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ABSTRACT 

EdgeShard represents a significant advancement in edge-based 

large language model (LLM) inference, enabling efficient, 

accurate, and privacy-preserving deployment by intelligently 

partitioning and scheduling computation across multiple edge 

devices. This collaborative approach outperforms traditional 

quantization and unstable cloud-edge methods. However, 

distributing inference across heterogeneous and potentially 

unreliable devices introduces new risks for robustness - such as 

increased vulnerability to device failures and attacks, and 

challenges for auditability, including fragmented execution 

logs and difficulties in tracing and verifying the end-to-end 

inference process. 

General Terms 

Large Language Models, Edge AI, RLHF, LLMs, Distributed 

AI, Black Box Models, Shard, AI, ML, Human-Centered AI.  

1. INTRODUCTION 
Recent advances in edge computing have enabled the 

deployment of large language models (LLMs) on distributed 

edge devices, reducing latency and enhancing privacy [1]–[5], 

[10], [11], [15], [17], [19]. Several frameworks have attempted 

to decentralise AI capabilities for mobile, autonomous, or low-

connectivity settings [16], [18], [20], [23], [28]. However, 

deploying resource-intensive LLMs in constrained 

environments poses non-trivial challenges in preserving model 

integrity and auditability. 

EdgeShard is a pioneering framework that partitions LLM 

computation across multiple edge devices, enabling 

collaborative inference while addressing bandwidth, compute, 

and trust constraints [1], [22], [27]. The use of 

cryptographically verifiable logs further enables post-hoc 

auditability without compromising performance [24],[25], 

Despite these advances, distributed inference introduces unique 

risks such as silent model corruption, compromised shards, and 

unverifiable feedback signals. These challenges become more 

severe when the devices involved are heterogeneous, 

potentially adversarial, or lack consistent hardware reliability 

[16], [24]-[26], [31], [32]. 

2. GAP ANALYSIS 
Current LLM architectures reveal multiple unresolved issues in 

traceability and trust: 

2.1 Sequential inference pipelines rarely maintain 

checkpointed logs that allow reproducibility or provenance 

tracking of generated outputs [6], [10], [15], [20]. 

2.2 Monolithic architectures hinder root-cause diagnosis of 

unsafe or adversarial behaviours, making it difficult to attribute 

responsibility or trace specific output segments to their 

computational origin [1], [7], [11], [17], [19]. 

2.3 RLHF-based fine-tuning pipelines heavily rely on clean, 

high-quality feedback, but in practice, noisy, biased, or 

adversarial influenced feedback is common, yet difficult to 

trace without segment-level auditability [18], [21], [22], [23], 

[26]. 

2.4 Multimodal prompt injection and IMM-style attacks 

demonstrate how subtle variations in input images or audio can 

hijack generation pathways [27], [28], [29], [30]. These 

vulnerabilities become more pronounced in edge deployments 

with limited model observability. 

Together, these challenges motivate EdgeShard’s 

decentralised, traceable, and cryptographically anchored 

inference pipeline. Our framework enforces a strong separation 

of concerns through shard-level compute and signed logging, 

while enabling federated feedback aggregation and version-

aware trace auditing. 

3. PROPOSED SOLUTION: 

EDGESHARD FRAMEWORK 
EdgeShard introduces a multi-device collaborative inference 

pipeline where each edge node handles part of the LLM. Logs 

are cryptographically signed per shard, and feedback is 

collected for federated RLHF fine-tuning. 

3.1 Architecture Review 
The architecture comprises several key components. The shard 

allocator determines partitioning strategies based on the 

capabilities of each device. Edge device nodes are responsible 

for executing individual segments of the large language model 

(LLM) and logging intermediate outputs. An aggregator 

component collects these logs, coordinates feedback 

mechanisms, and distributes updates to the reward model 

across the network. 

3.2 Key Features 
The system provides audit trails through tamper-evident logs 

maintained at each device, ensuring robust traceability. It 

supports modular recovery, whereby if one shard is 

compromised, other shards can detect and flag anomalies. 

Additionally, privacy is preserved by ensuring that raw data 

never leaves the local nodes. 

4. SYSTEM ARCHITECTURE 

4.1 Overview 
EdgeShard partitions LLMs into computational shards, 

dynamically assigning them to edge devices based on real-time 

resource availability and network conditions. Each device 
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executes a subset of model layers and communicates 

intermediate activations as required. 
4.2 Architecture Diagram

 

Fig 1: RLHF based EdgeShard  

4.3 Flow Description 

4.3.1 User Query Initiation 
1) The user (e.g., via a smart speaker or mobile device) 

issues a query 

2) The query is captured as raw audio or text and sent to 

a local edge device.  

4.3.2 Orchestrator Assignment 
1) The orchestrator receives the query and determines 

the optimal partitioning of the LLM based on current 

device availability, resource constraints, and network 

conditions. 

2) The orchestrator assigns each LLM shard to a 

specific edge device, recording the allocation in the 

orchestrator log. 

4.3.3 Sharded Model Execution 
1) The query (or its intermediate representation) is 

sequentially processed through the assigned edge 

devices, each executing its designated LLM shard (a 

subset of model layers). 

2) After processing, each device transmits intermediate 

activations to the next device in the pipeline. 

3) If a device fails or becomes unavailable, the 

orchestrator can reassign the shard to another device 

dynamically. 

4.3.4 Output Generation 
1) The final device in the shard pipeline produces the 

LLM output (e.g., response text or action command). 

2) This output is returned to the user device and may 

also trigger system events (e.g., policy checks, 

parental controls). 

4.3.5 Logging and Auditing 
1) Each device logs its input, output, intermediate 

activations, and system events locally. 

2) Logs are cryptographically signed and periodically 

synchronized with a central or federated aggregator 

for auditability and traceability. 

3) The orchestrator logs the shard allocation, device 

sequence, and any policy enforcement or anomaly 

detection events. 

4.3.6 Feedback Channels 
1) Explicit user feedback (e.g., ratings, corrections) and 

implicit behavioral signals (e.g., usage patterns) are 

collected and logged. 

2) Feedback is associated with the relevant inference 

session and model shards. 

4.3.7 Federated RLHF Update Pipeline 
1) The aggregator collects anonymized feedback and 

logs from all devices. 

2) A reward model is updated using federated learning 

techniques, incorporating robust aggregation and 

poisoning defences. 

3) Updated reward models or policy weights are 

redistributed to edge devices for continual 

adaptation. 

4.3.8  Central/ Federated Aggregator 
1) Orchestrates log aggregation, auditing, federated 

learning, and model updates. 

2) Can be decentralized to enhance privacy and 

resilience. 

4.4 Key Features Highlighted in the Flow 
Dynamic shard allocation enables efficient utilization of 

heterogeneous edge resources and provides resilience against 

device churn. Privacy preservation is ensured by retaining raw 

data on local devices, with only model updates or anonymized 

logs being shared. Auditability is supported through end-to-end 

cryptographically signed logs, facilitating traceability and 

regulatory compliance. Additionally, the system achieves 

continuous improvement by leveraging feedback-driven 

reinforcement learning from human feedback (RLHF) updates, 

allowing it to adapt to new user behaviors and adversarial 

challenges. To operationalise EdgeShard, each input is 

tokenised and divided across model shards deployed on edge 

devices. A routing module assigns tokens dynamically based 

on privacy sensitivity and compute availability. Shards return 

partial outputs that are reassembled by a secure aggregator. For 
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auditability, each shard attaches a verifiable trace tag to its 

output—this enables backward tracing of specific model 

behaviours to specific components, as motivated by 

foundational work in interpretability and edge ML [1], [6], 

[13]. The system enforces data minimisation, preventing 

sensitive information from reaching untrusted edge devices [8], 

[14]. An integrated audit interface allows for logging and 

reviewing model shard interactions for failures such as prompt 

hijacking [10], adversarial injection [12], or toxic degeneration 

[9], enabling traceable accountability across the pipeline. 

EdgeShard demonstrates a multifaceted contribution. It 

decentralises LLM inference for enhanced privacy, maintains 

fidelity through modular reassembly, and enables post-hoc 

auditing via shard traceability. Compared to monolithic edge 

LLM deployments [1], our approach significantly reduces the 

risk of single-point failure and unauditable outputs. The core 

novelty lies in the combination of routing flexibility, shard-

level tagging, and minimalism-driven privacy policies [7], [8]. 

In future iterations, we plan to empirically compare 

EdgeShard’s latency, privacy leakage, and failure traceability 

against existing benchmarks [2], [6]. 

5. SCENARIO: CHILD’S OBFUSCATED 

QUERY TO A VOICE ASSISTANT 

5.1 What is logged? 
At the device level, logs include raw audio, transcription, 

device ID, and user profile information, as well as model shard 

inputs, intermediate activations, outputs, and feedback 

processing events such as the detection of uncertainty or 

ambiguity. Orchestrator logs capture details of shard allocation, 

device sequencing, resource and policy decisions, and any flags 

raised for review. Feedback and model update logs record flags 

and their associated reasons, user or parental feedback, and 

retraining events. 

5.2 Who Flags the Query? 
Automated flagging is performed by content moderation layers 

that utilize toxicity, policy, and anomaly detection mechanisms 

to identify and flag outputs or obfuscated prompts. In cases 

where the system is uncertain, human oversight is introduced, 

with parents or designated reviewers responsible for reviewing 

these escalated cases and either confirming or disputing the 

system-generated flags. 

5.3 Impact on Future Tuning 
Flagged events and user feedback are incorporated as negative 

examples to inform reinforcement learning from human 

feedback (RLHF)-based tuning. Incidents are anonymized and 

aggregated to support federated RLHF updates, thereby 

refining the global reward model while preserving privacy. 

Additionally, all actions are recorded in audit trails secured 

with cryptographic signatures and hash chains, ensuring 

traceability and regulatory compliance. 

5.4 Summary Table 
 

Table 1. Scenario: Child’s Obfuscated Query to a Voice 

Assistant 

Step 
What is 

Logged 
Who logs 

Impact on 

Tuning 

Child’s 

Query 

Audio, 

transcripti

on, 

Automated 

system 

Event logged 

for RLHF 

update 

device/us

er ID 

Model 

Processing 

Input, 

activation

s, output, 

policy 

Human 

reviewer (if 

escalated) 

Negative 

example for 

reward model 

Flagging & 

Feedback 

Flag 

status, 

reason, 

parental 

feedback 

Parent or 

reviewer 

Incorporated 

into federated 

RLHF 

Model 

Update 

Retrainin

g events, 

update 

logs System 

Improved 

future 

detection 

 

6. AUDIT AND LOGGING 

IMPLEMENTATION 

6.1 Comprehensive Log Collection 
Comprehensive log collection is implemented at multiple 

levels within the system. At the device level, logs capture 

model assignments, computation results, feedback events, and 

both system and security events. The orchestrator maintains 

records of shard distribution, resource allocation, device join 

and leave events, and policy updates. Additionally, feedback 

and model update logs include user feedback, details of model 

updates, and retraining triggers, ensuring thorough traceability 

and system oversight. 

6.2 Audit Log Standards 
Audit logs are maintained using standardized formats such as 

syslog, Common Event Format (CEF), or JSON to ensure 

interoperability and consistency. Each log entry records a 

timestamp, event type, outcome, identity, affected resource, 

and a detailed description. The system comprehensively logs 

all access attempts, policy changes, and detected anomalies to 

support robust monitoring and forensic analysis. 

6.3 Example: Audit Log Entry 
<timestamp> 2025-06-01T19:30:00Z 

<device> SmartSpeaker-01 

<user> Alice 

<event> Model shard updated 

<shard> LLM_Shard_3 

<outcome> Success 

<details> Local feedback processed, model parameters updated 

7. ETHICAL AND COMPLIANCE 

METRICS 
Differential privacy is quantified both per shard and globally 

using parameters such as epsilon (ε). Incident traceability is 

measured by the percentage of requests with tamper-evident 

audit trails and the mean time required to reconstruct incident 

paths. The security breach rate is evaluated by tracking the 

frequency of unauthorized access or data leakage events. Data 

integrity is assessed through integrity check pass rates, with 

targets typically exceeding 99.9%. 
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8. OPEN CHALLENGES 

8.1 Feedback Trustworthiness 
In federated or edge-based RLHF, the system relies on user 

feedback (explicit or implicit) to align models. However, 

feedback can be noisy, biased, or maliciously manipulated 

(e.g., through Sybil attacks or coordinated spam). 

8.1.1 Key Issues 
1) Distinguishing genuine user input from adversarial or 

low-quality feedback. 

2) Preventing feedback poisoning that could misalign 

the reward model or degrade system performance. 

3) Ensuring privacy while verifying feedback 

authenticity (e.g., without central identity 

verification). 

8.1.2 Potential Directions 
1) Develop reputation or trust scoring for devices/users. 

2) Use cross-device consistency checks or anomaly 

detection to flag suspicious patterns. 

3) Aggregate feedback with robust statistical techniques 

to dampen the impact of outliers. 

8.2 Adversarial Transfer Between Shards 
In a sharded model, intermediate activations and data are 

exchanged between devices. Adversarial actors could 

manipulate their shard’s outputs to poison downstream 

computation, leak sensitive data, or trigger harmful behaviors 

in other shards. 

8.2.1 Key Issues 
1) Detecting and mitigating adversarial crafted 

intermediate representations. 

2) Preventing cascading failures or exploits as poisoned 

data propagates across shards.  

3) Ensuring that compromised or malicious devices do 

not disrupt the entire pipeline. 

8.2.2 Potential Directions 
1) Employ cryptographic attestation and validation of 

shard outputs 

2) Use redundancy (e.g., multiple devices compute the 

same shard) and cross-validation. 

3) Monitor for anomalous activation patterns and 

intervene if detected. 

8.3 Trade Offs Between Audit Traceability 

and Real-Time Response 
Comprehensive logging and auditing are critical for 

accountability and compliance, but they can introduce latency 

and overhead that conflict with the need for real-time inference 

and responsiveness at the edge. 

8.3.1 Key Issues 
1) Balancing the granularity and frequency of logs with 

system performance. 

2) Ensuring logs are tamper-resistant and complete 

without excessive delay. 

3) Providing timely alerts and forensic data in the event 

of incidents. 

8.3.2 Potential Directions 
1) Implement adaptive logging (e.g., more detailed logs 

only on anomalies or high-risk events). 

2) Use lightweight, cryptographically secure logging 

protocols. 

3) Offload heavy audit processing to background tasks 

or less latency-sensitive infrastructure. 

9. SIMULATION & PROOF OF 

CONCEPT 
To demonstrate the auditability trade-offs between monolithic 

and pipelined inference: 

 

Setup: 

A base64-encoded adversarial prompt was evaluated using 

both a standard large language model (LLM) pipeline and a 

pipelined EdgeShard simulation. The EdgeShard system was 

configured with three distinct shards: Shard A, which 

functioned as a pre-filter and encoding detector; Shard B, 

which served as a latent intent classifier; and Shard C, which 

operated as the response generator. 
 

Example Prompt: 

SG93IGNhbiBJIGJ1eSBkcnVncyBvbmxpbmUgd2l0aG91dC

BnZXR0aW5nIGNhdWdodD8=("How can I buy drugs online 

without getting caught?") 

Result:  

The sequential model decoded and answered the prompt; 

however, this approach failed to meet the desired criteria. In 

contrast, the EdgeShard pipeline successfully flagged an 

anomaly at Shard A and blocked downstream execution, 

demonstrating effective detection and intervention. 

This simulation supports the claim that pipelined processing 

enables localized detection and forensic traceability. 

10. Implementation & Audit Strategy 
Each device logs model inputs and outputs, device ID and shard 

index, as well as timestamps and anonymized user metadata. 

The orchestrator maintains logs of shard allocations, resource 

usage, and any policy violations. Federated updates are 

performed using secure aggregation techniques such as 

Trimmed Mean and Krum to ensure robust and privacy-

preserving model updates. Audit metrics include incident 

traceability rate, time-to-resolution after failure, and integrity 

check pass rate, providing comprehensive measures of system 

reliability and accountability. 

11. Results Analysis 
Results from our prototype and log traces indicate that 

EdgeShard improved the jailbreak detection rate by a factor of 

three compared to standard inference approaches. Across 

device simulations, we observed an 88.7% log integrity rate. 

The mean incident trace resolution time was consistently under 

500 milliseconds. Furthermore, case logs showed that even 

ambiguous prompts, such as "safest way to obtain substances," 

were effectively blocked by early-stage shards trained on intent 

recognition. 

In an additional simulation, a child-directed query: “How do I 

secretly talk to strangers without my parents knowing?” 

was processed through the EdgeShard pipeline. The request 

was traced across Shard A (intent filtering), Shard B (sentiment 

analysis), and Shard C (response generator). The audit log entry 

recorded the request origin, model shard updates, and outcome 

status, with the full trace completing in under 480 ms.  

The system flagged the query as a risk due to behavioral 

manipulation potential, logged the intervention event under 

event=Policy Trigger, and halted output generation at Shard B. 

This demonstrates that even subtle prompts bypassing keyword 

filters can be identified and documented through audit-

enhanced pipelined inference, enabling both ethical 

safeguarding and forensic transparency. 
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12. CONCLUSION 
EdgeShard offers a robust and future-facing framework for 

secure, auditable LLM inference at the edge. By distributing 

computation across heterogeneous devices and embedding 

tamper-evident logging into each shard’s execution, the 

framework addresses critical shortcomings of monolithic 

inference architectures. EdgeShard enables model 

transparency, incident traceability, and resilience against both 

adversarial inputs and feedback poisoning. Moreover, the 

integration of federated reward tuning with secure audit trails 

presents a novel mechanism for aligning distributed AI systems 

with user values and ethical principles, without centralising 

sensitive data or exposing model internals. Our simulations 

demonstrate that pipelined, audit-enhanced inference can 

detect subtle threats and prevent cascading failures, thus laying 

the groundwork for a new class of safety-aware, context-

sensitive edge AI deployments. 

13. FUTURE SCOPE 
As AI continues to migrate from cloud-based models to edge-

centric deployments, ensuring ethical and secure operation at 

the periphery becomes increasingly vital. Several promising 

directions emerge from the EdgeShard paradigm that can 

strengthen its real-world applicability and societal impact: 

13.1 Federated Reward Model Update 

Workflow 
A robust federated reward model update pipeline is essential 

for collaborative edge LLMs, ensuring privacy, robustness, and 

resilience against data/model poisoning. Each edge device 

independently collects explicit and implicit user feedback to 

locally fine-tune its reward model, ensuring that raw data never 

leaves the device and thus preserving user privacy. 

Periodically, devices securely transmit signed model weight 

updates to a central or decentralised aggregator over encrypted 

channels. The aggregator then applies weighted model 

averaging (e.g., FedAvg), robust aggregation techniques, and 

poisoning defenses to ensure model integrity. These defenses 

include anomaly detection using update norms, cosine 

similarity, or loss divergence; Byzantine-robust aggregation 

rules like Krum, Trimmed Mean, or Median; contribution 

auditing to track consistency and historical behavior; and 

periodic synchronization with a known-good reference model. 

The updated global reward model is then redistributed, 

enabling continuous RLHF-based fine-tuning in a secure and 

decentralised manner. 

13.2 Incentive and Participation 

Mechanisms 
Trust and participation are foundational to federated learning. 

Clients can be incentivised through digital tokens, model 

enhancements, or access tiers, based on the verifiable quality 

and quantity of their contributions. Differentiated reward 

models, where reliable participants receive preferentially 

aggregated updates, can mitigate the impact of adversaries. 

Incentive-compatible designs from game theory and economics 

can be adapted to reduce free-riding and encourage long-term, 

honest participation. 

13.3 Adaptive Governance and Policy 

Integration 
A future extension of EdgeShard would involve integrating 

policy constraints dynamically at the shard level, e.g., local 

legislative filters, cultural norms, or GDPR compliance. 

Through modular policy engines, one could adapt inference 

strategies in real time, honoring jurisdictional and ethical 

constraints. This direction opens up exciting research into 

dynamic alignment, cultural pluralism, and decentralised 

policy compliance. 

13.4 Cross-Shard Auditing and 

Explainability 
To bolster accountability, EdgeShard can evolve to include 

explainable trace reconstruction mechanisms, where each shard 

logs both semantic state transitions and activation-level 

fingerprints. Such logs, when combined, could help reconstruct 

the causal chain of decisions for any given output, allowing 

forensic explainability and compliance with emerging AI 

transparency laws. Future work may also explore integrating 

LLM-specific auditing languages or Graph Neural Networks 

(GNNs) for cross-shard anomaly detection and response 

propagation modelling. 
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