

however modern technology platforms and artificial 

intelligence (AI) give UVs the capacity to function without 

direct human intervention. UAVs in current use can, for 

instance, be set general patrol coordinates and then left to pilot 

themselves; while surveillance UGVs can independently patrol 

long stretches of border, only alerting a human controller when 

suspicious activity is detected [6,7]. 

According to the Society of Automotive Engineers (SAE) and 

the National Highway Traffic Safety Administration (NHTSA) 

[8,9,10], vehicle autonomy is classified into six levels, ranging 

from Level 0 (no automation) up to Level 5 (full automation). 

At Level 0, the vehicle is entirely controlled by a human driver. 

As reader progresses through the levels, the degree of 

autonomy increases, with Level 5 vehicles being capable of 

fully autonomous operation in their specific environments and 

conditions without any human intervention. These six levels of 

automation are as following: 

2.2.1 Level 0 (No Autonomy) 
The UV is entirely tele-operated by a human. 

2.2.2 Level 1 (Robot Assistance)  
The UV provides some automated functionality, for example 

staying at a set depth (set by the operator) or prohibiting the 

operator to maneuver into obstacles. The operator is still in full 

control of the UV. 
2.2.3 Level 2 (Task Autonomy)  
The UV is able to execute motions under the guidance of the 

operator. For example, way-points could be set to which the 

UV will travel with no further input from the operator. 

2.2.4 Level 3: (Conditional Autonomy) 
The UV generates task strategies, but requires a human to 

select which one to undertake. For example, when exploring 

an environment, the UV may identify several different routes 

to take, with the human selecting the most appropriate one. 

2.2.5 Level 4: (High Autonomy) 
The UV can plan and execute missions based on a set of 

boundary conditions specified by the operator. The operator 

does not require to select which one the UV should do; 

however, they are there to oversee the task execution. 

2.2.6 Level 5 (Full Autonomy) 
The UV requires no human input at all. It is deployed into the 

environment and left with no operator oversight. 

Due to this increasing level of independence, UVs are often 

referred to as “autonomous vehicles”. However, it is clear that, 

at present, no agent in active military or commercial use is 

actually “autonomous”, in the sense that they are completely 

independent or self-governing. According to, the UV’s control 

is varied between “semi-autonomous agent” and “fully 

autonomous agent” [8,11]. The semi-autonomous agents are 

given broad operating instructions by operators, but are left to 

carry out routine functions within those parameters, such as 

navigation or monitoring operations. Critical decisions, such as 

whether to fire weapons or follow a suspect target off routine 

patrol paths are currently left to a human operator to veto or 

directly control. While fully autonomous agents would not 

require such a human veto. Rather, they would be given general 

instructions and then left to fulfil their directives according to 

their programming and artificial intelligence.  

As per [12], The wide range of operational contexts implies that 

truly autonomous vehicles must be able to follow spatial 

trajectories (path following), avoid collisions along these 

trajectories (collision avoidance), and maintain a desired 

velocity profile (velocity control). In addition, autonomous 

vehicles are often underactuated by the fact that they operate 

with three generalized actuators (propeller, elevation, and 

rudder fins) in six degrees of freedom (6-DoF). 

3. AUTONOMOUS VEHICLE’S 

ENVIRONMENT AND APPLICATIONS 
Autonomous vehicles are being used in a virous wide scope of 

applications such as military, industrial and commercial 

applications. In the military, autonomous vehicles offer 

navigation, secure communication and reconnaissance. 

Furthermore, they are being used in mobile edge computing, 

cellular communication, package delivery, smart healthcare, 

intelligent transportation systems, video surveillance missions, 

precision agriculture, power-line inspection, remote sensing, 

search and rescue, and performing relief operations in disaster 

environments [11]. Autonomous vehicles have the capability to 

access remote or dangerous areas, facilitate environmental 

monitoring and capture high resolution imagery. These 

wonderful vehicles are helpful in monitoring as they bridge the 

constraints in limited-access, dynamic, harsh and complex 

environments. 

In article [7] a detailed Comprehensive review of AVs impacts 

on air, land, water, noise & light pollution. In this article the 

authors made a review of the existing literature on the 

environmental impacts of AVs was carried out using the search 

engines Scopus and Web of Science during August 2020. A 

first search included the most commonly used keywords to 

refer to AVs, i.e., “Automated” or “Autonomous” or “Self-

driving” or “Driverless” and “Vehicle(s)” or “Car(s)”, yielding 

thousands of references. The search was subsequently extended 

to terms related to environmental impacts on different physical 

environments, including noise and light pollution as shown in 

Table 1. 

Table 1. Specific keywords used in the literature review 

Keyword Usage 

Air 

“Emissions” OR “Pollution” OR “Global 

Warming” OR “Greenhouse” OR “Carbon” 

OR “Air Quality” 

Land 
“Built Environment” OR “Land Use” OR 

“Urban Form” OR “Territorial Impact” 
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Water 

“Water Pollution” OR “Water 

Contamination” OR “Aquatic Toxicity” OR 

“Water Consumption” 

Others “Noise Pollution”, “Light Pollution” 

 

Extracting from Table 1 taken from article [7] which concerns 

about “Environmental impacts of autonomous vehicles”, rea 

der can notice clearly the AVs can be used in one of three ideal 

environments: air, land, and water; where each environment 

has its special considerations that should be handle with.  

Of Course, no one should forget an out-earth (space) 

environment which has its special conditions that must be taken 

into consideration. As per Michael D. Watson et. al. [13] 

“Human exploration outside of the Earth planetary system 

(beyond Earth orbit) requires autonomous operation of the 

vehicle to deal with communication latencies, crew size limits, 

and vehicle complexity. A fully autonomous vehicle of this 

complexity will require multiple autonomous algorithms 

working cooperatively within a set of mission objectives and 

system constraints. The understanding of the physics of the 

systems, system interactions, and environmental interactions is 

essential to the system engineering of this complex system”. 

Here for an example, a description of a space unmanned vehicle 

that developed by European Space Agency (ESA) is explored:  

“The Automated Transfer Vehicle (ATV) being developed by 

ESA is an unmanned vehicle that can be configured to provide 

the International Space Station (ISS) with up to 5500 kg of dry 

supplies (e.g., hardware, food and clothes) and liquid and gas 

supplies (up to 840 kg of water; up to 100 kg of gases (air, 

nitrogen, oxygen); up to 860 kg of refueling propellant). ATV 

can provide propulsion support to the ISS by using up to 4700 

kg of propellant. The total net payload is estimated to be at least 

7500 kg. Finally, ATV can also remove up to 6500 kg of waste 

from the Station” [14]. This detailed description informs the 

reader how much huge and importance of this ATV, also he can 

notice the special demands of the environment where ATV 

serves in. 

This article focuses on Autonomous underwater vehicles 

(AUVs); Where autonomous term is widely used than 

unmanned term although they are likely same.  AUV is any 

vehicle that is able to operate underwater without a human 

occupant. The first device, which can be classified as AUV, 

was developed in 1957 in the USA, Applied Physics 

Laboratory, University of Washington and named SPURV 

(Special Purpose Underwater Research Vehicle), designed to 

research in the Arctic waters. SPURV hull was made of 

aluminum and its shape is somehow like a torpedo. SPURV had 

classical hydrodynamic shape and it was driven by a screw. 

Control of this AUV was carried out by means of acoustic 

communications. SPURV had been successfully used in 

oceanographic research until 1979, and declare itself as a 

reliable and practical tool to explore the ocean [15]. 

4. AUVS CONTROL TECHNIQUES  
AUVs, need a robust navigation system that capable to face 

underwater challenges because of three main difficulties. First 

of all, AUVs are highly nonlinear multi-input multioutput 

systems with strong coupling and time-varying hydrodynamic 

coefficients of dynamics. Secondly, AUVs and environment 

models are often poorly known. Thirdly, most AUVs are 

designed as underactuated, that is, their degrees of freedom 

(DoF)s are greater than the number of independent actuators. 

All of these make it necessary to further study trajectory 

tracking problem of AUVs. The main issues of the AUV’s 

navigation system are: localization, positioning, path tracking, 

guidance, and control during a long period of duty cycle. The 

complexity that arises when combining the control objectives, 

a complicated hydrodynamic environment and disturbances, 

and the physical design with three generalized actuators spurs 

an intriguing control challenge [12,16]. Therefore, in order to 

develop an accurate and robust navigation and control system 

for an AUV, it is necessary to derive an adaptive algorithm for 

estimation of AUV dynamics. 

Two famous path controlling techniques for AUVs are widely 

used: Path Following Technique and Path Planning Technique. 

each of these two techniques have its own passionate 

researchers and developers. 

4.1 Path Following Technique  
Due to the AUVs’ impressive maneuverability and versatility, 

they have been extensively used in a variety of underwater 

tasks, including pipeline tracking, seafloor mapping, 

underwater structure inspections, and military operations. To 

accomplish these tasks effectively, accurate path-following 

control needs to be guaranteed [17].  

However, today's marine applications put forward higher and 

higher requirements for the autonomy of AUV. The AUVs that 

usually do not have good autonomy and are generally limited 

to pre-planning or pre-programming tasks. They work well in 

known and structured environments, but not in uncertain and 

dynamic ones. Therefore, to realize the autonomy of AUV, it is 

necessary for it to have strong abilities of environmental 

perception and understanding, adjustment of control policies, 

and task planning. The path planning and following of AUV, 

which determines the application prospect of AUV in the 

marine _eld, can only be realized with accurate control 

technology, in consideration of its energy consumption, motion 

characteristics, speed constraints, etc. [3]. Therefore, 

autonomous control that can adapt to the changes of marine 

environment is the core technology to realize the autonomy of 

AUV. Simply, path following technique is to provide the AUV 

with a robust mechanism capable to configure the detailed 

characteristics of the path that must be followed, hence the 

AUV should trace the segments of the path periodically to 

correct its direction till reach its target end. Finally, path 

following control aims at forcing a vehicle to converge to and 

follow a desired spatial path, without any temporal 

specifications [18]. 

4.2 Path Planning Technique  

At present, the most of AUVs used for deep-water exploration 
are underactuated AUVs. It’s only including stern thruster 

generally, and steering and pitching are realized through vector 

propulsion or rudder. Path planning is one of the core problems 

in the underactuated AUV fields. Its purpose is to find an 

optimal path from the beginning to the end. The path planning 

environment is either static or dynamic. In a static environment, 

the global environmental information such as terrain, obstacles 

and disturbances are known and a path can be planned ahead of 

the detection. However, for the dynamic environments, the 

global environmental information is unknown and the path 

needs to be planned in real-time [19]. Relatively speaking, the 

real time path planning in the dynamic environments has more 

practical significance and great difficulty. 

Path planning for AUVs is broadly categorized into two sub-

areas: global path planning and local path planning. A global 

path planner employs known information about the operational 

environment to return a path from the start point to the goal 
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while avoiding any obstacles. In contrast, a local path planner 

recalculates the path returned by the global path planner as 

needed to avoid unexpected moving obstacles such as ships, 

boats, swimmers, other AUVs, etc. [20,21]. 

Always, efficient path planning has always been a challenging 

task for underwater vehicles, and aimed at finding an optimal 

path from the initial to target points with full consideration of 

path length, safety and smoothness. In the latest years, many 

researchers paid more attention to optimal path planning and 

environment adaptation. And so does this article, its main 

research work which this overview made for, is mainly focuses 

on path planning and environment adaptation for AUV. In spite 

of many successful advances in path following and path 

planning, there are still some limitations for the practical 

engineering [21]: For path following and tracking: There were 

many points that should be taken in the consideration to work 

on and to be improved. First, some way points-based path 

following methods ignored the derivation of desired position, 

and the Line-of-Site (LoS) law showed unsmooth characteristic 

during switching stage. Second, some controllers based on the 

Lyapunov function existed the singularity of yaw angle in surge 

law. In practical underwater engineering, there will usually be 

a yaw angle error of 90◦, resulting in damage to the actuated 

mechanism with these methods. 

In the other hand, path planning: Most traditional path planning 

methods  might only consider the issues in static environment,  

which required exact map information before planning, and 

usually  could not achieve real-time planning. However, most 

real underwater environments are dynamic with movable 

obstacles, bringing great challenges to the planning algorithms. 

Consequently, it is significant to explore a utility algorithm to 

achieve the real-time path planning in complex dynamic 

environments. 

Either path following or path planning the problem of imbuing 

agents with a decision-making mechanism can be hard to tackle 

as the designer himself does not have a clear idea of what the 

agent should do, or does not have the time to provide all the 

possible acting options. Hence, the need for machine learning 

techniques arises [20-23]. 

5. MACHINE LEARNING 

TECHNOLOGIES 
Due to the challenges and complexity of the underwater 

environment, and the large number of the path factors tests and 

their rapidly varies, therefore a large number of control 

methods to overcome these difficulties have been proposed by 

researchers over the last decades. Different motion controllers 

for trajectory tracking, way-point tracking, path following, and 

path-planning in the literature are existed. Such as examples for 

autonomous based on the motion controllers for trajectory 

tracking system are the work carried out by Juan Li et. al. [22] 

and L. Lapierre et. al. [18]. Both of these works built on using 

Lyapunov theory. In these works, in order to solve the multi-

UUV formation tracking problem. Firstly, a single UUV 

kinematics path-tracking controller and a dynamic path 

tracking controller are designed by using backstepping 

techniques and Lyapunov theory. Juan Li et. al. reported that: 

“the formation method based on the leader and the virtual 

structure can handle the flexibility of the formation very well. 

Each UUV can track the expected speed of the formation very 

well. Making up for the inadequacy of the virtual structure 

formation method and leader-follower formation method. The 

algorithm implements three UUVs to track the desired path in 

a certain curve formation. The formation control mission of 

UUV was well achieved”. 

According to Wenjie Shi et. al. [16], in studies about trajectory 

tracking problem of AUVs, the dynamic models are often 

decoupled or linearized to enable potential applications of 

various classic controllers. But these researches are shown 

limitation in solving some of path tracking or its planning 

issues, neither overcome all the issues. 

The use of machine learning (ML) techniques in overcoming 

some of the challenges associated with AUV path planning 

problems such as safety and obstacle avoidance, energy 

consumption, and optimal time and distance travelled remains 

an active research area.  The (ML) algorithms are classified as: 

under supervised, unsupervised, and reinforcement learning 

[24].  

5.1 Reinforcement Learning Technology 
Later since a few years, agent learning based on Reinforcement 

Learning (RL) has been introduced into the AUV design and 

research to improve its autonomy. Reinforcement Learning is a 

method for an agent controller to learn optimal control policy 

through interaction with the environment [3]. The policy 

defines which action the controller should take when the agent 

is in a certain environmental state. Under the current policy, 

after the controller tries to select and execute an action in a 

certain state, it will receive a reward signal provided by the 

reward function defined in advance by the designer in the 

environment. This reward signal reflects the quality of the 

actions performed by the controller and is used to update the 

control policy. The controller main task is to learn a policy that 

maximizes the total cumulative reward. 

As a branch of machine learning, (RL) is usually modeled as a 

Markov decision process (MDP) [3], that mainly consists of 

five elements: agent, environment, state, action and reward. In 

(RL), an agent interacts with the environment by acquiring the 

environment state, performing actions and obtaining rewards. 

The scenario of the (RL) mechanism exactly is as shown in 

Figure 1. Where (st) represent the environmental state at time 

(t), and (at) is the agent performs an action after obtaining the 

state (st), and the environmental state is transformed from (st) 

to (st+1) at time (t+1). Then after the environment generates 

feedback reward (rt+1) to the agent in the new state (st+1). The 

agent will update the learned policy with the reward signal and 

perform a new action (at+1) in the new state. The agent will 

optimize the policy by continually interacting with the 

environment until an optimal policy is learned. The agent's goal 

is to maximize the long-term cumulative rewards. 

 

Fig 1: The main framework of (RL) algorithm 

In (RL), a general policy (Π) maps states to actions and has 

Markov property. The probability of taking action (a) in the 

current state (s) is only related to the current state, and has 

nothing to do with other factors [3]. The policy in general can 

be formulated as: 

Π (a | s) = p (at = a | st = s).   (1) 
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5.2 Deep Reinforcement Learning 

Technology  
Deep learning (DL) is a branch of machine learning based on a 

set of algorithms that attempt to model high level abstractions 

in data by using multiple processing layers, with complex 

structures or otherwise, composed of multiple non-linear 

transformations. (DL) also known as deep structured learning, 

hierarchical learning or deep machine learning [24]. 

Recently, Runsheng Yu et al. [25] applied the latest Deep 

Reinforcement Learning (DRL) to AUV path following task. 

DRL combines the advantages of Deep Learning (DL) and 

Reinforcement Learning, and can realize the end-to-end 

autonomous learning and control with the raw high-

dimensional environment perception information input to the 

behavior action. Runsheng Yu et al. claimed that AUV with 

DRL can achieve better control effect than a PID controller in 

simulation experiments. However, because it is difficult to 

define an effective reward function and it usually provides very 

sparse reward signals, the agent needs a lot of time and samples 

to explore and test before learning an effective control policy. 

Therefore, the authors of [25] reported that: the traditional (RL) 

and (DRL) methods are still difficult to apply directly to the 

actual AUV system. 

In a similar manner, Zhenzhong Chu et. al. [19] have proposed 

a DRL path planning method based on double deep Q Network 

(DDQN) In order to improve the AUV’s path planning 

capability in the unknown environments. Their work is created 

from an improved convolutional neural network, which has two 

input layers to adapt to the processing of high-dimensional 

environments. Zhenzhong Chu’s team has implemented their 

proposed algorithm on an actual AUV.  They declared their 

algorithm can achieve path planning, and also can achieve 

better planning effectively in the known environments with 

assistance of NURBS. In addition, it is more suitable for real-

time path planning. 

In order to speed up the agent learning, researchers of [26] 

propose interactive reinforcement learning (IRL) based on 

reward shaping in traditional reinforcement learning. 

Interactive reinforcement learning allows designers and even 

non-technical personnel to train agents by evaluating their 

behavior. In this way, human experience and knowledge can be 

embedded into autonomous learning of agent to speed up its 

learning. 

6. AI-TRAJECTORY RECOGNITION 
A great an opportunity for powerful control system is raised up 

based on artificial intelligence and neural networks. This 

intelligent system can be adaptive control systems or control 

systems based on environmental measurement makes AUV 

more autonomous and give it the opportunity to choose the 

further purpose of following and build a route around obstacles. 

In this part of article different previous research work regarding 

controlling path following and path planning are discussed. 

6.1 AI Aid for Path-Following 
Yexin Fan et. al. based on the RL framework they introduce an 

improved TD3 algorithm to address the AUV path-following 

control problem (Note: TD3 stands for Twin-Delayed Deep 

Deterministic policy gradient algorithm. It’s a model-free, 

online, and off-policy reinforcement learning algorithm based 

on the DDPG). The developed algorithm’s main structure and 

dataflow are lies on a basic TD3 module that contains six neural 

networks, as well as two essential components that have been 

enhanced to improve the algorithm’s performance: an 

improved experience replay and the policy smoothness 

regulation. Specifically, the improved experience replay 

employs both TD errors and episodic return to evaluate the 

significance of each experience and concurrently sampled 

experiences based on both sets of significances. The policy 

smoothness regulation introduces a dynamic parameter, which 

adaptively adjusts the smoothness constraint based on the 

AUV’s current state [17].  

Authors Yexin Fan et. al. declared that their simulation results 

showed that the proposed algorithm achieved faster 

convergence speed and better tracking results than other RL 

agents, including DDPG, vanilla TD3, and TD3-PER. In 

addition, their algorithm showcased better generalization 

capabilities across varying path configurations and exhibited 

superior robustness in handling uncertainties and disturbances, 

which outperformed the commonly used controller for AUVs. 

The simulations and real-world experiments have demonstrated 

the superiority of the proposed approach. Trajectories of AUV 

path following under different shaped paths using the control 

policy trained via TD3-IMP and the PID controller are shown 

in Figure 2. 

 

Fig 2: Trajectories of UUV path following trained via 

TD3-IMP and the PID controller as per [17]. (a) Sine-wave 

path. (b) Comb scanning path. (c) Closed curve path. (d) 

Eight-shaped path. 

By Figure. 2, authors announced that both the PID controller 

and the TD3-IPM controller can generalize well to simple path-

following tasks in (a) and (b). However, for more complicated 

paths (c) and (d), the performance of the PID controller shows 

an obvious degradation, where overshoots are exhibited in (c) 

and being unable to finish the task of (d). 

Qilei Zhang et. al in [3], proposed a deep interactive 

reinforcement learning method for path following of AUV by 

combining the advantages of deep reinforcement learning and 

interactive RL. In addition, since the human trainer cannot 

provide human rewards for AUV when it is running in the 

ocean and AUV needs to adapt to a changing environment, they 

further propose a (DRL) method that learns from both human 

rewards and environmental rewards at the same time. They test 

their methods in two path following tasks: straight line and 

sinusoids curve following of AUV by simulating in the Gazebo 

platform. They reported that their experimental results show 

that with their proposed deep interactive RL method, AUV can 

converge faster than a DQN learner from only environmental 

reward. Moreover, they believe AUV learning with their deep 

RL from both human and environmental rewards can also 

achieve a similar or even better performance than that with 

deep interactive RL and can adapt to the actual environment by 
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further learning from environmental rewards. The main results 

of this work are shown in Figure 3. 

 

Fig 3: Path following of AUV’s simulating in the Gazebo 

platform as per [3]: (a) straight line and (b) sinusoids 

curve 

An analysis and modeling of AUV 3D path tracking problem 

were accomplished in a case study of a cylindrical helix path 

for the work done by Yushan Sun et. al. in the article [27]. In 

this work, the training environment for 3D path tracking was 

designed by applying deep reinforcement learning DDPG 

algorithm. A method of selecting actions based on positive 

distribution was adopted to maintain the exploratory action 

selection. The rudders angles and their rates of change was 

added to be the new term in reward function, and a boundary 

reward was also designed to form a part of the reward function. 

The new reward function was shown to be effective to lower 

the frequency of steering. The LOS method with the integral 

term added was adopted to provide an indication of the target 

course angle and target flight path angle. Furthermore, to 

enable the controller to observe the current disturbance and 

adjust outputs, a currents disturbance observer was proposed. 

The observer was found to perform very well in terms of anti-

disturbance. 

In the end of their work, Yushan Sun et. al. reported that: 

“Training and simulation experiments about the cylindrical 

helix path tracking were carried out. The controller proposed in 

this article was proven to be successful in high-precision path 

tracking, and the anti-disturbance ability and convergent speed 

were improved.”. Figure 4 shows the path tracking 

performances of simulations that done through [27] which 

applying three kinds of different controllers. 

 

Fig 4: The path tracking performances results of 

simulation as per [27] 

Some scholars employed the PPO and PID assisted PPO 

algorithms to control the under-actuated cross-rudder AUV in 

the trajectory tracking task, and further used the PPO algorithm 

to complete underwater spatial trajectory tracking and obstacle 

avoidance tasks simultaneously. Here is an example where 

DRL agents were trained using state-of-the-art RL algorithm 

PPO and deployed to tackle the hybrid objective of 3D path 

following and collision avoidance by an AUV presented by 

Simen T. Havenstrøm and his colleagues in [12]. Where a 

curriculum learning approach was utilized to train the agent 

with increasing levels of complexities starting with path 

following, followed by the introduction of complexities in the 

obstacle layouts and ultimately the introduction of ocean 

currents. The AUV was operated by commanding three 

actuator signals in the form of propeller thrust, rudder, and 

elevator fin angles. A PI-controller maintained a desired cruise 

speed, while the DRL agent operated the control fins. The agent 

made decisions based on the observation of the state variables 

of the dynamical model, control errors, the disturbances, and 

sensory inputs from a Forward-Looking Sonar (FLS). As a 

conclusion the authors reported that: “From the current studies, 

it is clear that DLR using curriculum learning can be an 

effective approach to taming an underactuated AUV with 6-

DOF to achieve the combined objective of path following and 

collision avoidance in 3D.”. Figure 5 shows the pure path-

following test, as expected, higher λr are better at path 

following. 

But in spite of their valuable amazing results; they reported 

also: “However, it is also important to stress that despite the 

demonstrated potential of the DRL approach holds, it will have 

very limited acceptability in safety-critical applications 

because the whole learning process happens in a black-box 

way, thereby lacking it explain-ability and analyzability”. 

 

Fig 5: The pure path-following test as per [12] 

Yuan Fang et. al. in their paper [2], a DDPG algorithm in DRL 

method is adopt to train the agent for posture control of the 

ECA_A9 type AUV based on simulation platform Gazebo and 

open-source project UUV Simulator. This article trains the 

agent for posture control of AUV based on the DDPG 

algorithm. During the training process, the reward function of 

a single episode starts to converge around the 15th episode, 

begins to converge from the 40th episode, and fully converges 

at the 60th episode. Now that the AUV agent has learned to 

adjust and maintain its posture with θ in the range of (-15◦, 

+15◦), ψ in the range of (-10◦, +10◦), while keeping φ at 0◦. In 

this paper, the parameters of stably converged agent model are 

chosen to complete the subsequent research work. Compared 

with previous work, it is obvious that the amount of AUV 

training task in this paper is much smaller, and the DRL agent 

can be deployed for missions after 80 episodes of training, 

which takes approximately 1.75 h because of the computing 

power limitation, rather than 0.75 h in theory. The hardware 

configuration in this research is Intel i7 7800X CPU and 64G 

memory.  

On this basis as per [2], the position-tracking task of AUV for 

targets in different orientations in three-dimensional space is 

completed, achieving a six-degree-of-freedom control of AUV. 

Additionally, by decomposing the trajectory control task of 
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AUV in three-dimensional space into multiple position-

tracking missions, the trajectory control of AUV in the 

underwater horizontal plane and underwater three-dimensional 

space is realized, demonstrating the significant task 

generalization ability of the control methods proposed; refer to 

Figure 6.   

 

Fig 6: The results of the underwater three-dimensional 

spatial trajectory control as per [4]. 

6.2 AI Aid for Path-Planning 
AUVs’ path planning system generates guidance information 

such as feasible trajectories after considering the starting and 

goal points and the following constraints: the shortest possible 

distance to the target, path smoothness, a safe distance from the 

obstacles, and environmental disturbances. The control system 

provides the required forces and moments to satisfy these 

purposes [28]. AUVs have highly nonlinear uncertain 

dynamics. Therefore, adaptive control methods are extensively 

used in the AUV control problems. These vehicles traverse in 

unstructured and unexplored environments that have been 

affected by environmental factors such as ocean waves and 

currents, etc. To provide safe guidance in such an environment, 

AUVs must calculate or modify their feasible and collision-free 

paths based on the new information collected from their 

surroundings [19,28,29]. Hereby, this article will explore three 

different published papers focusing mainly about path planning 

approaches. 

The purpose of [29] is to establish a safe, real-time, and robust 

method of collision avoidance that improves the autonomy of 

AUVs. The proposed method based on active sonar, which 

utilizes the state-of-the-art deep reinforcement learning 

algorithm to learn the processed sonar information to navigate 

the AUV in an uncertain environment. This paper has mainly 

studied a DRL method that realizes AUV reactive collision 

avoidance behavior by learning a reward function to determine 

the mapping between perception information and actions. 

Although the algorithm proposed in [29] achieved good results, 

there are still many problems that have not been solved as 

authors reported. For example, the sample utilization rate is 

low, the reward function is too simple, and it is difficult to 

balance the exploration and exploitation so that the algorithm 

does not become trapped around a local minimum and 

instability. In addition, the heading adjustment is too frequent, 

and the adjustment angle is larger than the deep learning 

algorithm. The authors declared that they will solve these 

mentioned problems in their future work; deciding that they 

will attempt to improve the deep deterministic strategy gradient 

(DDPG) algorithm. 

Article [28] proposes an adaptive motion planning and obstacle 

avoidance technique based on deep reinforcement learning for 

an AUV. The research employs a twin-delayed deep 

deterministic policy algorithm (TD3), which is suitable for 

Markov processes with continuous actions. Environmental 

observations are the vehicle’s sensor navigation information. 

Motion planning is carried out without having any knowledge 

of the environment. A comprehensive reward function has been 

developed for control purposes. 

Behnaz Hadi et. al. authors of [28] used a rectangular area as a 

training environment. Their training environment includes 

AUV, obstacles, and target locations. The 1.4-meter AUV is 

enclosed in a circle with a radius of 0.7 m. The AUV has a 

nominal speed of 1.5 m/s and a maximum speed of 2 m/s. Each 

obstacle has a radius of 1.5 m, and the target area has a radius 

of 3 m. Figure 7 depicts an avoidance zone of 0.5 m around 

each obstacle. The target point is randomly considered at the 

border of the rectangle. At the start of each episode, the AUV's 

initial position is chosen randomly in a 5*5 square zone in the 

center of the training area. The AUV's heading angle is set to 

zero. The coordinates of the obstacles and the target are 

generated at random. A collision occurs when the AUV's 

circumferential circle and the avoidance circle (red-dash) 

converge as shown in Figure 7-(b) as per [28]. 

 

Fig 7: Environment Items as per [28]: (a) Representation 

of AUV, Obstacle and Target. (b) A collision occurrence 

The authors of [28] reported their final result saying that: 

“Designing the reward function is an essential part of 

implementing reinforcement learning. It is carried out so that 

the AUV can produce a short, safe, and directional path towards 

the target while considering practical constraints such as energy 

consumption, actuator saturation, and a reduction of the control 

signal's sudden fluctuations.” 

A distinguish work for path planning is done by Zhenzhong 

Chu et. al. [19]. In this work, an improved double deep Q 

network (DDQN) path planning algorithm is proposed for an 

underactuated AUV under ocean current disturbance in an 

unknown environment, and a Non-Uniform Rational B-spline 

Path Smoother (NURBS) algorithm is adopted to make the 

route smooth. So, in this work in order to verify the 

effectiveness of the proposed path planning algorithm, a 

simulation environment shown in Figure 8 with casually 

unstructured obstacles is configured. Especially, the ocean 

current is considered in the simulation environment. The blue-

purple areas represent the obstacles. The gray zones indicate 

that navigation is prohibited within a certain range from the 

obstacles. This distance is generally set in the range of 3 m to 5 

m. The constant ocean current is represented by cyan areas. 

And then the proposed DDQN algorithm is applied for AUV 

path planning in the simulated environments. It is compared 
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with the APF algorithm in terms of real-time performance and 

a variety of state-of-the-art path planning algorithms, such as 

PRM, RRT/RRT*, GA, PSO and QPSO about the length of the 

path, travel time and the smoothness rate to validate the 

efficiency and robustness of the proposed model. 

 

Fig 8: Simulation environments with arbitrarily shaped 

obstacles considering ocean current as per [19] 

The authors of [19] conclusion their results as: “an improved 

DDQN algorithm of framework was proposed for the path 

planning of the underactuated AUVs with ocean current 

disturbances and unknown global environmental information. 

The improved CNN with two input layers ensures the fusion of 

different dimensional environment state variables. The 

dynamic and composite reward function effectively carried out 

the local path planning with obstacle avoidance under the ocean 

current disturbance. Simulation and comparison results 

validated that the improved DDQN algorithm can achieve path 

planning, and also can achieve better planning effectively in the 

known environments with assistance of NURBS.” 

7. SUMMARY AND DISCUSSION 
As per tens of reviewed articles focus in path following or path 

planning, the squeezed gain valuable information tells that 

there still need for more research, simulations, and experiments 

in this area. This exploration of the various different results and 

recommendations extracted from these articles, shown the 

future work in trajectory of AUVs is wide open. Specially, with 

the varies and rapid of technology which encourages everyone 

interested to join the teams for designing and implementing 

algorithms for AUVs tracking or planning trajectory. 

The reviewed previous work discussed through this paper, were 

extracted in the Table 2. The aim of this extraction is to 

highlight the phases of comparisons between different articles 

models, algorithms, tools, and paths trajectories’ 

environmental planes. The Table 2 is organized in a manner 

that simplified main details of each article; however, 

comparing process through all discussed articles become easy 

and noticeable. 

This research review indicates that, the majority of researches 

have done in path flowing. While the minority focused on path 

planning. This pointer raised out due to the complexity and 

unknown nature of underwater environment. The path planning 

needs to deal with multi changeable parameters with robust 

algorithm capable to make decision instantly and 

simultaneously with forward direction correction. Also, other 

small unknown details may occur while navigates of vehicle 

needs to be considered, processed, and compared by the 

controller system with gained rewards for every slot of time. 

These continuously reprocessed issues, are considered as the 

main backbone for each AUV trajectory algorithm, and need to 

be updated always. 

8. CONCLUSION 
AUV is any vehicle able to operate underwater without a 

human occupant. Vehicles in underwater environments 

struggling of three main difficulties: AUVs are highly 

nonlinear multi-input multioutput systems with strong coupling 

and time-varying hydrodynamic coefficients of dynamics, 

AUVs and environment models are often poorly known, and 

most AUVs are designed as underactuated, that is, their (DoF)s 

are greater than the number of independent actuators. 

Therefore, the AUV should has a navigation system capable 

for: localization, positioning, path tracking, guidance, and 

control during a long period of duty cycle. 

In order to develop an accurate robust navigation and control 

system for an AUV, it is necessary to derive an adaptive 

algorithm for estimation of AUV dynamics. Two famous path 

controlling techniques for AUVs are widely used: Path 

Following Technique and Path Planning Technique.  

According to the authors’ deep research over previous work in 

the area of AUVs trajectory, the majority of researches have 

done in path flowing. While the minority focused on path 

planning. Due to the complexity and unknown nature of 

underwater environment, however, path planning demands 

consideration of much ponded details at any slot of times while 

vehicle navigates to reach its target. 

As per this review’s conclusion, The AI-Techniques have 

shown high valuable contribution through their various tools on 

developing and enhancing the techniques of AUV’s trajectory 

models and applications. 
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Table 2: Extraction and highlight some main issues from reviewed articles trajectories  

Article Trajectory AI-Aid 
Results Summary  

as Authors Reported 

Environmental 

Path Model 

[17] 
Path 

Following 

TD3-Reinforcement 

Learning Algorithm 

Faster convergence speed and better 

tracking comparing to DDPG, Vanilla 

TD3, and TD3-PER. 

-Sinewave Path 

-Comb Scanning Path 

-Closed Curve Path 

-Eight-shaped Path 

[3] 
Path 

Following 

Deep Interactive 

Reinforcement 

Learning Algorithm 

AUV learning from both human and 

environmental rewards can also 

achieve a similar or even better 

performance than that with deep 

-Straight Line 

-Sinusoid Curve 
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interactive RL and can adapt to the 

actual environment by further learning 

from environmental rewards. 

[27] 
Path 

Following 

Deep Reinforcement 

Learning DDPG 

Algorithm 

The controller proposed in this article 

was proven to be successful in high-

precision path tracking, and the anti-

disturbance ability and convergent 

speed were improved. 

Cylindrical helix Path 

[12] 
Path 

Following 

Reinforcement 

Learning Algorithm 

- PPO 

DLR using curriculum learning can be 

an effective approach to taming an 

underactuated AUV with 6-DOF to 

achieve the combined objective of path 

following and collision avoidance in 

3D 

Tackling the hybrid objective of 

3D path following and collision 

avoidance by an AUV 

[2] 
Path 

Following 
DDPG Algorithm 

The position-tracking task of AUV for 

targets in different orientations in 

three-dimensional space is completed, 

achieving a six-degree-of-freedom 

control of AUV. This work done in 

three-dimensional space into multiple 

position-tracking missions. 

Underwater horizontal plane three-

dimensional space structured as 

eight’s shape consist of 14-

positions.  

[29] 
Path 

Planning 

State-of- the-art 

object detection 

Deep Reinforcement 

Learning Algorithm 

Combined with 

YOLOv8 model 

Although the algorithm is working well 

and achieved good results, but while 

utilizing low rate of samples and the 

reward function is too simple. 

Therefore, the authors declared some 

future work that they plan to proceed 

on.  

The proposed method based on 

active sonar, which utilizes the 

state-of-the-art deep reinforcement 

learning algorithm to learn the 

processed sonar information to 

navigate the AUV in an uncertain 

environment. 

[28] 
Path 

Planning 

Twin-Delayed deep 

Deterministic Policy 

Algorithm (TD3) 

The AUV can produce a short, safe, 

and directional path towards the target 

while considering practical constraints 

such as energy consumption, actuator 

saturation, and a reduction of the 

control signal's sudden fluctuations. 

A rectangular area as a training 

environment includes AUV, 

obstacles, and target locations. 

[19] 
Path 

Planning 

Double Deep Q 

Network (DDQN) 

algorithm in addition 

to (NURBS) 

algorithm is adopted 

to make the route 

smooth 

Simulation and comparison results 

validated that the improved DDQN 

algorithm can achieve path planning, 

and also can achieve better planning 

effectively in the known environments 

with assistance of NURBS. 

The improved CNN with two input 

layers ensures the fusion of 

different dimensional environment 

state variables: (ocean current 

disturbances and unknown global 

environmental information). 
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