
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.27, July 2025

25

FPGA Implementation of Low Power SLAM Accelerated
Core

Mohammad Nazma Sultana
M.Tech (VLSID & ES)

 Seshadri Rao Gudlavalleru Engineering College
Gudlavalleru, Krishna District, Andhra Pradesh,

India – 521356

S. Ravi, PhD

Associate Professor
Seshadri Rao Gudlavalleru Engineering College
Gudlavalleru, Krishna District, Andhra Pradesh,

India – 521356

ABSTRACT

Simultaneous Localization and Mapping (SLAM) is critical for

autonomous systems because it enables real-time

environmental mapping and navigation. Implementing SLAM

algorithms in hardware, particularly on low-resource platforms,

poses challenges owing to the computational complexity of

operations such as matrix multiplications and quaternion

transformations. This study introduces a novel accelerated core

for SLAM algorithms that is optimized for hardware resource

efficiency and high computational performance. By leveraging

dedicated instruction set and memory reuse strategies, this core

supports various SLAM approaches. The experimental results

demonstrate the coprocessor's high precision, low resource

consumption, and adaptability to multiple SLAM algorithms.

General Terms

Processor, Real-Time Systems, FPGA, Robotics

Keywords

Simultaneous Localization and Mapping (SLAM), Quaternion,

Matrix multiplications, Rotation matrix.

1. INTRODUCTION
Simultaneous Localization and Mapping (SLAM) is a critical

technology in robotics, autonomous vehicles, and augmented

reality, enabling systems to construct a map of an unknown

environment while tracking their position within it. Traditional

SLAM algorithms rely on computationally intensive tasks such

as matrix operations, quaternion transformations, and Extended

Kalman Filters (EKF), making real-time processing on

conventional processors challenging. Field Programmable Gate

Arrays (FPGAs) offer a promising solution due to their parallel

processing capabilities, reconfigurability, and energy

efficiency. Unlike general-purpose processors, FPGAs can be

customized to execute specific SLAM operations efficiently,

reducing latency and power consumption. Recent research has

focused on designing reconfigurable coprocessors tailored for

SLAM, incorporating dedicated instruction sets, memory

optimization techniques, and specialized hardware

accelerators. This paper explores various accelerated core

architectures developed for SLAM on FPGA platforms. It

examines key computational techniques, including matrix

multiplication accelerators, CORDIC-based trigonometric

units, and hybrid fixed-point and floating-point arithmetic

designs. By leveraging reconfigurable FPGA architectures,

these cores enhance the flexibility and scalability of SLAM

implementations, supporting both feature-based and learning-

based SLAM algorithms.

2. LITERATURE REVIEW
• Liu et al. developed a runtime-reconfigurable FPGA

accelerator optimized for SLAM-specific data locality,

sparsity, and parallelism. The design enables efficient

robotic localization by dynamically adapting

computational resources based on algorithmic demands,

leading to improved processing efficiency [1].

• Wang et al. designed a reconfigurable matrix

multiplication coprocessor to accelerate matrix operations

in vision-based navigation algorithms. The coprocessor

significantly improves area and energy efficiency while

maintaining high computational precision, making it

suitable for autonomous robotic applications [3,4]

• Gautschi et al. introduced a specialized logarithmic unit

in hardware to accelerate nonlinear function kernels,

reducing computational overhead in SLAM-related

mathematical operations. This unit enhances the energy

efficiency of SLAM processors while maintaining high

accuracy in pose estimation calculations [10,11].

• Tertei et al. proposed an FPGA-SoC-based hardware

accelerator for matrix multiplication using systolic arrays

to enhance the performance of EKF-SLAM algorithms.

The architecture reduces computational latency by

optimizing matrix processing operations, making it more

efficient for real-time SLAM implementations [12].

3. ALGORITHM

3.1 Quaternion and Rotation Matrix

SLAM algorithms require accurate and efficient methods for

representing 3D rotations and transformations. Quaternions

and rotation matrices are the two most widely used

mathematical representations for handling rotational motion in

SLAM. Each method has distinct advantages in terms of

computational efficiency, numerical stability, and hardware

implementation. FPGA based reconfigurable cores integrate

quaternion and rotation matrix computations to optimize

SLAM performance for real-time applications [14].

3.1.1 Quaternion Representation in SLAM
Quaternion provides a compact and numerically stable

representation of 3D rotations. Unlike Euler angles, which

suffer from gimbal lock, quaternions [12] allow for smooth and

continuous rotations. A quaternion “q” is expressed as:

q = w + a⋅ i + b⋅ j + c⋅ k

where,

• w is the real (scalar) component, representing the

magnitude of rotation.

• a, b and c are the imaginary (vector) components

defining the axis of rotation.

Quaternions are particularly useful in SLAM because they

efficiently compute rotations through quaternion

multiplication, avoiding the need for complex trigonometric

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.27, July 2025

26

functions. Given two quaternions, q and p, their product is

computed as shown in equation 1

 __ (1)

SLAM core leverages FPGA-based parallel computing to

accelerate quaternion operations. Dedicated hardware units

handle

• Quaternion multiplication for pose updates.

• Quaternion-to-matrix conversion for coordinate

transformations.

3.1.2 Rotation Matrix Representation in SLAM
A rotation matrix is a 3×3 matrix that represents a rotation in

three-dimensional space [13]. It is commonly used in SLAM

for transforming coordinates and sensor measurements. A

rotation matrix R(q) corresponding to a quaternion q is shown

in equation 2

__(2)

This matrix is then used to transform a 3D vector d′=R⋅d

Where,

• d is the original 3D position vector.

• d′ is the transformed 3D position vector after

applying the rotation.

Quaternion and rotation matrices are essential mathematical

tools in SLAM implementations. While quaternion offers a

compact and efficient way to represent rotations, rotation

matrices provide direct transformation capabilities useful in

many SLAM algorithms [7]. FPGA-based reconfigurable cores

integrate both methods to achieve high performance, low

latency, and real-time SLAM processing.

3.2 CORDIC Trigonometric Functions
Trigonometric functions such as sine, cosine, tangent, and their

inverses play a critical role in SLAM (Simultaneous

Localization and Mapping) algorithms. These functions are

used for pose estimation, sensor fusion, and coordinate

transformations. However, traditional implementations using

floating-point arithmetic or lookup tables can be

computationally expensive and memory-intensive [3]. The

CORDIC (COordinate Rotation DIgital Computer) [8]

algorithm provides an efficient, hardware-friendly solution for

computing trigonometric functions using only shift and add

operations, making it ideal for FPGA-based reconfigurable

core. A LiDAR sensor returns a distance (r) and an angle (θ).

To convert to x, y coordinates, we use

x=r×cos(θ)

y=r×sin(θ)

Using CORDIC, we compute cos(θ) and sin(θ) without

expensive floating-point operations [9].

4. HARDWARE ARCHITECTURE
The efficient execution of SLAM algorithms on FPGA-based

platforms requires well-optimized hardware architecture. An

accelerated core tailored for SLAM must handle pose

estimation, matrix operations, quaternion transformations, and

trigonometric functions while optimizing power consumption

and real-time performance [11]. This section discusses the key

components of a SLAM-accelerated core and how FPGA-

based acceleration [5] enhances performance. Figure 1 shows a

SLAM-accelerated core, which is designed with multiple

specialized processing cores, optimized memory management,

and dedicated instruction sets to maximize computational

efficiency. The general architecture includes:

Key Components

• Matrix Computation Core (MC): Handles matrix

operations such as multiplication.

• Special Computation Core (SP): Performs

quaternion transformations, rotation matrix

operations, and trigonometric computations.

• Program Controller (PC): Manages instruction

execution and synchronizes data flow between

computation cores.

• Memory (MEM): Stores vectors, scalars, and

temporary data efficiently.

• Floating arithmetic: Performs addition,

multiplication, and reciprocal operations.

Figure 1: Hardware architecture of SLAM accelerated core

4.1 Matrix Computation Core (MC):
The Matrix Multiplication Core (MC) is designed to efficiently

perform matrix-matrix multiplications. Matrix multiplication is

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.27, July 2025

27

a fundamental operation in SLAM algorithms, as it is

extensively used in pose estimation, sensor fusion, Extended

Kalman Filters (EKF), and optimization-based SLAM

techniques. Efficient hardware implementation of matrix

multiplication is crucial for real-time SLAM performance,

making it a primary component of FPGA-based reconfigurable

cores [2]. The system operates in three stages: data fetch,

computation, and write-back. In the Data Fetch stage, matrix

data is retrieved from memory (MEM) using memory banking

and caching to optimize access speed. The computation stage

utilizes a pipelined systolic array, where multiple processing

elements perform matrix multiplication by computing partial

sums, which are stored in accumulators before final storage. In

the write-back stage, the computed matrix is written back to

memory, either triggering the next computation or forwarding

data to the Special Computation Core (SP) for further

processing.

4.2 Program Controller (PC):
The Program Controller (PC) is a critical component in an

FPGA-based SLAM core, responsible for instruction

execution, data management, synchronization, and control of

parallel computation cores as shown in Figure 2. In real-time

SLAM applications, efficient instruction flow management is

essential to ensure low-latency execution of matrix

computations, quaternion transformations, and sensor fusion

tasks [12].

Figure 2: Flow control of SLAM accelerated core

4.2.1 Functions of the PC

• Instruction Fetch & Decode: Reads instructions

from memory and directs them to the appropriate

core.

• Operand Addressing: Manages memory access for

matrix and vector operations.

• Synchronization Control: Ensures parallel

computations complete in the correct order.

4.3 Instruction Set Architecture (ISA):
 Table 1 show a dedicated ISA is implemented to

optimize SLAM-specific computations.

Types of Instructions

• Matrix Operations (Multiplication).

• Quaternion Operations (Multiplication, Rotation

Conversion).

• Trigonometric Computations (CORDIC-based

sine/cosine calculations).

• Floating arithmetic (addition, multiplication, and

reciprocal)

Table 1: ISA of SLAM accelerated core

Opcode Operation Operands Description

0001 ADD R1, R2, R3 Adds R1 and R2, stores result in R3.

0010 MATRIX_MUL R1, R2, R3 Multiplies matrices R1 and R2, result in R3.

0100 QUATERNION_MUL Q1, Q2, Q3 Multiplies quaternions Q1 and Q2, result in Q3.

0111 SIN_COS ANGLE, SIN, COS Computes sine and cosine of the given angle.

4.4 Special Computation Core (SP)
The Special Computation Core (SP) in an FPGA-based SLAM

core is responsible for quaternion operations, trigonometric

computations (CORDIC), and rotation matrix computations. It

plays a crucial role in pose estimation and motion tracking by

handling non-matrix computations that are fundamental to

SLAM algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.27, July 2025

28

• Quaternion Multiplication: Used for pose

estimation and sensor fusion.

• Rotation Matrix Computation: Converts between

quaternion and matrix representations.

• CORDIC Trigonometric Computations:

Calculates sine and cosine functions efficiently.

The data flow in the SP core is designed for efficient

computation while minimizing memory bottlenecks. It begins

with the Program Controller (PC) fetching and decoding an

instruction, such as quaternion multiplication, determining

operand addresses in vector and scalar memory (MEM), and

activating the SP core. Next, input operands like quaternions

and rotation matrices are retrieved from MEM. These operands

are loaded into input registers for processing. The computation

stage then executes operations such as quaternion

multiplication using floating-point MACs, rotation matrix

computation via matrix-vector multiplication, and CORDIC-

based trigonometric functions with shift-and-add, with results

stored in temporary registers. Finally, the computed results are

written back to MEM for further processing, while the PC

marks the operation as complete and fetches the next

instruction.

4.5 Floating Point Arithmetic
Floating-point arithmetic is essential for high-precision SLAM

computations, particularly in matrix operations and quaternion

transformations. Unlike fixed-point arithmetic, floating-point

operations maintain numerical accuracy, making them ideal for

pose estimation, trajectory mapping, and error minimization in

SLAM.

4.6 Memory (MEM)
Vector and Scalar Memory

• Stores matrix and vector data for SLAM

computations.

• Organized into multiple banks for parallel access by

the Matrix Computation Core (MC) and Special

Computation Core (SP).

• Dual-port RAM allows simultaneous read/write

operations, reducing data transfer latency.

5. EXPERIMENTAL RESULTS
The FPGA-SLAM core has better speed, power efficiency, and

accuracy. Figure 3 shows the RTL schematic of the SLAM-

accelerated core, which shows all the sub blocks of a core, and

Figure 4 shows the Technology schematic of the SLAM-

accelerated core, which shows all the internal components used

in the core. The quaternion w, quaternion x, quaternion y, and

quaternion z from the waveform in Figure 5 represent the result

of quaternion multiplication, which is used for pose updating,

and sine and cosine are used for angle updating

Table 2: Comparison with prior works

 This work CICC 2022 [1] JSSC 2019 [8] TC 2020 [6] RSS 2017 [10]

Platform FPGA FPGA ASIC ASIC FPGA

Technology 28nm 28nm 28nm 65nm 28nm

Type SLAM SLAM SLAM SLAM SLAM

Power 3.291 W 3.45 W 243.6 mW 5.50 W 1.46 W

Frequency 145 MHz 143 MHz 240 MHz 83.3 MHz 143 MHz

Table 2 shows the comparison of this work with the recent prior

works, and Table 3 shows the comparison of functionalities

supported by existing work and proposed work.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.27, July 2025

29

Figure 3: RTL schematic of a SLAM accelerated core

Figure 4: Technology schematic of a SLAM-accelerated core

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.27, July 2025

30

Figure 5: Waveforms of a SLAM-accelerated core

6. CONCLUSION
The paper presents a reconfigurable core designed for

implementing various SLAM algorithms on FPGA, addressing

the computational challenges of pose estimation in feature-

based and learning-based methods. The core utilizes a

dedicated instruction set architecture, a memory-reuse strategy

to optimize storage requirements, and two parallel computing

cores for floating-point and fixed-point matrix operations. By

leveraging quaternion mathematics and CORDIC-based

trigonometric functions, the design achieves high accuracy

with minimal hardware resource consumption. Experimental

results demonstrate superior efficiency in processing SLAM

algorithms, making it a viable solution for real-time

applications in robotics and autonomous systems.

7. REFERENCES
[1] Q. Liu, Z. Wan, B. Yu, W. Liu, S. Liu, and A.

Raychowdhury, “An energy-efficient and runtime-

reconfigurable FPGA-based accelerator for robotic

localization systems,” in Proc. IEEE Custom Integr.

Circuits Conf. (CICC), 2022, pp. 1–2.

[2] Y. Gan et al., "Eudoxus: Characterizing and Accelerating

Localization in Autonomous Machines," HPCA, Mar.

2021.

[3] J. Wang et al., “A Reconfigurable matrix multiplication

coprocessor with high area and energy efficiency for

visual intelligent and autonomous mobile robots,” in Proc.

IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2021,

pp. 1–3, doi: 10.1109/A-SSCC53895.2021.9634793.

[4] N. Cao, M. Chang, and A. Raychowdhury, “A 65-nm 8-

to-3-b 1.0–0.36-V 9.1–1.1-TOPS/W hybrid-digital-

mixed-signal computing platform for accelerating swarm

robotics,” IEEE J. Solid-State Circuits, vol. 55, no. 1, pp.

49–59, Jan. 2020, doi: 10.1109/JSSC.2019.2935533.

[5] Q. Liu et al., "π-BA: Bundle Adjustment Hardware

Accelerator Based on Distribution of 3D-Point

Observations," TC, July 2020.

[6] Z. Li et al., "An 879GOPS 243mw 80fps VGA Fully

Visual CNNSLAM Processor for Wide-Range

Autonomous Exploration," ISSCC, Feb. 2019.

[7] A. Suleiman et al., "Navion: A 2-mw Fully Integrated

Real-Time Visual-Inertial Odometry Accelerator for

Autonomous Navigation of Nano Drones," JSSC, Apr.

2019.

[8] Y. Kim, D. Shin, J. Lee, Y. Lee, and H.-J. Yoo, “A 0.55 V

1.1 mW artificial intelligence processor with on-chip PVT

compensation for autonomous mobile robots,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 2, pp.

567–580, Feb. 2018.

[9] J. E. Volder, “The CORDIC trigonometric computing

technique,” IRE Trans. Electron. Comput., vol. EC-8, no.

3, pp. 330–334, Sep. 1959, doi:

10.1109/TEC.1959.5222693.

[10] M. Gautschi, M. Schaffner, F. K. Gürkaynak, and L.

Benini, “An extended shared logarithmic unit for

nonlinear function Kernel acceleration in a 65-nm CMOS

multicore cluster,” IEEE J. Solid-State Circuits, vol. 52,

no. 1, pp. 98–112, Jan. 2017, doi:

10.1109/JSSC.2016.2626272.

[11] D. T. Tertei, J. Piat, and M. Devy, “FPGA design of EKF

block accelerator for 3D visual SLAM,” Comput. Elect.

Eng., vol. 55, pp. 123–137, Oct. 2016.

[12] Shivaprasad B K, K. D. Shinde, and V. Muddi, “Design

and implementation of parallel floating point matrix

multiplier for quaternion computation,” in Proc. Int. Conf.

Control Instrument. Commun. Comput. Technol.

(ICCICCT), 2015, pp. 289–293, doi:

10.1109/ICCICCT.2015.7475292.

[13] E. Doukhnitch and E. Ozen, “Hardware-oriented

algorithm for quaternion-valued matrix decomposition,”

IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 4,

pp. 225–229, Apr. 2011, doi:

10.1109/TCSII.2011.2111590.

[14] G. Rubin, M. Omieljanowicz, and A. Petrovsky,

“Reconfigurable FPGA-based hardware accelerator for

embedded DSP,” in Proc. 14th Int. Conf. Mixed Design

Integer. Circuits Syst., 2007, pp. 147–151, doi:

10.1109/MIXDES.2007.4286138.

IJCATM : www.ijcaonline.org

