
International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.28, August 2025 

23 

A Lifi Approach using Dynamic Q learning in Vehicular 
Networks 

Chinmoy Sailendra Kalita 
Dept. of Computer Application 
Assam Engineering College 

Jalukbari, Assam, India 

 

Maushumi Barooah 
Dept. of Computer Application 
Assam Engineering College 

Jalukbari, Assam, India 

        

ABSTRACT 

Vehicular Ad hoc Network (VANET) allows communication 

between vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 

(V2I) communications that support road safety as well as 

intelligent transportation systems (ITS) to avoid road hazards and 

share safety alerts. Even though traditional handover methods 

considering Wi-Fi and Light Fidelity (Li-Fi) technologies have 

seen significant improvement, dynamic network conditions 

experienced in VANETs need adaptive solutions. This paper 

presents a Li-Fi-based handover approach with a dynamic Q-

Learning algorithm for deciding on the handover decision. The 

approach uses utilises reinforcement learning for vehicle traffic, 

vehicular mobility, network occupancy, and signal strength as 

parameters, thereby optimizing handover performance in high-

mobility scenarios. The simulated results show that the handover 

mechanism outperforms other techniques over multiple criteria’s 

such as latency, handover success rate, network throughput and 

performs more decisional handover. 

Keywords 
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1. INTRODUCTION 
VANETs refer to the automobile part of ITS which enhances the 

intelligence both on vehicles and infrastructure sides to 

communicate with each other towards safety of roads, 

management of traffic flow, and real-time services like collision 

avoidance and optimal path. This system allows for sharing of 

critical safety information between the vehicles, hazardous road 

conditions, observations of potential collisions and information 

about real-time traffic information to support adequate and timely 

responses and informed decisions on the road. The high speed of 

vehicles, frequent change in network connectivity, and the 

varying availability of communication infrastructure make it 

especially difficult in VANET handover management [1]. 

Application requirements in VANETs are extremely demanding 

and need to be supported by handovers including collision 

warnings, emergency alerts, and notifications of road hazards. All 

of these require high reliability with low latency; delay or packet 

loss caused by handover failures or delays leads to serious 

degradation in quality of service (QoS) in scenarios of split-

second decision making such as highway driving or negotiating 

busy urban centers. Highways, where vehicles travel at a high 

speed, and congested city centers, where traffic is usually locked 

up, represent environments for which efficient management of 

handover is critical[2]. 

Generally, conventional handover techniques used in VANETs 

are based on using signal strength thresholds and static criteria to 

decide when to execute a handover. They are mostly applied for 

stationary, low-speed environment where the network conditions 

do not change often. However, in high mobility environments 

static approaches have highly suboptimal performances [3]. These 

numerous handovers create overheads, and network performance 

degrades since several such handovers may be initiated 

prematurely or late, thus causing losses of packets, increased 

latencies, and generally poor communication quality under such 

safety-critical conditions[4]. Therefore, these critical challenges 

that exist within traditional handover management techniques call 

for developing adaptive and dynamic handover management 

techniques that may function in real-time response to alterations 

in network conditions.  

Li-Fi is another choice which can be utilised in RF-based 

communication in VANETs where vertical handovers occur in 

heterogeneous networks. It transmits data through the visible light 

spectrum. The advantages of Li-Fi over traditional RF 

communication include more bandwidth, less interference, and 

more security [5]. Kalita et al.[6] in 2020 proposed handover 

mechanism of Li-Fi for VANETs using on vehicle Li-Fi sensors 

as well as Anonymous Announcement System (AAS) on RSUs to 

enable Li-Fi VANET handover in an active manner. They found 

that in comparison to systems based upon the RF techniques, their 

system outperforms especially in terms of latency as well as the 

Packet data rate (PDR). Li-Fi-based systems relies upon line of 

sight (LOS) communication, it might face coverage gaps, 

particularly in the urban environment where obstacles are very 

likely. Therefore, integration of Li-Fi with adaptive decision-

making algorithms like reinforcement learning is essential for 

taking full advantage of its capabilities in VANETs[7]. 

This paper intends to bring out an efficient ML based handover 

mechanism to overcome the challenges due to the dynamic nature 

of VANETS and at the same time utilise Li-Fi technology to 

enhance overall performance of communication systems based on 

VANETs. This paper is organised as follows. Chapter 2 presents 

the related work. Chapter 3 provides description on the 

methodology, followed by the results and discussions in Chapter 

4. Finally the conclusion with future work is addressed in Chapter 

5. 

2. RELATED WORKS 
Some of the recent studies have presented numerous handover 

mechanisms to support VANETs. Duo et al. introduced an SDN-

based approach for hybrid networks in [8] but had scalability 

issues. Dwivedi et al. [9] proposed the B-HAS protocol for safe 

handover but had very high computational overhead. Aboud et al. 

[10] tried to minimize delays in 5G VANETs but had difficulties 

in heterogeneous cases. Xie et al. [11] and Son et al. [12] 

suggested blockchain-based lightweight protocols with scalability 

issues. Alam et al. [13] presented reviews on handover techniques 

without the practical implementation. Rosli et al.[14] presented 

the issue of handovers in 5G with energy costs. Costa et al. [15] 

optimized video distribution in a handover process without 

touching security aspects. Oladosu et al. [16] provided a 

metaheuristic algorithm and neglected adaptability. Also the 

works of Anilkumar and Rafeek [17] have put forward the 

"Soteria" certificate less mechanism that could be subject to 

latency issues due to implementation of blockchain with changing 
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scenarios. 

Late developments of intelligent handover management systems, 

especially implementing machine learning approaches, have 

recently shown promising approaches toward filling these 

deficiencies. One such promising approach is the application of 

the model-free reinforcement learning (RL) technique called Q-

Learning in optimizing handover decisions within VANETs. Q-

Learning enables real-time learning and adaptation of parameters 

such as the velocity of a vehicle, network traffic, and signal 

strength by the system in an attempt to adapt the decision-making 

process. Q-Learning-based systems constantly evolve their 

policies deciding their future actions based on the changing 

network state, so more efficient and adaptive ways of handover 

management could be achieved [18].Overall, this leads to a 

reduction of the handover frequency, while optimum performance 

of the system is preserved in terms of latency, throughput, and 

QoS[19]. The authors of [20] provided the first Q-Learning 

application to VANET where decisions on handover are made 

according to network conditions based on real time evaluation. 

Proving their work, the authors demonstrated that the system 

based on RL techniques can work better than threshold-based 

handover schemes under network fluctuations .Subsequent 

studies, such as those carried out by Mohammadi et al.[21], make 

Q-Learning for handover management more feasible with 

additional parameters such as vehicle density, traffic load, and 

signal quality added to it.  

Liang et al. [22] developed an extensive comparison between 

traditional threshold-based handover methods with Q-Learning-

based systems in VANETs. According to their results, machine 

learning-based handover mechanisms reduce latency by 

significant amounts and boost packet delivery ratios since they 

adapt to real-time network conditions dynamically Hao Wang and 

Bo Li [23] proposed a double-deep Q-learning-based handover 

management system for mmWave heterogeneous networks with 

dual connectivity in order to enhance the efficiency of handovers 

and minimize latency in high-mobility scenarios. The approach 

could be computationally intensive as the scale of the network 

increases. Jiao He et al. [24] proposed a reinforcement learning-

based handover parameter adaptation method using LSTM-aided 

digital twins for ultra-dense networks, which improves the 

accuracy of predictions and adaptability in dynamic 

environments. However, this method depends on the vast amount 

of data for training, and its applicability in real-time is still limited 

to fast-changing scenarios. Therefore, a hybrid technology might 

be necessary combining Li-Fi with RF-based communication 

systems in order to achieve seamless connectivity from 

environment to environment. Unlike static handover methods, 

which depend on predefined thresholds, the integration of Q-

Learning into the handover actually enhances the system's 

adaptability with respect to changes in network conditions, but it 

also opens the possibility of taking better advantages of network 

resources. 

Extensive research has been done on VANET handover 

management, with different technologies such as Wi-Fi, 

blockchain, and 5G. However, a lot of gaps still remain in the 

following aspects: 

• Adaptive Solutions: All blockchain and metaheuristic 

methods focus on static handover decisions, not 

adaptive to dynamic vehicular conditions such as 

changing traffic patterns and mobility.  

• Limited Li-Fi Integration: Handover mechanisms of 

emerging Li-Fi technology are under-explored. 

Largely, not many researches apply reinforcement 

learning or Q-learning in the real-time, adaptive 

optimization of handover for handling the change in 

traffic density, strength of signals, or even congestion.  

• Performance Overlooked: Research focuses more on 

security (e.g., blockchain solutions) than on 

performance metrics such as latency, success rates, and 

throughput, especially in high-mobility scenarios. 

This paper addresses the gap by proposing an adaptive Li-Fi 

handover technique that relies on a dynamic Q-Learning 

algorithm. Inclusion of vehicular mobility, traffic patterns, 

network occupancy, and signal strength in its decision-making 

procedure will assist in significantly optimizing the performance 

of the handover in VANET, thereby having reduced latency, 

higher success rates in handover, and improved overall network 

throughput. This is a new contribution to the domain of 

communication, especially in high-mobility scenarios where the 

traditional static methods are likely to fail. 

3. METHODOLOGY 
The handover management system based on the basic work[6] 

proposed for Li-Fi-based handover techniques is being 

implemented with the  use of Q-Learning algorithm for handling 

handover decisions in real-time. The system is designed to operate 

in a VANET environment using fixed wireless access (FWA) 

technology. These vehicles are equipped with on-board units 

consisting of their core wireless transceivers, sensors, and GPS 

systems. These will thus be able to communicate with the base 

stations. The bases have been mounted with Active Antenna 

Systems and multiple input multiple output (MIMO) technology 

so that they can work efficiently with the vehicles both by Li-Fi 

and Wi-Fi. 

The proposed system relies on a dynamic Q-learning system that 

perpetually considers network occupancy (NO), vehicular 

mobility(𝑉𝑀𝑜), and signal strength (SS). Based on these 

parameters in a real-time situation, the algorithm switches 

dynamically to the most appropriate communication medium. The 

vehicle platform maintains the two interfaces on-board (Li-Fi and 

RF-based), which allows fast vertical handoffs without packet 

losses. Another advantage of AAS at the RSUs is that it ensures 

seamless connectivity across heterogeneous links, thus reducing 

handover delays and interruptions. The considered parameters are 

discussed in detail in below sections. 

3.1 Signal strength (SS) 
The signal coverage area (SCA) is represented in this work by a 

circular region. Therefore the SS is defined on the distance (di) 

between the 2 base stations which is given as: 

              𝑑𝑖 = 4 ∫ √𝑟2 + 𝑥2𝑥

𝑑/2
 𝑑𝑥                                       (1)      

                            𝑆𝑆 = 𝑘. 1/𝑑𝑖                                            (2) 

 Where, k = no of network phases                                                        

          (𝑠𝑠)=[−log(𝑃(𝑠𝑠))]                                              (3) 

The Shannon entropy [25] for signal strength is defined as S(𝑠𝑠), 

while P(𝑠𝑠) denotes the probability of the signal strength 

3.2 Network occupancy (NO) 

The network occupancy is monitored by using Traffic Load 

(TL).The traffic load is dependent on two factors; vehicle traffic 

(VT) in the network defined by the average queue size (𝑞𝑎𝑣g) and 

number of vehicles (m). The value of m is defined for the vehicles 

in its 1-hop distance. 

                            TL=𝑞𝑎𝑣g * m                             (4) 

For calculating the 𝑞𝑎𝑣g, we apply little’s theorem [26] as 
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follows, the average number of vehicles in a SCA (Np) is 

dependent on the arrival rate of vehicles into the SCA (λ) and the 

average amount of time a vehicle spends in the SCA(T) given by 

                                  Np = λ.T                                      (5) 

If the leaving rate of vehicles from the SCA can be denoted by μ, 

Np and T can be formulated as: 

       𝑁𝑝 =  
λ

𝜇−λ
                                             (6) 

 

      𝑇 =  
1

𝜇−λ
                                                (7) 

If we consider T to include the queuing delay plus the service time 

𝑇𝑠, the total time spent in the queue (Tt ) can be calculated as 

                                          𝑇𝑠 = 1/μ                            (8)                       

                                       𝑇𝑡 = T-1/μ                            (9) 

The 𝑞𝑎𝑣g can be obtained from (5), (7) and (9)as 

 

                                    𝑞𝑎𝑣g = λ𝑇𝑡 

 

                   =  
λ

𝜇−λ
−

λ

𝜇
 

  

                                = Np – β                         (10) 

   Here,β is the optimal traffic transfer ratio. 

3.3 Vehicular mobility (𝑉𝑀𝑜) 

The Vehicular mobility (VMo) of each node represents the 

movement of vehicles, and how it changes overtime. In order to 

measure such𝑉𝑀𝑜, the difference between average speed (𝐴𝑣𝑠) 

of the nodes in final and initial location is estimated in ′𝑡′ time 

units. Dist is the distance between 1 hop vehicles. This can be 

presented as follows: 

                                           𝐴𝑣𝑠 = 
𝐷𝑖𝑠𝑡

𝑡
                                       (11)   

              VMo = 𝐴𝑣𝑠 (final) – 𝐴𝑣𝑠 (initial)                       (12) 

 The Active network lifetime (ANL) can be obtained by the 

minimum value of the weight (𝑊𝑡) associated with the vehicles 

in a SCA. This weight (𝑊𝑡) parameter is represented by the 

following. 

                    𝑊𝑡=𝑤1.𝑠𝑠+𝑤2.𝑇𝐿+𝑤3.𝑉𝑀𝑜            (13) 

In Eq(13), 𝑤1, 𝑤2, 𝑤3are represented as weight factors and the 

sum of these weight factors value is equal to 1 i.e., 𝑤1+𝑤2+𝑤3= 

1. 

3.4. Q-Learning Framework 

The parameters, NO and SS are the states that are taken in account 

to take an action for handover. Let (𝑆,) represent state 𝑆 and action 

𝐴 based on the Q values. Each state𝑆 will have four parameters 

and this (𝑆, 𝐴) is determined and updated in the rule. 

           𝑄(𝑆,𝐴)+𝛼(𝑅+𝛾𝑄(𝑆′,𝐴′)−𝑄(𝑆,𝐴))→𝑄(𝑆,𝐴)                (14) 

The term(𝑆′,𝐴′) defines next state and action 𝑅 is the reward given 

by the agent, 𝛾 is the discount factor that is [0 − 1], then 𝛼 is the 

learning rate [0 − 1] i.e.it denotes the step length to estimate the 

(𝑆, 𝐴). The action is taken using 𝜖 −greedy policy, the 𝜖 represents 

epsilon. In 𝜖 −greedy policy, when the probability is (1−𝜖),then 

the action will be taken as per the value in the Q-table. If the 

handover request is agreed and the action is yes, then it will select 

a network 

3.5 Algorithm 

_____________________________________ 
Input–States (𝑆),– 𝑡𝑎𝑏𝑙𝑒 

Output–Action(𝐴) 

Begin 

1. Vehicle(V1), requesting for handover 

2. InitializeQ-table(𝑆,𝐴) 

3. For each 𝑆→TL, VMo,SS 

3.1 Compute Active network life time threshold (Th_ANL) using 

equation13 

3.2 If(ANL<Th_ANL) 

for(eachstep) 

-Apply 𝜖 −greedy policy obtain 

-Q-value from Q-table perform action 𝐴 → 𝑉1 

                   -Compute 𝑅 and next state 𝑆′ 

3.3 update Q-table 

4. update𝑆′→𝑆 

end 

__________________________________________________ 

4. RESULTS AND DISCUSSION  
This chapter presents a comparative study on the performance 

parameters of the proposed Q-Learning-based handover 

technique with the DTe-DQN[24] approach for handling 

handovers in VANETs. The performance is studied based on four 

key parameters: handover success probability, handover failure 

rate, ping pong rate, and overall network throughput. The 

experiments were performed in a simulation-based environment 

that entertains varying speeds and densities of VANET traffic 

through OMNet++ and the simulation parameters are set forth in 

a way as to closely mimic real vehicular mobility patterns and 

communication conditions. The simulation parameters used for 

the proposed work is summarized in Table 1:   

 

Table 1 : Simulation parameters  

Parameter Value 

Number of Vehicles 100 

Maximum Speed 120 km/h 

Communication Types DSRC, LTE 

Simulation Duration 300 seconds 

Fading Levels Low, Moderate, High 

 

4.1 Probability of Handover Success  
The probability of successful handover is defined as the ratio of 

successful handovers to the total number of attempted handovers. 

Fig 1 summarizes the results, which show that the Q-Learning-

based approach actually resulted in a handover success 

probability more than 90% for high traffic scenarios. However, 

under similar conditions, DTe-DQN has a reported maximum 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.28, August 2025 

26 

success rate of 83.1%. The result of improving this system due to 

the adoption of an adaptive learning mechanism based on Q-

Learning, which is specifically tailored to make adaptations of 

handovers based on real-time network conditions. 

         

              Fig 1: Handover success rate 

 

          

                      Fig 2: Handover failure rate 

4.2 Handover Failure Rate  
The failure rate of handover refers to the number of handovers 

which are failing per total number of handovers made in 

establishing a connection. The proposed method always keeps the 

failure rate lower than 10%. As shown in Figure 2, it has around 

a 16% failure rate with DTe-DQN. The reason for this decrease in 

failure rate is because of Q-Learning enabled continuous learning 

process, which can account for timely adjustment of handover 

strategies according to time-varying vehicular conditions. 

4.3 Ping Pong Rate  
The ping pong handovers occur when the vehicle rapidly switches 

between two base stations, and hence the network resources 

utilized is not fully efficient. The Q-Learning method attains a 

ping pong rate of less than 5% as presented in Figure 3. This is far 

below the 8-9% that is attained by the DTe-DQN method. Such a 

reduction therefore determines the efficiency of improving 

network performance since it minimizes unnecessary signaling 

overhead and enhances the user experience at the occurrence of 

events during handover. 

 

                         Fig 3: Ping pong rate 

4.4 Throughput and Delay 

Throughput and delay are two important performance metrics of 

the network. The proposed method succeeded in making an 

average improvement in throughput by approximately 20% 

compared to traditional methods, as can be seen from Fig 4. From 

Fig 5, it can be seen that the average delay on handovers decreases 

by about 30%. In other words, the transition time between base 

stations was relatively shorter. The DTe-DQN method, despite 

being competitive, had higher delays due to its more conservative 

approach toward handover, especially at higher motilities. 

                                   

Fig 4: Throughput (mbps)  

              

                      Fig 5: Delay (ms) 
 

The results of the experimental evaluation of the proposed Q-

Learning-based handover management strategy clearly indicate 

that, in comparison to the existing ones, particularly DTe-DQN, 

there are considerable improvements in those approaches. The 

analysis shows that the Q-Learning framework performs well in 

different traffic conditions and hence results in higher handover 

success rates but lower failure rates. The Q-Learning-based 

method offered a handover success rate of 90% under moderate 

traffic conditions as compared with the 83.1% achieved using the 

DTe-DQN method. This may be attributed to the fact that, based 

on higher mobility environments, the algorithm learned and 

updated in real-time settings for vehicle speed and signal strength, 

which are parameters significant in network settings. Therefore, 

dynamic adjustments of handover thresholds with changed 

conditions will allow for timelier and better-informed handover 

decisions. 

As it would seem, throughput improvements are also noteworthy 

in the proposed approach since average a throughput of 50 Mbps 

is achievable in low-traffic scenarios, while the DTe-DQN 

method reported its maximum throughput of 42 Mbps. For real-

time applications such as video streams and navigation, this 

increase in throughput can really mean the difference for end 

users, in terms of the quality of network performance, which 

impacts user experience.Quality enhancement of the model is, 

therefore, provided by being highly scalable for any resolved 

decision making in the presence of an increasing number of 
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vehicles (up to 100 in the current simulation). Maintaining 

handovers with higher success ratio with minimal degradation of 

important performance related metrics such as latency and ping 

pong rates. Since Q-learning adjusts beforehand on transitions 

from one state to another, this type of learning has a robust 

scalability property. Therefore, the results strongly promote the 

strategy of Q-Learning-based reinforcement learning to allows it 

continuously learn and optimize itself, and therefore might be a 

good solution for the problems with handover implementation in 

VANET. 

5. CONCLUSION 
The proposed dynamic Q-Learning-based handover management 

strategy significantly outperforms the current state of art and 

methods, even including the DTe-DQN approach, in terms of 

success rates, failure rates, ping pong rates, throughput, and delay. 

The experiment results imply that the proposed approach is 

capable of adaptive response to the changing environment 

conditions normally prevailing in vehicular environments for 

seamless communication and improved network performance. It 

is also compatible with existing VANET architectures as it 

operates at the network layer and can be deployed as an overlay 

module on top of current communication protocols such as 

DSRC, LTE, or even 5G-based VANETs. Future work will be 

focused in developing the Q-learning algorithm, further 

improving it with the implementation of extra context-aware 

parameters, like environmental conditions and vehicle behaviour 

and study of deep reinforcement learning techniques. 
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