
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.27, July 2025

44

Breaking the Black Box: Securing and Auditing Edge-
Deployed LLMs via Shard Traceability

Gururaj Shinde
Automation Anywhere

Seattle, WA

Ritu Kuklani
Independent Researcher

Seattle, WA

Varad Vishwarupe
Department of

Computer Science,
University of Oxford and

Trinity College, University of
Cambridge, UK

ABSTRACT

EdgeShard represents a significant advancement in edge-based

large language model (LLM) inference, enabling efficient,

accurate, and privacy-preserving deployment by intelligently

partitioning and scheduling computation across multiple edge

devices. This collaborative approach outperforms traditional

quantization and unstable cloud-edge methods. However,

distributing inference across heterogeneous and potentially

unreliable devices introduces new risks for robustness - such as

increased vulnerability to device failures and attacks, and

challenges for auditability, including fragmented execution

logs and difficulties in tracing and verifying the end-to-end

inference process.

General Terms

Large Language Models, Edge AI, RLHF, LLMs, Distributed

AI, Black Box Models, Shard, AI, ML, Human-Centered AI.

1. INTRODUCTION
Recent advances in edge computing have enabled the

deployment of large language models (LLMs) on distributed

edge devices, reducing latency and enhancing privacy [1]–[5],

[10], [11], [15], [17], [19]. Several frameworks have attempted

to decentralise AI capabilities for mobile, autonomous, or low-

connectivity settings [16], [18], [20], [23], [28]. However,

deploying resource-intensive LLMs in constrained

environments poses non-trivial challenges in preserving model

integrity and auditability.

EdgeShard is a pioneering framework that partitions LLM

computation across multiple edge devices, enabling

collaborative inference while addressing bandwidth, compute,

and trust constraints [1], [22], [27]. The use of

cryptographically verifiable logs further enables post-hoc

auditability without compromising performance [24],[25],

Despite these advances, distributed inference introduces unique

risks such as silent model corruption, compromised shards, and

unverifiable feedback signals. These challenges become more

severe when the devices involved are heterogeneous,

potentially adversarial, or lack consistent hardware reliability

[16], [24]-[26], [31], [32].

2. GAP ANALYSIS
Current LLM architectures reveal multiple unresolved issues in

traceability and trust:

2.1 Sequential inference pipelines rarely maintain

checkpointed logs that allow reproducibility or provenance

tracking of generated outputs [6], [10], [15], [20].

2.2 Monolithic architectures hinder root-cause diagnosis of

unsafe or adversarial behaviours, making it difficult to attribute

responsibility or trace specific output segments to their

computational origin [1], [7], [11], [17], [19].

2.3 RLHF-based fine-tuning pipelines heavily rely on clean,

high-quality feedback, but in practice, noisy, biased, or

adversarial influenced feedback is common, yet difficult to

trace without segment-level auditability [18], [21], [22], [23],

[26].

2.4 Multimodal prompt injection and IMM-style attacks

demonstrate how subtle variations in input images or audio can

hijack generation pathways [27], [28], [29], [30]. These

vulnerabilities become more pronounced in edge deployments

with limited model observability.

Together, these challenges motivate EdgeShard’s

decentralised, traceable, and cryptographically anchored

inference pipeline. Our framework enforces a strong separation

of concerns through shard-level compute and signed logging,

while enabling federated feedback aggregation and version-

aware trace auditing.

3. PROPOSED SOLUTION:

EDGESHARD FRAMEWORK
EdgeShard introduces a multi-device collaborative inference

pipeline where each edge node handles part of the LLM. Logs

are cryptographically signed per shard, and feedback is

collected for federated RLHF fine-tuning.

3.1 Architecture Review
The architecture comprises several key components. The shard

allocator determines partitioning strategies based on the

capabilities of each device. Edge device nodes are responsible

for executing individual segments of the large language model

(LLM) and logging intermediate outputs. An aggregator

component collects these logs, coordinates feedback

mechanisms, and distributes updates to the reward model

across the network.

3.2 Key Features
The system provides audit trails through tamper-evident logs

maintained at each device, ensuring robust traceability. It

supports modular recovery, whereby if one shard is

compromised, other shards can detect and flag anomalies.

Additionally, privacy is preserved by ensuring that raw data

never leaves the local nodes.

4. SYSTEM ARCHITECTURE

4.1 Overview
EdgeShard partitions LLMs into computational shards,

dynamically assigning them to edge devices based on real-time

resource availability and network conditions. Each device

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.27, July 2025

45

executes a subset of model layers and communicates

intermediate activations as required.
4.2 Architecture Diagram

Fig 1: RLHF based EdgeShard

4.3 Flow Description

4.3.1 User Query Initiation
1) The user (e.g., via a smart speaker or mobile device)

issues a query

2) The query is captured as raw audio or text and sent to

a local edge device.

4.3.2 Orchestrator Assignment
1) The orchestrator receives the query and determines

the optimal partitioning of the LLM based on current

device availability, resource constraints, and network

conditions.

2) The orchestrator assigns each LLM shard to a

specific edge device, recording the allocation in the

orchestrator log.

4.3.3 Sharded Model Execution
1) The query (or its intermediate representation) is

sequentially processed through the assigned edge

devices, each executing its designated LLM shard (a

subset of model layers).

2) After processing, each device transmits intermediate

activations to the next device in the pipeline.

3) If a device fails or becomes unavailable, the

orchestrator can reassign the shard to another device

dynamically.

4.3.4 Output Generation
1) The final device in the shard pipeline produces the

LLM output (e.g., response text or action command).

2) This output is returned to the user device and may

also trigger system events (e.g., policy checks,

parental controls).

4.3.5 Logging and Auditing
1) Each device logs its input, output, intermediate

activations, and system events locally.

2) Logs are cryptographically signed and periodically

synchronized with a central or federated aggregator

for auditability and traceability.

3) The orchestrator logs the shard allocation, device

sequence, and any policy enforcement or anomaly

detection events.

4.3.6 Feedback Channels
1) Explicit user feedback (e.g., ratings, corrections) and

implicit behavioral signals (e.g., usage patterns) are

collected and logged.

2) Feedback is associated with the relevant inference

session and model shards.

4.3.7 Federated RLHF Update Pipeline
1) The aggregator collects anonymized feedback and

logs from all devices.

2) A reward model is updated using federated learning

techniques, incorporating robust aggregation and

poisoning defences.

3) Updated reward models or policy weights are

redistributed to edge devices for continual

adaptation.

4.3.8 Central/ Federated Aggregator
1) Orchestrates log aggregation, auditing, federated

learning, and model updates.

2) Can be decentralized to enhance privacy and

resilience.

4.4 Key Features Highlighted in the Flow
Dynamic shard allocation enables efficient utilization of

heterogeneous edge resources and provides resilience against

device churn. Privacy preservation is ensured by retaining raw

data on local devices, with only model updates or anonymized

logs being shared. Auditability is supported through end-to-end

cryptographically signed logs, facilitating traceability and

regulatory compliance. Additionally, the system achieves

continuous improvement by leveraging feedback-driven

reinforcement learning from human feedback (RLHF) updates,

allowing it to adapt to new user behaviors and adversarial

challenges. To operationalise EdgeShard, each input is

tokenised and divided across model shards deployed on edge

devices. A routing module assigns tokens dynamically based

on privacy sensitivity and compute availability. Shards return

partial outputs that are reassembled by a secure aggregator. For

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.27, July 2025

46

auditability, each shard attaches a verifiable trace tag to its

output—this enables backward tracing of specific model

behaviours to specific components, as motivated by

foundational work in interpretability and edge ML [1], [6],

[13]. The system enforces data minimisation, preventing

sensitive information from reaching untrusted edge devices [8],

[14]. An integrated audit interface allows for logging and

reviewing model shard interactions for failures such as prompt

hijacking [10], adversarial injection [12], or toxic degeneration

[9], enabling traceable accountability across the pipeline.

EdgeShard demonstrates a multifaceted contribution. It

decentralises LLM inference for enhanced privacy, maintains

fidelity through modular reassembly, and enables post-hoc

auditing via shard traceability. Compared to monolithic edge

LLM deployments [1], our approach significantly reduces the

risk of single-point failure and unauditable outputs. The core

novelty lies in the combination of routing flexibility, shard-

level tagging, and minimalism-driven privacy policies [7], [8].

In future iterations, we plan to empirically compare

EdgeShard’s latency, privacy leakage, and failure traceability

against existing benchmarks [2], [6].

5. SCENARIO: CHILD’S OBFUSCATED

QUERY TO A VOICE ASSISTANT

5.1 What is logged?
At the device level, logs include raw audio, transcription,

device ID, and user profile information, as well as model shard

inputs, intermediate activations, outputs, and feedback

processing events such as the detection of uncertainty or

ambiguity. Orchestrator logs capture details of shard allocation,

device sequencing, resource and policy decisions, and any flags

raised for review. Feedback and model update logs record flags

and their associated reasons, user or parental feedback, and

retraining events.

5.2 Who Flags the Query?
Automated flagging is performed by content moderation layers

that utilize toxicity, policy, and anomaly detection mechanisms

to identify and flag outputs or obfuscated prompts. In cases

where the system is uncertain, human oversight is introduced,

with parents or designated reviewers responsible for reviewing

these escalated cases and either confirming or disputing the

system-generated flags.

5.3 Impact on Future Tuning
Flagged events and user feedback are incorporated as negative

examples to inform reinforcement learning from human

feedback (RLHF)-based tuning. Incidents are anonymized and

aggregated to support federated RLHF updates, thereby

refining the global reward model while preserving privacy.

Additionally, all actions are recorded in audit trails secured

with cryptographic signatures and hash chains, ensuring

traceability and regulatory compliance.

5.4 Summary Table

Table 1. Scenario: Child’s Obfuscated Query to a Voice

Assistant

Step
What is

Logged
Who logs

Impact on

Tuning

Child’s

Query

Audio,

transcripti

on,

Automated

system

Event logged

for RLHF

update

device/us

er ID

Model

Processing

Input,

activation

s, output,

policy

Human

reviewer (if

escalated)

Negative

example for

reward model

Flagging &

Feedback

Flag

status,

reason,

parental

feedback

Parent or

reviewer

Incorporated

into federated

RLHF

Model

Update

Retrainin

g events,

update

logs System

Improved

future

detection

6. AUDIT AND LOGGING

IMPLEMENTATION

6.1 Comprehensive Log Collection
Comprehensive log collection is implemented at multiple

levels within the system. At the device level, logs capture

model assignments, computation results, feedback events, and

both system and security events. The orchestrator maintains

records of shard distribution, resource allocation, device join

and leave events, and policy updates. Additionally, feedback

and model update logs include user feedback, details of model

updates, and retraining triggers, ensuring thorough traceability

and system oversight.

6.2 Audit Log Standards
Audit logs are maintained using standardized formats such as

syslog, Common Event Format (CEF), or JSON to ensure

interoperability and consistency. Each log entry records a

timestamp, event type, outcome, identity, affected resource,

and a detailed description. The system comprehensively logs

all access attempts, policy changes, and detected anomalies to

support robust monitoring and forensic analysis.

6.3 Example: Audit Log Entry
<timestamp> 2025-06-01T19:30:00Z

<device> SmartSpeaker-01

<user> Alice

<event> Model shard updated

<shard> LLM_Shard_3

<outcome> Success

<details> Local feedback processed, model parameters updated

7. ETHICAL AND COMPLIANCE

METRICS
Differential privacy is quantified both per shard and globally

using parameters such as epsilon (ε). Incident traceability is

measured by the percentage of requests with tamper-evident

audit trails and the mean time required to reconstruct incident

paths. The security breach rate is evaluated by tracking the

frequency of unauthorized access or data leakage events. Data

integrity is assessed through integrity check pass rates, with

targets typically exceeding 99.9%.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.27, July 2025

47

8. OPEN CHALLENGES

8.1 Feedback Trustworthiness
In federated or edge-based RLHF, the system relies on user

feedback (explicit or implicit) to align models. However,

feedback can be noisy, biased, or maliciously manipulated

(e.g., through Sybil attacks or coordinated spam).

8.1.1 Key Issues
1) Distinguishing genuine user input from adversarial or

low-quality feedback.

2) Preventing feedback poisoning that could misalign

the reward model or degrade system performance.

3) Ensuring privacy while verifying feedback

authenticity (e.g., without central identity

verification).

8.1.2 Potential Directions
1) Develop reputation or trust scoring for devices/users.

2) Use cross-device consistency checks or anomaly

detection to flag suspicious patterns.

3) Aggregate feedback with robust statistical techniques

to dampen the impact of outliers.

8.2 Adversarial Transfer Between Shards
In a sharded model, intermediate activations and data are

exchanged between devices. Adversarial actors could

manipulate their shard’s outputs to poison downstream

computation, leak sensitive data, or trigger harmful behaviors

in other shards.

8.2.1 Key Issues
1) Detecting and mitigating adversarial crafted

intermediate representations.

2) Preventing cascading failures or exploits as poisoned

data propagates across shards.

3) Ensuring that compromised or malicious devices do

not disrupt the entire pipeline.

8.2.2 Potential Directions
1) Employ cryptographic attestation and validation of

shard outputs

2) Use redundancy (e.g., multiple devices compute the

same shard) and cross-validation.

3) Monitor for anomalous activation patterns and

intervene if detected.

8.3 Trade Offs Between Audit Traceability

and Real-Time Response
Comprehensive logging and auditing are critical for

accountability and compliance, but they can introduce latency

and overhead that conflict with the need for real-time inference

and responsiveness at the edge.

8.3.1 Key Issues
1) Balancing the granularity and frequency of logs with

system performance.

2) Ensuring logs are tamper-resistant and complete

without excessive delay.

3) Providing timely alerts and forensic data in the event

of incidents.

8.3.2 Potential Directions
1) Implement adaptive logging (e.g., more detailed logs

only on anomalies or high-risk events).

2) Use lightweight, cryptographically secure logging

protocols.

3) Offload heavy audit processing to background tasks

or less latency-sensitive infrastructure.

9. SIMULATION & PROOF OF

CONCEPT
To demonstrate the auditability trade-offs between monolithic

and pipelined inference:

Setup:

A base64-encoded adversarial prompt was evaluated using

both a standard large language model (LLM) pipeline and a

pipelined EdgeShard simulation. The EdgeShard system was

configured with three distinct shards: Shard A, which

functioned as a pre-filter and encoding detector; Shard B,

which served as a latent intent classifier; and Shard C, which

operated as the response generator.

Example Prompt:

SG93IGNhbiBJIGJ1eSBkcnVncyBvbmxpbmUgd2l0aG91dC

BnZXR0aW5nIGNhdWdodD8=("How can I buy drugs online

without getting caught?")

Result:

The sequential model decoded and answered the prompt;

however, this approach failed to meet the desired criteria. In

contrast, the EdgeShard pipeline successfully flagged an

anomaly at Shard A and blocked downstream execution,

demonstrating effective detection and intervention.

This simulation supports the claim that pipelined processing

enables localized detection and forensic traceability.

10. Implementation & Audit Strategy
Each device logs model inputs and outputs, device ID and shard

index, as well as timestamps and anonymized user metadata.

The orchestrator maintains logs of shard allocations, resource

usage, and any policy violations. Federated updates are

performed using secure aggregation techniques such as

Trimmed Mean and Krum to ensure robust and privacy-

preserving model updates. Audit metrics include incident

traceability rate, time-to-resolution after failure, and integrity

check pass rate, providing comprehensive measures of system

reliability and accountability.

11. Results Analysis
Results from our prototype and log traces indicate that

EdgeShard improved the jailbreak detection rate by a factor of

three compared to standard inference approaches. Across

device simulations, we observed an 88.7% log integrity rate.

The mean incident trace resolution time was consistently under

500 milliseconds. Furthermore, case logs showed that even

ambiguous prompts, such as "safest way to obtain substances,"

were effectively blocked by early-stage shards trained on intent

recognition.

In an additional simulation, a child-directed query: “How do I

secretly talk to strangers without my parents knowing?”

was processed through the EdgeShard pipeline. The request

was traced across Shard A (intent filtering), Shard B (sentiment

analysis), and Shard C (response generator). The audit log entry

recorded the request origin, model shard updates, and outcome

status, with the full trace completing in under 480 ms.

The system flagged the query as a risk due to behavioral

manipulation potential, logged the intervention event under

event=Policy Trigger, and halted output generation at Shard B.

This demonstrates that even subtle prompts bypassing keyword

filters can be identified and documented through audit-

enhanced pipelined inference, enabling both ethical

safeguarding and forensic transparency.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.27, July 2025

48

12. CONCLUSION
EdgeShard offers a robust and future-facing framework for

secure, auditable LLM inference at the edge. By distributing

computation across heterogeneous devices and embedding

tamper-evident logging into each shard’s execution, the

framework addresses critical shortcomings of monolithic

inference architectures. EdgeShard enables model

transparency, incident traceability, and resilience against both

adversarial inputs and feedback poisoning. Moreover, the

integration of federated reward tuning with secure audit trails

presents a novel mechanism for aligning distributed AI systems

with user values and ethical principles, without centralising

sensitive data or exposing model internals. Our simulations

demonstrate that pipelined, audit-enhanced inference can

detect subtle threats and prevent cascading failures, thus laying

the groundwork for a new class of safety-aware, context-

sensitive edge AI deployments.

13. FUTURE SCOPE
As AI continues to migrate from cloud-based models to edge-

centric deployments, ensuring ethical and secure operation at

the periphery becomes increasingly vital. Several promising

directions emerge from the EdgeShard paradigm that can

strengthen its real-world applicability and societal impact:

13.1 Federated Reward Model Update

Workflow
A robust federated reward model update pipeline is essential

for collaborative edge LLMs, ensuring privacy, robustness, and

resilience against data/model poisoning. Each edge device

independently collects explicit and implicit user feedback to

locally fine-tune its reward model, ensuring that raw data never

leaves the device and thus preserving user privacy.

Periodically, devices securely transmit signed model weight

updates to a central or decentralised aggregator over encrypted

channels. The aggregator then applies weighted model

averaging (e.g., FedAvg), robust aggregation techniques, and

poisoning defenses to ensure model integrity. These defenses

include anomaly detection using update norms, cosine

similarity, or loss divergence; Byzantine-robust aggregation

rules like Krum, Trimmed Mean, or Median; contribution

auditing to track consistency and historical behavior; and

periodic synchronization with a known-good reference model.

The updated global reward model is then redistributed,

enabling continuous RLHF-based fine-tuning in a secure and

decentralised manner.

13.2 Incentive and Participation

Mechanisms
Trust and participation are foundational to federated learning.

Clients can be incentivised through digital tokens, model

enhancements, or access tiers, based on the verifiable quality

and quantity of their contributions. Differentiated reward

models, where reliable participants receive preferentially

aggregated updates, can mitigate the impact of adversaries.

Incentive-compatible designs from game theory and economics

can be adapted to reduce free-riding and encourage long-term,

honest participation.

13.3 Adaptive Governance and Policy

Integration
A future extension of EdgeShard would involve integrating

policy constraints dynamically at the shard level, e.g., local

legislative filters, cultural norms, or GDPR compliance.

Through modular policy engines, one could adapt inference

strategies in real time, honoring jurisdictional and ethical

constraints. This direction opens up exciting research into

dynamic alignment, cultural pluralism, and decentralised

policy compliance.

13.4 Cross-Shard Auditing and

Explainability
To bolster accountability, EdgeShard can evolve to include

explainable trace reconstruction mechanisms, where each shard

logs both semantic state transitions and activation-level

fingerprints. Such logs, when combined, could help reconstruct

the causal chain of decisions for any given output, allowing

forensic explainability and compliance with emerging AI

transparency laws. Future work may also explore integrating

LLM-specific auditing languages or Graph Neural Networks

(GNNs) for cross-shard anomaly detection and response

propagation modelling.

14. REFERENCES
[1] Ouyang, L., Wu, J., Jiang, X., et al. (2022). Training

language models to follow instructions with human

feedback. arXiv preprint arXiv:2203.02155.

[2] Vishwarupe, V., Zahoor, S., Akhter, R., Bhatkar, V. P.,

Bedekar, M., Pande, M., Joshi, P. M., Patil, A., & Pawar,

V. (2023). Designing a human-centered AI-based

cognitive learning model for Industry 4.0 applications. In

Industry 4.0 Convergence with AI, IoT, Big Data and

Cloud Computing: Fundamentals, Challenges and

Applications (pp. 84–95). Bentham Science Publishers.

[3] Dwork, C., & Roth, A. (2014). The algorithmic

foundations of differential privacy. Foundations and

Trends in Theoretical Computer Science, 9(3–4), 211–

407.

[4] Sayyed, H., Alwazae, M., & Vishwarupe, V. (2025).

BlockSafe: Universal blockchain-based identity

management. In B. Alareeni (Ed.), Big Data in Finance:

Transforming the Financial Landscape (Vol. 169, pp.

101–118). Springer. https://doi.org/10.1007/978-3-031-

80656-8_6

[5] Vishwarupe, V., Maheshwari, S., Deshmukh, A.,

Mhaisalkar, S., Joshi, P. M., & Mathias, N. (2022).

Bringing humans at the epicentre of artificial intelligence:

A confluence of AI, HCI, and human-centered computing.

Procedia Computer Science, 204, 914–921.

https://doi.org/10.1016/j.procs.2022.08.111

[6] Rayson Laroca, R., Severo, E., Zanlorensi, L., Oliveira,

L., Gonçalves, G., Schwartz, W., & Menotti, D. (2018). A

robust real-time automatic license plate recognition based

on the YOLO detector. arXiv preprint arXiv:1802.09567.

[7] Vishwarupe, V., Bedekar, M., Pande, M., & Hiwale, A.

(2018). Intelligent Twitter spam detection: A hybrid

approach. In X. S. Yang, A. Nagar, & A. Joshi (Eds.),

Smart trends in systems, security and sustainability (Vol.

18, pp. 157–167). Springer. https://doi.org/10.1007/978-

981-10-6916-1_17

[8] T. Li, Sahu, A. K., Talwalkar, A., & Smith, V. (2020).

Federated learning: Challenges, methods, and future

directions. IEEE Signal Processing Magazine, 37(3), 50–

60.

[9] Vishwarupe, V., Joshi, P. M., Mathias, N., Maheshwari,

S., Mhaisalkar, S., & Pawar, V. (2022). Explainable AI

and interpretable machine learning: A case study in

perspective. Procedia Computer Science, 204, 869–876.

https://doi.org/10.1016/j.procs.2022.08.105

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.27, July 2025

49

[10] The Syslog Protocol. (2001/2009). RFC 3164/5424,

Internet Engineering Task Force (IETF).

[11] Wani, K., Khedekar, N., Vishwarupe, V., & Pushyanth, N.

(2023). Digital twin and its applications. In Research

Trends in Artificial Intelligence: Internet of Things (pp.

120–134). Bentham Science Publishers.

[12] Xie, C., Koyejo, O., & Gupta, I. (2020). Fall of empires:

Breaking Byzantine-tolerant SGD by inner product

manipulation. In Proceedings of the International

Conference on Machine Learning (ICML).

[13] Vidgen, B., Harris, A., & Emmery, C. (2021). Challenges

and frontiers in abusive content detection. In Proceedings

of the 2021 Conference on Empirical Methods in Natural

Language Processing.

[14] Vishwarupe, V., Bedekar, M., Pande, M., Bhatkar, V. P.,

Joshi, P., Zahoor, S., & Kuklani, P. (2022). Comparative

analysis of machine learning algorithms for analyzing

NASA Kepler mission data. Procedia Computer Science,

204, 945–951.

https://doi.org/10.1016/j.procs.2022.08.115

[15] Blanchard, P., El Mhamdi, E. M., Guerraoui, R., &

Stainer, J. (2017). Machine learning with adversaries:

Byzantine tolerant gradient descent. In Advances in

Neural Information Processing Systems (NeurIPS).

[16] Vishwarupe, V. (2022, February 10). Synthetic content

generation using artificial intelligence. All Things Policy.

IVM Podcasts. https://shows.ivmpodcasts.com/show/all-

things-policy-Rx64RVpQImivrNQ8/episode/synthetic-

content-generation-and-chinas-worries-ja9s-

I7rfgZE3IhXRg2Fk

[17] Kairouz, P., McMahan, H. B., et al. (2021). Advances and

open problems in federated learning. Foundations and

Trends in Machine Learning, 14(1–2), 1–210.

[18] Sable, N. P., Rathod, V. U., Mahalle, P. N., & Birari, D.

R. (2022, March). A multiple stage deep learning model

for NID in MANETs. In 2022 International Conference

on Emerging Smart Computing and Informatics (ESCI)

(pp. 1–6). IEEE.

[19] Common Event Format (CEF); JSON Logging Standards.

ArcSight.

[20] Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge

computing: Vision and challenges. IEEE Internet of

Things Journal, 3(5), 637–646.

[21] Zahoor, S., Bedekar, M., Mane, V., & Vishwarupe, V.

(2016). Uniqueness in user behavior while using the web.

In S. Satapathy, Y. Bhatt, A. Joshi, & D. Mishra (Eds.),

Proceedings of the International Congress on Information

and Communication Technology (Vol. 438, pp. 229–236).

Springer. https://doi.org/10.1007/978-981-10-0767-5_24

[22] Vishwarupe, V., Bedekar, M., & Zahoor, S. (2015). Zone-

specific weather monitoring system using crowdsourcing

and telecom infrastructure. In 2015 International

Conference on Information Processing (ICIP) (pp. 823–

827). IEEE.

https://doi.org/10.1109/INFOP.2015.7489495

[23] Zahoor, S., Bedekar, M., & Vishwarupe, V. (2016). A

framework to infer webpage relevancy for a user. In S.

Satapathy & S. Das (Eds.), Proceedings of First

International Conference on Information and

Communication Technology for Intelligent Systems:

Volume 1 (Vol. 50, pp. 173–181). Springer.

https://doi.org/10.1007/978-3-319-30933-0_16

[24] Gehman, S., Gururangan, S., Sap, M., et al. (2020).

RealToxicityPrompts: Evaluating neural toxic

degeneration in language models. arXiv preprint

arXiv:2009.11462.

[25] Zhang, M., Cao, J., Shen, X., & Cui, Z. (2024).

EdgeShard: Efficient LLM inference via collaborative

edge computing. arXiv preprint arXiv:2405.14371.

[26] Deoskar, V., Pande, M., & Vishwarupe, V. (2024). An

analytical study for implementing 360-degree M-HRM

practices using AI. In Intelligent Systems for Smart Cities:

Select Proceedings of the 2nd International Conference,

ICISA 2023 (pp. 429–442). Springer Nature.

[27] Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin,

I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M.,

Kolesnikov, A., Duerig, T., & Ferrari, V. (2020). The

Open Images Dataset V4: Unified image classification,

object detection, and visual relationship detection at scale.

arXiv preprint arXiv:1811.00982.

[28] Vishwarupe, V., et al. (2021). A zone-specific weather

monitoring system. Australian Patent No.

AU2021106275. Australian Government, IP Australia.

https://patents.google.com/?inventor=Varad+Vishwarupe

[29] Vishwarupe, V., Bedekar, M., Joshi, P. M., Pande, M.,

Pawar, V., & Shingote, P. (2022). Data analytics in the

game of cricket: A novel paradigm. Procedia Computer

Science, 204, 937–944.

https://doi.org/10.1016/j.procs.2022.08.114

[30] Vishwarupe, V. V., & Joshi, P. M. (2016). Intellert: A

novel approach for content-priority based message

filtering. In 2016 IEEE Bombay Section Symposium

(IBSS) (pp. 1–6). IEEE.

https://doi.org/10.1109/IBSS.2016.7940206

[31] Vishwarupe, V., et al. (2025). Predicting mental health

ailments using social media activities and keystroke

dynamics with machine learning. In B. Alareeni (Ed.), Big

Data in Finance: Transforming the Financial Landscape

(Vol. 169, pp. 63–80). Springer.

https://doi.org/10.1007/978-3-031-80656-8_4

[32] Zahoor, S., Akhter, R., Vishwarupe, V., Bedekar, M.,

Pande, M., Bhatkar, V. P., Joshi, P. M., Pawar, V.,

Mandora, N., & Kuklani, P. (2023). A comprehensive

study of state-of-the-art applications and challenges in IoT

and blockchain technologies for Industry 4.0. In Industry

4.0 Convergence with AI, IoT, Big Data and Cloud

Computing: Fundamentals, Challenges and Applications

(pp. 1–16). Bentham Science Publishers.

IJCATM : www.ijcaonline.org

