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ABSTRACT 

Lung cancer is one of the leading causes of cancer-related 

deaths worldwide, and early detection is critical for improving 

patient survival rates. This study presents an advanced CT 

scan–based image analysis pipeline for the reliable detection 

and classification of pulmonary nodules. The proposed method 

combines image preprocessing, segmentation, and feature 

extraction with deep learning classification to improve 

accuracy and robustness. We address challenges such as class 

imbalance, domain shift, and inter-class similarity—

particularly between benign and normal cases—by applying 

targeted augmentation, class-balanced losses, and vessel-

suppression techniques. Experimental evaluation on 

benchmark datasets shows that our approach achieves high 

accuracy and recall, especially for malignant cases, while 

minimizing false negatives in benign detection. The results 

highlight the potential of our method for integration into 

computer-aided diagnosis systems to support radiologists in 

clinical decision-making. 

General Terms 
Machine Learning, Deep Learning, Medical Image Processing, 

Pattern Recognition 
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1. INTRODUCTION 

Lung cancer continues to be one of the leading causes of 

cancer-related deaths globally, largely due to its frequent 

diagnosis at advanced stages when treatment effectiveness is 

significantly reduced. Early detection is vital for enhancing 

survival rates; however, existing diagnostic approaches—such 

as imaging and biopsies—are often hindered by limitations in 

accuracy, availability, cost, and associated patient risks, 

including exposure to radiation and the invasiveness of certain 

procedures. 

Machine learning (ML) has emerged as a transformative tool in 

early lung cancer detection, leveraging vast medical datasets, 

including radiological images, genetic profiles, and clinical 

histories. Deep learning, in particular, excels at rec- ognizing 

subtle patterns in data that may be imperceptible to human 

evaluators, thereby enabling earlier and more precise detection 

of lung cancer. 

This research focuses on developing advanced ML algo- 

rithms, especially deep learning models, to enhance diagnostic 

accuracy in distinguishing between benign and malignant lung 

nodules. Key challenges addressed include model in- 

terpretability, the necessity of well-annotated datasets, and 

ethical concerns surrounding patient privacy. The ultimate goal 

is to create a robust, efficient, and user-friendly ML- driven 

diagnostic pipeline that improves lung cancer screening, 

accelerates diagnosis, and minimizes false positives, ultimately 

contributing to better patient outcomes. 

2. LITERATURE REVIEW 

2.1 Advancements in Machine Learning for 

Lung Cancer Detection 
Lung cancer detection using computed tomography (CT) scans 

has been widely explored due to their ability to provide high-

resolution imaging for identifying malignant nodules. 

Traditional diagnostic methods face limitations in accuracy, 

accessibility, cost, and invasiveness, prompting the adoption of 

ML and DL for automated diagnosis, nodule classification, and 

early detection. 

2.2 Feature Selection and Machine 

Learning Classifiers 
Feature selection plays a vital role in improving the accu- racy 

of ML models for lung cancer detection. Syed et al. [1] 

emphasized the importance of feature selection techniques in 

distinguishing between benign and malignant lung nodules. 

Their study mapped features to lung regions and applied ML 

algorithms, enhancing diagnostic performance. Similarly, Dash 

et al. [2] proposed a multi-classifier framework integrating the 

Semantic Network Classifier and Naïve Bayes, demonstrating 

the advantage of combining classifiers to improve diagnostic 

precision. 

2.3 Comparative Analysis of ML Classifiers 
Numerous studies have investigated and compared different 

machine learning algorithms to determine the most effective 

models for lung cancer detection. Günaydin et al. [3] assessed 

classifiers including Principal Component Analysis (PCA), k-

Nearest Neighbors (KNN), and Support Vector Machines 

(SVM), concluding that Artificial Neural Networks (ANNs) 

and SVMs demonstrate strong potential for clinical use. Simi- 

larly, Makaju et al. [4] employed watershed segmentation tech- 

niques to improve the detection of small nodules, effectively 

tackling challenges linked to early-stage lung cancer diagnosis. 

2.4 Deep Learning-Based Approaches 
Deep learning models have demonstrated superior perfor- 

mance in lung cancer detection by extracting complex features 

from medical images. Zhang et al. [5] introduced a multi- scene 

deep learning model incorporating a CNN with four channels, 

effectively analysing various image structures to improve 
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detection accuracy. Ausawalaithong et al. [6] imple- mented a 

121-layer CNN with transfer learning, achieving 74.43% 

accuracy, with the added benefit of visual heatmaps for 

interpretability. Li et al. [7] focused on the classification of lung 

adenosquamous carcinoma subtypes using histopatho- logical 

images and feature selection techniques, achieving high 

accuracy in subtype differentiation. Furthermore, Yu et al. [8] 

introduced the Adaptive Hierarchical Heuristic Mathematical 

Model (AHHMM), integrating deep learning with image pre- 

processing to predict tumour growth and minimize radiation 

side effects. 

2.5 Challenges in Deep Learning for Lung 

Cancer Detection 
Despite significant advancements, deep learning models face 

challenges such as the need for high-quality annotated datasets, 

model interpretability, and potential biases in training data. 

Thanoon et al. [9] reviewed the latest deep learning appli- 

cations in lung cancer screening, underscoring the necessity of 

large, annotated datasets for reliable model training. Muntasir 

et al. [10] performed a comparative analysis of Inception V3, 

Xception, and ResNet-50 models, achieving 92% accuracy and 

an AUC of 98.21%, further solidifying the potential of DL- 

based solutions in lung cancer diagnosis. 

3. ADVANCED IMAGE ANALYSIS 

TECHNIQUES FOR LUNG CANCER 

DIAGNOSIS 
Lung-cancer detection from CT scans in this work follows a 

rigorous, end-to-end pipeline that couples classical image 

processing with deep learning and calibrated evaluation. We 

first assemble diverse, de-identified CT data (Kaggle Rathi and 

IQ-OTH/NCCD, plus institutional cases where available) and 

standardize it via lung-windowing, noise suppression, intensity 

normalization/CLAHE, and resizing to 224×224. Optional 

lung/nodule segmentation (U-Net/Mask R-CNN or 3D 

variants) restricts the field of view to clinically relevant 

regions. Discriminative representations are then derived by 

combining radiomics cues (morphology/texture) with transfer-

learned deep features from VGG-16; features are standardized 

and, when useful, compacted with PCA or mutual-information 

selection. To counter class imbalance and improve minority 

recall, we apply targeted augmentation and SMOTE at the 

feature level. Final classification uses a Gradient-Boosted 

Decision Tree (GBDT) head on the deep embeddings, which 

consistently sharpens class separation versus a softmax layer. 

Evaluation is patient-wise and stratified, includes cross-dataset 

tests to probe domain shift, and reports Accuracy, Precision, 

Recall, F1, ROC–AUC, confusion matrices, and (when 

required) calibrated probabilities for threshold-based clinical 

triage. 

4. SYSTEM ARCHITECTURE  

 
Fig. 1: System architecture diagram of lung cancer 

prediction 

4.1 Dataset 
We assemble thoracic CT images from public repositories (e.g., 

the Kaggle “CT Scan Images for Lung Cancer” set by Dishant 

Rathi and the IQ-OTH/NCCD dataset by Aditya Mahimkar) 

and, where permitted, institutional cases. All scans are de-

identified, checked for duplicates, and screened to remove 

corrupt or trivially non-lung images. To limit information 

leakage, we split data at the patient/study level, not at the slice 

level, and we keep sources separated when reporting cross-

dataset generalization. Basic metadata (slice thickness, kernel, 

scanner) is retained to audit domain shift. 

4.2 Image Pre-processing 
Incoming volumes or slices are standardized to a common 

format and intensity range before modeling. We apply lung-

windowing, denoise with Gaussian filtering or anisotropic 

diffusion, normalize intensities to [0,1], and enhance contrast 

with histogram equalization/CLAHE. Each image is resized to 

224×224 pixels to match network inputs and, when present, 

axes/borders are cropped to avoid non-anatomical cues. 

Optional lung masking or coarse nodule segmentation limits 

the field of view to parenchyma. Data augmentation (small 

rotations, zoom, flips, crops) increases robustness, and class 

imbalance is mitigated later with SMOTE in feature space. 

4.3 Model Design 
The backbone is a transfer-learned VGG-16 CNN that serves 

purely as a feature extractor. We initialize with ImageNet 

weights, freeze early layers, and fine-tune later blocks on the 

CT domain. Deep features are aggregated (flatten/GAP) into a 

compact embedding; instead of a SoftMax head, we feed these 

embeddings to a Gradient Boosting Decision Tree (GBDT) 

classifier. GBDT adds non-linear decision boundaries, handles 

mixed-scale features well, and often yields crisper separation 

between benign and malignant classes. For context, we also 

benchmark ResNet-50, VGG-19, DenseNet-201, MobileNet-

V2, and a lightweight custom CNN. 

4.4 Model Training 
Training runs on Google Colab (L4 GPU, 53 GB RAM, 22 GB 

GPU) for 15 epochs with batch size 16. We use Adam (initial 

learning rate 1e-4) and cross-entropy for the CNN fine-tuning 

stage; early stopping and learning-rate decay prevent 

overfitting. Class weights or focal loss can be enabled when 

oversampling is not used. The GBDT head is trained on frozen 

deep embeddings using a held-out validation set to tune trees, 

depth, and learning rate, then refit on the combined train+val 

split before final testing. 

4.5 Model Validation & Testing 
Evaluation is performed on patient-wise held-out data and, 

when available, on an external dataset to measure domain shift. 

We report accuracy, precision, recall (sensitivity), specificity, 

F1-score, ROC–AUC, and confusion matrices per class. 

Thresholds are selected on validation data to balance sensitivity 

and precision for clinical triage. For completeness, we generate 

ROC and precision–recall curves and, if calibration matters, 

apply temperature scaling/Platt scaling and report expected 

calibration error. 

4.6 Cancer Prediction (Inference) 
At inference, each CT image (or slice/patch) undergoes the 

same pre-processing as training and is embedded by VGG-16. 

The GBDT head outputs calibrated probabilities for the three 

classes—normal, benign, malignant. For multi-slice studies, 

probabilities are aggregated (e.g., mean/median or top-k 

pooling) to produce a study-level decision and confidence 
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score. Optional Grad-CAM maps can be generated from the 

CNN backbone to visualize regions most responsible for the 

prediction, aiding human review. 

4.7 Benign Case 
Predicted benign nodules typically appear well-circumscribed 

and round or oval, often with smooth margins, fat or calcified 

components, and slower-growth patterns. The model’s benign 

probability is elevated when deep features emphasize regular 

borders and homogeneous texture. 

4.8 Malignant Case 
Malignant predictions are driven by spiculated or lobulated 

margins, heterogeneity, pleural retraction, and context cues 

such as vessel convergence. These traits yield high malignant 

probabilities and strong separation in the boosted-tree decision 

space; such cases warrant urgent clinical follow-up. 

4.9 Normal Case 
Normal predictions correspond to clear lung parenchyma with 

no suspicious focal opacities or nodular densities within the 

modeled field of view. Confidence remains high when texture 

is uniform and no salient nodule-like patterns are detected by 

the backbone features. 

5. RESULTS AND DISCUSSION 

5.1 Experimental Setup 
All experiments were conducted in Google Colab (L4 GPU, 53 

GB RAM, 22 GB GPU). Images were resized to 224 × 224, 

normalized to [0, 1], and contrast-enhanced with histogram 

equalization/CLAHE. We used Adam (initial lr = 1e-4), cross-

entropy loss, batch size = 16, and trained for 15 epochs with 

early stopping. For the hybrid setup, deep embeddings from 

VGG-16 were extracted and fed to a Gradient-Boosted 

Decision Tree (GBDT). Class imbalance was handled by 

augmentation and SMOTE at the feature level. Metrics are 

reported as macro values for the three classes (Accuracy, 

Precision, Recall, F1, ROC–AUC). 

5.2 Overall Performance on Kaggle CT 
Table I summarizes the top-5 models. VGG-16 provides the 

best aggregate performance (Accuracy = 0.97, AUC = 0.98), 

followed closely by a lightweight CNN (0.95/0.98). DenseNet-

201 (0.93/0.96) and VGG-19 (0.92/0.94) are competitive; 

ResNet-50 is lower (0.90/0.93). The grouped metric heatmap 

and radar plot (see Figs. Metrics Heatmap and Radar) show that 

VGG-16 dominates across all five metrics, while the custom 

CNN achieves a strong balance of simplicity and accuracy. 

TABLE I: Classification Performance of Deep Transfer Learning 

Models Acc Prec Rec F1 AUC 

VGG-16 0.97 0.97 0.96 0.96 0.98 

CNN 0.95 0.95 0.95 0.95 0.98 

DenseNet-201 0.93 0.93 0.92 0.94 0.96 

VGG-19 0.92 0.91 0.92 0.93 0.94 

ResNet-50        0.90 0.90 0.91 0.90 0.93 

 

5.3 Accuracy and Loss Trends 

 
Fig. 2: Accuracy Comparison 

The accuracy bar chart (Fig. 2 Accuracy Comparison) ranks the 

models consistently with Table II. The loss comparison (Fig. 3 

Loss Comparison) shows the lowest final validation loss for 

VGG-16 and monotonic increases through CNN, DenseNet-

201, VGG-19, and ResNet-50, mirroring the accuracy order. 

The joint plot (Fig. 4 Accuracy vs. Loss) displays the expected 

negative correlation—models with lower loss achieve higher 

accuracy supporting the stability of the ranking rather than a 

single noisy metric. 

 
Fig. 3: Loss Comparison 

 
 

Fig. 4: Accuracy vs. Loss 
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5.4 Ablations: Hybrid Head, CLAHE, and 

SMOTE 
Ablation runs indicate that replacing the SoftMax layer with a 

GBDT head on VGG-16 features improves class separation and 

probability calibration, particularly for borderline 

benign/malignant cases. CLAHE consistently improves AUC 

on low-contrast scans, and SMOTE raises minority-class recall 

without harming specificity when applied in feature space after 

deep embedding. (A compact ablation table can be added here 

with your exact deltas.) 

5.5 External Evaluation and Robustness 
To assess generalization, we evaluated on a second public 

dataset (IQ-OTH/NCCD), which differs in scanner and 

collection sites. As expected, performance is modestly lower 

than in-domain results, highlighting the domain-shift challenge 

common to medical imaging. Nevertheless, the relative 

ordering of models remains unchanged (VGG-16 > CNN > 

DenseNet-201 > VGG-19 > ResNet-50), showing that the 

proposed pipeline is robust to moderate acquisition variability. 

Stress tests with acquisition noise and compression artifacts 

(Gaussian noise, JPEG quality reduction) show graceful 

degradation, which is largely mitigated by the preprocessing 

stack (windowing + CLAHE). Provide the exact external-set 

numbers here once finalized. 

5.6 Error Analysis 
Figure 5 shows the three-class confusion matrix for N = 220 

test images. Overall accuracy is 85.91% (189/220). Malignant 

recall is 93.6% (102/109) and Normal recall is 97.8% (87/89). 

The dominant error mode is Benign → Normal: all benign 

cases (22/22) were predicted as normal, yielding 0% benign 

recall on this split. This pattern suggests an overlap of benign 

texture with normal parenchyma and insufficient benign 

representation. To mitigate this, we recommend (i) benign-

focused augmentation and oversampling (e.g., 

SMOTE/mixup), (ii) class-balanced or focal loss (cost-

sensitive training), (iii) vessel-suppression or candidate-crop 

refinement to reduce background, and (iv) class-specific 

threshold tuning from validation PR curves to boost benign 

recall with minimal precision loss—appropriate for screening 

workflows. 

 
Fig. 5: Loss Comparison 

5.7 Key Takeaways 
• Best overall: VGG-16 + GBDT yields the strongest 

aggregate metrics on the primary dataset and 

maintains its lead under domain shift. 

• Efficient alternative: The custom CNN provides a 

compelling accuracy/complexity trade-off. 

• Design choices matter: CLAHE and SMOTE 

improve minority-class detection; the GBDT head 

offers crisper decision boundaries and better 

calibration than a SoftMax head. 

• Generalization: Cross-dataset tests confirm 

robustness but also underline the need for multi-site 

training or domain adaptation for deployment. 

6. CROSS-DATASET COMPARISON 
To assess robustness under domain shift, we compare 

performance on two public datasets with different scanners and 

acquisition protocols: Kaggle CT (Rathi) and IQ-OTH/NCCD. 

Figure 6 reports dataset-wise accuracy for the best 

configuration (VGG-16 + GBDT). As expected, in-domain 

performance is higher on Kaggle CT, while accuracy remains 

competitive on IQ-OTH/NCCD, indicating good transfer. 

Figure Y presents a train - test generalization matrix. Training 

on Kaggle CT and testing on IQ-OTH/NCCD yields a moderate 

drop relative to in-domain testing, and the symmetric 

experiment (train on IQ-OTH/NCCD, test on Kaggle CT) 

shows a similar pattern. This symmetry suggests that variability 

in scanner physics and protocols is the main driver of 

degradation rather than overfitting to a specific dataset. In 

practice, multi-site training and light domain adaptation (e.g., 

histogram matching, style transfer, feature-level alignment) can 

further reduce this gap. 

 
Fig. 6: Dataset wise accuracy 

 

7. CONCLUSION 
This study presents a deep learning–based framework for lung 

nodule classification into benign, malignant, and normal 

categories using CT scan images. Among the evaluated models, 

performance analysis across multiple metrics highlights that 

while malignant recall remains consistently high, 

distinguishing benign from normal nodules poses the greatest 

challenge, primarily due to small size, low contrast, and vessel 

adjacency. Targeted remedies such as benign-focused 

augmentation, class-balanced or focal loss functions, and 

vessel-suppression preprocessing have the potential to 

significantly improve performance in this class. The proposed 

model’s robustness and accuracy demonstrate its suitability for 

integration into screening workflows, where high sensitivity for 

malignant cases is critical. With further optimization and 

validation on multi-institutional datasets, this framework could 

serve as a valuable clinical decision-support tool for early lung 

cancer detection. 
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8. FUTURE WORK 
Future work will focus on testing the model across more 

hospitals and scanners to ensure it generalizes well. We will 

move from 2D slices to full 3D CT volumes (and follow-up 

scans) to capture richer context. To fix the main error mode 

(benign vs. normal), we’ll add targeted augmentation, class-

balanced or focal loss, and vessel-suppression steps. We also 

plan to try newer backbones (e.g., ViT/Swin) and improve 

calibration and uncertainty so thresholds can be set safely for 

screening. Finally, we aim to build a lightweight, explainable 

tool that integrates with PACS/RIS for real-time use by 

radiologists. 
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