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ABSTRACT 

Simultaneous Localization and Mapping (SLAM) is critical for 

autonomous systems because it enables real-time 

environmental mapping and navigation. Implementing SLAM 

algorithms in hardware, particularly on low-resource platforms, 

poses challenges owing to the computational complexity of 

operations such as matrix multiplications and quaternion 

transformations. This study introduces a novel accelerated core 

for SLAM algorithms that is optimized for hardware resource 

efficiency and high computational performance. By leveraging 

dedicated instruction set and memory reuse strategies, this core 

supports various SLAM approaches. The experimental results 

demonstrate the coprocessor's high precision, low resource 

consumption, and adaptability to multiple SLAM algorithms. 
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1. INTRODUCTION 
Simultaneous Localization and Mapping (SLAM) is a critical 

technology in robotics, autonomous vehicles, and augmented 

reality, enabling systems to construct a map of an unknown 

environment while tracking their position within it. Traditional 

SLAM algorithms rely on computationally intensive tasks such 

as matrix operations, quaternion transformations, and Extended 

Kalman Filters (EKF), making real-time processing on 

conventional processors challenging. Field Programmable Gate 

Arrays (FPGAs) offer a promising solution due to their parallel 

processing capabilities, reconfigurability, and energy 

efficiency. Unlike general-purpose processors, FPGAs can be 

customized to execute specific SLAM operations efficiently, 

reducing latency and power consumption. Recent research has 

focused on designing reconfigurable coprocessors tailored for 

SLAM, incorporating dedicated instruction sets, memory 

optimization techniques, and specialized hardware 

accelerators. This paper explores various accelerated core 

architectures developed for SLAM on FPGA platforms. It 

examines key computational techniques, including matrix 

multiplication accelerators, CORDIC-based trigonometric 

units, and hybrid fixed-point and floating-point arithmetic 

designs. By leveraging reconfigurable FPGA architectures, 

these cores enhance the flexibility and scalability of SLAM 

implementations, supporting both feature-based and learning-

based SLAM algorithms. 

2. LITERATURE REVIEW 
• Liu et al. developed a runtime-reconfigurable FPGA 

accelerator optimized for SLAM-specific data locality, 

sparsity, and parallelism. The design enables efficient 

robotic localization by dynamically adapting 

computational resources based on algorithmic demands, 

leading to improved processing efficiency [1]. 

• Wang et al. designed a reconfigurable matrix 

multiplication coprocessor to accelerate matrix operations 

in vision-based navigation algorithms. The coprocessor 

significantly improves area and energy efficiency while 

maintaining high computational precision, making it 

suitable for autonomous robotic applications [3,4] 

• Gautschi et al. introduced a specialized logarithmic unit 

in hardware to accelerate nonlinear function kernels, 

reducing computational overhead in SLAM-related 

mathematical operations. This unit enhances the energy 

efficiency of SLAM processors while maintaining high 

accuracy in pose estimation calculations [10,11].  

• Tertei et al. proposed an FPGA-SoC-based hardware 

accelerator for matrix multiplication using systolic arrays 

to enhance the performance of EKF-SLAM algorithms. 

The architecture reduces computational latency by 

optimizing matrix processing operations, making it more 

efficient for real-time SLAM implementations [12].  

3. ALGORITHM 

3.1 Quaternion and Rotation Matrix 

SLAM algorithms require accurate and efficient methods for 

representing 3D rotations and transformations. Quaternions 

and rotation matrices are the two most widely used 

mathematical representations for handling rotational motion in 

SLAM. Each method has distinct advantages in terms of 

computational efficiency, numerical stability, and hardware 

implementation. FPGA based reconfigurable cores integrate 

quaternion and rotation matrix computations to optimize 

SLAM performance for real-time applications [14]. 

3.1.1 Quaternion Representation in SLAM 
Quaternion provides a compact and numerically stable 

representation of 3D rotations. Unlike Euler angles, which 

suffer from gimbal lock, quaternions [12] allow for smooth and 

continuous rotations. A quaternion “q” is expressed as: 

q = w + a⋅ i + b⋅ j + c⋅ k 

where, 

• w is the real (scalar) component, representing the 

magnitude of rotation. 

• a, b and c are the imaginary (vector) components 

defining the axis of rotation. 

Quaternions are particularly useful in SLAM because they 

efficiently compute rotations through quaternion 

multiplication, avoiding the need for complex trigonometric 
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functions. Given two quaternions, q and p, their product is 

computed as shown in equation 1 

              __ (1) 

SLAM core leverages FPGA-based parallel computing to 

accelerate quaternion operations. Dedicated hardware units 

handle 

• Quaternion multiplication for pose updates. 

• Quaternion-to-matrix conversion for coordinate 

transformations. 

3.1.2 Rotation Matrix Representation in SLAM 
A rotation matrix is a 3×3 matrix that represents a rotation in 

three-dimensional space [13]. It is commonly used in SLAM 

for transforming coordinates and sensor measurements. A 

rotation matrix R(q) corresponding to a quaternion q is shown 

in equation 2 

__(2) 

This matrix is then used to transform a 3D vector d′=R⋅d 

Where, 

• d is the original 3D position vector. 

• d′ is the transformed 3D position vector after 

applying the rotation. 

Quaternion and rotation matrices are essential mathematical 

tools in SLAM implementations. While quaternion offers a 

compact and efficient way to represent rotations, rotation 

matrices provide direct transformation capabilities useful in 

many SLAM algorithms [7]. FPGA-based reconfigurable cores 

integrate both methods to achieve high performance, low 

latency, and real-time SLAM processing. 

3.2 CORDIC Trigonometric Functions 
Trigonometric functions such as sine, cosine, tangent, and their 

inverses play a critical role in SLAM (Simultaneous 

Localization and Mapping) algorithms. These functions are 

used for pose estimation, sensor fusion, and coordinate 

transformations. However, traditional implementations using 

floating-point arithmetic or lookup tables can be 

computationally expensive and memory-intensive [3]. The 

CORDIC (COordinate Rotation DIgital Computer) [8] 

algorithm provides an efficient, hardware-friendly solution for 

computing trigonometric functions using only shift and add 

operations, making it ideal for FPGA-based reconfigurable 

core. A LiDAR sensor returns a distance (r) and an angle (θ). 

To convert to x, y coordinates, we use  

x=r×cos(θ) 

y=r×sin(θ) 

Using CORDIC, we compute cos(θ) and sin(θ) without 

expensive floating-point operations [9]. 

4. HARDWARE ARCHITECTURE 
The efficient execution of SLAM algorithms on FPGA-based 

platforms requires well-optimized hardware architecture. An 

accelerated core tailored for SLAM must handle pose 

estimation, matrix operations, quaternion transformations, and 

trigonometric functions while optimizing power consumption 

and real-time performance [11]. This section discusses the key 

components of a SLAM-accelerated core and how FPGA-

based acceleration [5] enhances performance. Figure 1 shows a 

SLAM-accelerated core, which is designed with multiple 

specialized processing cores, optimized memory management, 

and dedicated instruction sets to maximize computational 

efficiency. The general architecture includes: 

Key Components 

• Matrix Computation Core (MC): Handles matrix 

operations such as multiplication. 

• Special Computation Core (SP): Performs 

quaternion transformations, rotation matrix 

operations, and trigonometric computations. 

• Program Controller (PC): Manages instruction 

execution and synchronizes data flow between 

computation cores. 

• Memory (MEM): Stores vectors, scalars, and 

temporary data efficiently. 

• Floating arithmetic: Performs addition, 

multiplication, and reciprocal operations. 

 

Figure 1: Hardware architecture of SLAM accelerated core 

4.1 Matrix Computation Core (MC): 
The Matrix Multiplication Core (MC) is designed to efficiently 

perform matrix-matrix multiplications. Matrix multiplication is 
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a fundamental operation in SLAM algorithms, as it is 

extensively used in pose estimation, sensor fusion, Extended 

Kalman Filters (EKF), and optimization-based SLAM 

techniques. Efficient hardware implementation of matrix 

multiplication is crucial for real-time SLAM performance, 

making it a primary component of FPGA-based reconfigurable 

cores [2]. The system operates in three stages: data fetch, 

computation, and write-back. In the Data Fetch stage, matrix 

data is retrieved from memory (MEM) using memory banking 

and caching to optimize access speed. The computation stage 

utilizes a pipelined systolic array, where multiple processing 

elements perform matrix multiplication by computing partial 

sums, which are stored in accumulators before final storage. In 

the write-back stage, the computed matrix is written back to 

memory, either triggering the next computation or forwarding 

data to the Special Computation Core (SP) for further 

processing. 

4.2 Program Controller (PC): 
The Program Controller (PC) is a critical component in an 

FPGA-based SLAM core, responsible for instruction 

execution, data management, synchronization, and control of 

parallel computation cores as shown in Figure 2. In real-time 

SLAM applications, efficient instruction flow management is 

essential to ensure low-latency execution of matrix 

computations, quaternion transformations, and sensor fusion 

tasks [12]. 

 

Figure 2: Flow control of SLAM accelerated core 

4.2.1 Functions of the PC 

• Instruction Fetch & Decode: Reads instructions 

from memory and directs them to the appropriate 

core. 

• Operand Addressing: Manages memory access for 

matrix and vector operations. 

• Synchronization Control: Ensures parallel 

computations complete in the correct order. 

4.3 Instruction Set Architecture (ISA): 
 Table 1 show a dedicated ISA is implemented to 

optimize SLAM-specific computations. 

Types of Instructions 

• Matrix Operations (Multiplication). 

• Quaternion Operations (Multiplication, Rotation 

Conversion). 

• Trigonometric Computations (CORDIC-based 

sine/cosine calculations).  

• Floating arithmetic (addition, multiplication, and 

reciprocal) 

 

 

 

 

 

 

 

 

 

 

 

Table 1: ISA of SLAM accelerated core 

Opcode Operation Operands Description 

0001 ADD R1, R2, R3 Adds R1 and R2, stores result in R3. 

0010 MATRIX_MUL R1, R2, R3 Multiplies matrices R1 and R2, result in R3. 

0100 QUATERNION_MUL Q1, Q2, Q3 Multiplies quaternions Q1 and Q2, result in Q3. 

0111 SIN_COS ANGLE, SIN, COS Computes sine and cosine of the given angle. 
 

4.4 Special Computation Core (SP) 
The Special Computation Core (SP) in an FPGA-based SLAM 

core is responsible for quaternion operations, trigonometric 

computations (CORDIC), and rotation matrix computations. It 

plays a crucial role in pose estimation and motion tracking by 

handling non-matrix computations that are fundamental to 

SLAM algorithms. 
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• Quaternion Multiplication: Used for pose 

estimation and sensor fusion. 

• Rotation Matrix Computation: Converts between 

quaternion and matrix representations. 

• CORDIC Trigonometric Computations: 

Calculates sine and cosine functions efficiently. 

The data flow in the SP core is designed for efficient 

computation while minimizing memory bottlenecks. It begins 

with the Program Controller (PC) fetching and decoding an 

instruction, such as quaternion multiplication, determining 

operand addresses in vector and scalar memory (MEM), and 

activating the SP core. Next, input operands like quaternions 

and rotation matrices are retrieved from MEM. These operands 

are loaded into input registers for processing. The computation 

stage then executes operations such as quaternion 

multiplication using floating-point MACs, rotation matrix 

computation via matrix-vector multiplication, and CORDIC-

based trigonometric functions with shift-and-add, with results 

stored in temporary registers. Finally, the computed results are 

written back to MEM for further processing, while the PC 

marks the operation as complete and fetches the next 

instruction. 

4.5 Floating Point Arithmetic 
Floating-point arithmetic is essential for high-precision SLAM 

computations, particularly in matrix operations and quaternion 

transformations. Unlike fixed-point arithmetic, floating-point 

operations maintain numerical accuracy, making them ideal for 

pose estimation, trajectory mapping, and error minimization in 

SLAM. 

4.6 Memory (MEM) 
Vector and Scalar Memory  

• Stores matrix and vector data for SLAM 

computations. 

• Organized into multiple banks for parallel access by 

the Matrix Computation Core (MC) and Special 

Computation Core (SP). 

• Dual-port RAM allows simultaneous read/write 

operations, reducing data transfer latency. 

5. EXPERIMENTAL RESULTS 
The FPGA-SLAM core has better speed, power efficiency, and 

accuracy. Figure 3 shows the RTL schematic of the SLAM-

accelerated core, which shows all the sub blocks of a core, and 

Figure 4 shows the Technology schematic of the SLAM-

accelerated core, which shows all the internal components used 

in the core. The quaternion w, quaternion x, quaternion y, and 

quaternion z from the waveform in Figure 5 represent the result 

of quaternion multiplication, which is used for pose updating, 

and sine and cosine are used for angle updating 

Table 2: Comparison with prior works 

 This work CICC 2022 [1] JSSC 2019 [8] TC 2020 [6] RSS 2017 [10] 

Platform FPGA FPGA ASIC ASIC FPGA 

Technology 28nm 28nm 28nm 65nm 28nm 

Type SLAM SLAM SLAM SLAM SLAM 

Power 3.291 W 3.45 W 243.6 mW 5.50 W 1.46 W 

Frequency 145 MHz 143 MHz 240 MHz 83.3 MHz 143 MHz 

Table 2 shows the comparison of this work with the recent prior 

works, and Table 3 shows the comparison of functionalities 

supported by existing work and proposed work.
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Figure 3: RTL schematic of a SLAM accelerated core 

 

Figure 4: Technology schematic of a SLAM-accelerated core 
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Figure 5: Waveforms of a SLAM-accelerated core 

6. CONCLUSION 
The paper presents a reconfigurable core designed for 

implementing various SLAM algorithms on FPGA, addressing 

the computational challenges of pose estimation in feature-

based and learning-based methods. The core utilizes a 

dedicated instruction set architecture, a memory-reuse strategy 

to optimize storage requirements, and two parallel computing 

cores for floating-point and fixed-point matrix operations. By 

leveraging quaternion mathematics and CORDIC-based 

trigonometric functions, the design achieves high accuracy 

with minimal hardware resource consumption. Experimental 

results demonstrate superior efficiency in processing SLAM 

algorithms, making it a viable solution for real-time 

applications in robotics and autonomous systems. 
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