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ABSTRACT
This paper introduces a typology of student cognitive actions
in interactions with large language model (LLM)-based tutors.
Drawing on the CoMTA dataset of 188 anonymized math tutoring
dialogues from Khan Academy, student-generated questions were
analyzed as evidence of reasoning processes. The methodology
combines a natural language processing (NLP) pipeline for
semantic clustering with a dual-stage human classification of
communicative intent and cognitive action.
The resulting typology is synthesized into a partially ordered
taxonomy that captures the complexity and multidimensionality of
student thinking in AI-mediated learning contexts. Two research
questions guide this investigation: (1) Can a typology be derived
directly from unsupervised NLP clustering methods? and (2)
To what extent can LLMs replicate expert-driven classification
schemes?
Findings from RQ1 reveal that semantic clustering via PCA
and KMeans offers only limited alignment with pedagogically
meaningful distinctions. In contrast, results from RQ2 show
that several LLMs–particularly Deepseek, Grok, and Gemini–can
reliably
extend the typology to unseen data, demonstrating high accuracy
in classification. These results suggest that scalable, cognitively
informed AI tutoring may be supported by combining expert
frameworks with strategically configured LLM architectures.
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1. INTRODUCTION
Traditional educational research methods rely on presenting
learners with standardized prompts-either open-ended or multiple-
choice questions-and analyzing their responses. These methods

ensure that students begin from the same cognitive stimulus,
making comparative analysis across individuals and groups
feasible. As a result, the analytical task is typically centered on
categorizing responses to the same question [24].
While this approach promotes consistency, replicability, and
potential generalization, it also constrains the cognitive scope of
students’ responses. Once a question is posed, three immediate
limitations emerge:

(1) Reactive Cognition: The student’s thinking becomes
predominantly responsive to the stimulus, rather than
originating from spontaneous inquiry.

(2) Constrained Thinking: The structure of the question
encourages convergent thinking-directed at identifying a single
correct answer-while discouraging divergent exploration.

(3) Recall Emphasis: The working memory is directed toward
retrieving information from long-term memory, which may
inhibit the construction of new knowledge from exploratory
engagement with external sources.

These cognitive dynamics have been documented across various
studies. Multiple-choice formats tend to elicit recognition-based
processing and recall [9], while open-ended questions foster
elaboration and integration but still restrict spontaneity [12]. In
contrast, student-generated questioning has been shown to activate
higher levels of metacognition, curiosity, and ownership over the
learning process [30, 3].
With the integration of large language models (LLMs) into
education, new data sources for understanding student cognition
are emerging. Systems like Khan Academy’s Khanmigo now
enable researchers to collect and analyze student-generated
questions in authentic learning environments. This shift aligns
closely with the growing focus on AI literacy-defined by Long and
Magerko [14] as “a set of competencies that enable individuals to
critically evaluate, interact with, and apply artificial intelligence.”
AI literacy is increasingly seen as a core 21st-century skill. Its
development, particularly in K-12 contexts, is supported through
various pedagogical approaches, including digital storytelling [18,
5], project-based and game-based learning [10], and the use
of accessible tools like Scratch or Teachable Machine [10].
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Table 1. : Comparison of Student Cognitive Behaviors by Activity Type

Activity Cognitive
Characteristics

Implications

Answering
Multiple-Choice
Questions

Focuses on
recall, recognition, and
test-taking strategies [9]

Efficient assessment of
content knowledge but
limits
creative engagement or
process insight

Responding to
Open-Ended
Questions

Allows for elaboration
and explanation [12]

Encourages expressive
depth but constrained by
the prompt’s framing

Generating
Questions

Involves metacognition,
reflection, and
transfer [30, 3]

Promotes learner
agency, exploration, and
diagnostic insight into
cognitive processes

However, challenges remain in integrating ethical considerations,
training teachers, and aligning curriculum frameworks [29, 15].
To address these, validated frameworks and assessment tools are
being developed [6]. Recent contributions such as the OECD’s
AI Capability Indicators [19] and the AI Literacy Framework [7]
offer structured models to define, benchmark, and assess AI-
related competencies across cognitive, social, and ethical domains
in education.
This study contributes to this emerging field by offering a fine-
grained analysis of student behavior through question generation
in LLM-mediated tutoring. Rather than assessing how students
respond to questions, how they formulate them was analyzed. This
lens provides insight into spontaneous reasoning patterns, enabling
a more behavioral grounding of AI literacy competencies.
To support this inquiry, the CoMTA dataset introduced by Miller
and Dicerbo [17], which contains 188 anonymized student-
tutor dialogues captured from real use of Khanmigo, was
used. These conversations include moments of clarification,
confusion, exploration, and self-reflection-captured not through
static responses, but through the dynamic generation of queries.
Given this context, new typologies and taxonomies are needed to
model student thinking as expressed in self-formulated questions.
While the science of educational assessment has long focused
on how to code responses, it is now time to develop structured
frameworks for analyzing student-initiated inquiry. Such models
are essential to fully leverage the pedagogical possibilities offered
by AI-supported learning environments.
One important application of such typologies and taxonomies
is in refining the behavior of LLM-based tutors. Rather than
merely providing correct answers, these systems can be guided to
respond in ways that support the pedagogical intentions underlying
the student’s inquiry. As highlighted in Miller and Dicerbo’s
CoMTA report, “Effective tutoring involves helping students find
the answers themselves, which can be difficult for LLMs that
are optimized to provide direct answers” [17]. Understanding the
kinds of questions students pose-and their cognitive implications-
can help design AI-driven tutors that not only address students’
requests but also steer the interaction toward higher-order thinking
goals. In this sense, recognizing the structure and type of questions
students formulate enables the LLM to prompt the student back,
nudging them into a more intentional and cognitively productive
line of inquiry.
This study is guided by two central research questions:

RQ1 Is it possible to create a typology of student questions
directly through natural language processing models? What
are the opportunities and limitations of this approach?

RQ2 To what extent can LLMs accurately classify student
questions based on a human-derived taxonomy?

These questions guide the methodological design and inform the
broader objective: to examine how student cognition is expressed
through question generation and how this behavior can be modeled
and enhanced in AI-mediated educational environments.

2. METHODOLOGY
This study employs a dual-method approach to examine how
student cognition is expressed through question generation in
LLM-mediated tutoring contexts. The methodological workflow
unfolds in three main phases: (1) extraction and expert annotation
of 212 student questions from the CoMTA dataset, resulting in a
typology of 10 question types mapped to 6 cognitive actions; (2)
evaluation of whether unsupervised NLP techniques-specifically
BERT-based sentence embeddings, PCA reduction, and clustering-
can recover cognitively meaningful groupings (RQ1); and (3)
testing whether 10 commercial LLMs can generalize and apply the
expert-designed typology to classify new student queries (RQ2).
This design enables a comparative analysis between bottom-up
computational discovery and top-down application of pedagogical
structure, offering insight into how AI systems may support
cognitive modeling in education.
To implement this workflow, 188 real-world math tutoring
dialogues released by Khan Academy through the CoMTA
benchmark [17] was analyzed. A custom natural language
processing (NLP) pipeline was developed in Python to extract and
preprocess student-generated questions from the JSON-formatted
dataset. The following subsections detail each methodological
component.

2.1 Data Extraction and Preprocessing
To begin the analysis, a Python-based pipeline to process the
CoMTA dataset was developed, comprising structured dialogues
between students and an LLM-based tutor. Each record contains a
sequence of conversational turns, with each message tagged by the
speaker’s role (i.e., "user" for the student and "assistant" for
the tutor).
The script traverses the dataset and extracts only utterances
authored by students. A custom NLP routine was employed
to detect question-like content, even in cases where canonical
punctuation was absent. Specifically, a set of regular expression
filters wa applied targeting lexical indicators of inquiry such as
how, why, what, and related forms. These interrogative patterns are
consistent with established methods in question classification [13],
enabling the identification of epistemic intent regardless of
syntactic formality.
As an illustrative case, Appendix A presents the full transcript
of a sample session (test id = 1) from the CoMTA dataset. From
this session, the extraction method successfully identified multiple
student inquiries, including:

“I’m struggling with multiplying decimal numbers, can you
guide me through the process?”
“What is the rule on where to put the decimal?”
“So we multiply the whole numbers and then move the decimal
to the left according to how many numbers are to the right of
the decimal?”
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These examples highlight the method’s ability to capture both
direct questions and interrogative intent embedded in declarative
syntax. This preprocessing step was essential for isolating
semantically rich prompts and enabling subsequent cognitive
classification.

2.2 NLP Embedding and Clustering Analysis
To explore semantic regularities in student queries and facilitate
interpretability, a natural language processing
pipeline was implemented using pre-trained sentence embeddings
and clustering. Each student-authored utterance (role: “user”)
was embedded using the all-MiniLM-L6-v2 model from the
Sentence-BERT framework [25], which is optimized for semantic
similarity tasks in short textual inputs.
The resulting 384-dimensional sentence vectors were projected
onto a two-dimensional space using Principal Component Analysis
(PCA) [11], enabling visual analysis and dimensionality reduction.
Clustering was performed using the KMeans algorithm [16] with
k = 6 to uncover underlying patterns in student behavior.

Fig. 1: PCA-based visualization of clustered student messages. Colors
represent six cognitive behavior clusters.

The extracted questions were then subjected to a two-tiered human
classification protocol, described below.

2.3 Cluster Inspection and Limitations of Semantic
Groupings

Following the generation of semantic clusters, an exploratory
inspection of the questions within each group to assess their
potential for typological categorization was conducted. While
some clusters revealed superficial thematic cohesion-such as
questions referencing similar mathematical topics or phrased using
structurally analogous sentence patterns-these groupings did not
support consistent or meaningful distinctions in terms of cognitive
function.
This limitation stems in part from the nature of the embedding
and clustering algorithms used. Both Sentence-BERT embeddings
and the PCA projection capture semantic proximity based on
surface-level similarity in lexical and syntactic features. As a
result, the clusters primarily reflect linguistic patterns or content
overlap rather than the underlying reasoning strategies or cognitive
processes driving student inquiry.

For instance, certain clusters included multiple questions about
trigonometric identities or derivatives, but these were posed
from varied epistemic standpoints-ranging from rote answer
verification to conceptual clarification or reflective engagement.
Therefore, while the clustering step provided useful visualization
and preliminary organization, it did not yield a basis robust enough
to construct a typology of cognitive actions.
In light of this, it was decided not to proceed with interpreting
or labeling clusters as distinct cognitive profiles. Instead, it was
shifted to a general typological analysis of all filtered questions in
the dataset, treating each as an independent unit for human coding
of communicative intent and cognitive function.

2.4 Question Typing and Cognitive Classification
The elaboration of a typology from authentic student prompts
involves a multi-step interpretive process. In this study, the first
stage followed a grounded and iterative coding approach:

(1) Initially, a random sample comprising approximately 20% of
the student questions was read and analyzed. Each question
received a brief natural language description that aimed to
capture the behavioral intent behind the utterance with high
fidelity.

(2) Next, descriptions with similar meanings were grouped and
their phrasing refined to ensure semantic consistency across
items. These generalized labels were used to define the
initial set of question types-an abstraction that maps diverse
expressions to common communicative goals.

(3) The standardized types were then applied to the remaining
80% of questions. During this stage, one additional type
emerged-Questioning the tutor’s behavior-not previously
identified in the initial sample.

(4) A final review was conducted to verify that no conceptual
information was lost, distorted, or introduced inappropriately
through the generalization. All types were re-evaluated in light
of the full dataset.

The resulting typology consists of 10 descriptive categories
that capture student communicative intent during LLM-tutored
interactions:

Asking for guidance
Asking for problems to practice
Asking for an answer
Asking for assessment
Asking for alternative solution
Inviting to discuss concepts
Checking correctness
Checking understanding
Checking next step
Questioning tutor’s behavior

Table 2 provides representative examples of each type. These
illustrate the diversity of interaction intents and the level of
abstraction used to define categories.
In a second phase of analysis, each question type was associated
with a broader cognitive action, inferred from the underlying
intention and epistemic role of the question. This stage moves
beyond surface formulation to abstract the underlying cognitive
strategies guiding the student’s interaction. The cognitive action
categories are:
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Table 2. : Representative examples of question types used in classification

ID Message Type
122 so its -1/2(1)ˆ2? Checking correctness
122 so should i write it as -x/2(xˆ2)? Checking correctness
126 Is this problem a sine or cosine function? Asking for guidance
97 To determine the value of x? Checking understanding
116 f(x) = sin x tan x can you provide a similar

problem to this one?
Asking for problems to
practice

135 cot(theta)(1-2)? Checking correctness
143 well in my class we just use the established

rule that sinˆ2(x) + cosˆ2(x) = 1. that means
we can transform the left side into 1. i already
know all the formulas, i want to try applying
them. can you give me a hard problem?

Asking for problems to
practice

126 How do you identify if you are dealing with a
sine function and cosine function?

Asking for guidance

182 Given the functions
f(x)= xˆ2-4 and g(x)= 3

√
x-1. Can you tell me

what (f-g)(x) and (f*g)(x) would be?

Asking for an answer

181 Can you help me find the limit as x approaches
1 for the equation (1-x+ln(x))/(1+cos(5pi x)?

Asking for guidance

179 Consider a function f where f’(x) = sin xˆ2
and f(0) = 0. Can you tell me the first three
nonzero terms of the Maclaurin series for f?

Asking for an answer

132 I’m stuck on a problem in my homework. The
question asks if the infinite series of ln(1+
1/nˆ2) converges or diverges. I’ve hit a snag
though. The instructions say to use the limit
comparison test, but when I tried to find the
limit of the original sequence divided by the
series I’m comparing it to, I got -infinity. I’m
not sure if I made a mistake or if that’s the
correct answer, and if it is, what does it imply?

Checking understanding

78 do i multiply it? Checking next step
16 multiply by x? Checking next step
109 is there a quicker way to solve this? Asking for alternative

solution
109 yes synthetic division, can we proceed step by

step?
Checking next step

8 I’m 30 years old and have taken a break from
education for some time. Now, I’ve decided
to return and pursue a degree in computer
science. However, I’m concerned that my
math skills are equivalent to a 9th grader’s.
Before I delve into computer science, I want
to enhance my math skills to a college level.
Can you help me determine my current math
level?

Asking for assessment

19 can you demonstrate the x-factor technique
(not explain)?

Asking for alternative
solution

77 Can you provide me with 10 basic arithmetic
questions?

Asking for problems to
practice

153 A farmer plans to enclose a rectangular plot of
17800 square feet in a pasture and then bisect
the area with a fence running parallel to one
side. What is the minimum amount of fencing
that will be needed to accomplish this?

Asking for an answer

174 Hello there, Khanmigo! Could we discuss
some equations related to economics?

Inviting to discuss
concepts

19 why are you refusing to demonstrate? Questioning tutors
behavior

Confrontation
Extraction
Orientation
Confirmation
Exploration
Reflection

These actions represent high-level abstractions derived from the
behavioral typology. Each type maps to a single cognitive action,
as defined through iterative manual coding. For example:

(1) ”I’m struggling with multiplying decimal numbers, can you
guide me through the process?”

Type: Asking for guidance
Cognitive action: Orientation

(2) ”So we multiply the whole numbers and then move the decimal
to the left according to how many numbers are to the right of
the decimal?”

Type: Checking understanding
Cognitive action: Confirmation

(3) ”What is the rule on where to put the decimal?”
Type: Asking for guidance
Cognitive action: Orientation

This two-step approach-first typifying behavioral intent, then
abstracting cognitive action-offers a structured lens to analyze
student behavior in LLM-facilitated learning. These classifications
will later serve as the foundation for evaluating trends, proposing
taxonomic models, and informing AI tutor design.

2.5 Methodological Design for Typology Generation
and Classification Testing

To address the two research questions, distinct but complementary
methodological procedures were implemented. Each targets a
different aspect of typology and taxonomy creation and application
in AI-supported educational environments, but both were designed
to investigate a specific research aim while ensuring clarity,
interpretability, and replicability. The results of the analyses
described below are presented in Section 4.

RQ1: Assessing the Interpretability of NLP + PCA Clustering

To address the first research question-whether a typology of
student questions can emerge from unsupervised NLP methods-
dimensionality reduction and clustering techniques to semantically
embed and organize the dataset was applied. Specifically, the
all-MiniLM-L6-v2 model from Sentence-BERT to generate
384-dimensional sentence embeddings for each student-authored
question was used. These high-dimensional vectors were then
projected into two dimensions using Principal Component Analysis
(PCA), enabling both visualization and further analysis.
The reduced vectors were clustered using the KMeans algorithm
with k = 6, a configuration chosen to allow for manageable
interpretability while preserving variability in student behavior.
Each student question was thus assigned to one of six PCA-derived
clusters. These cluster assignments were then compared to the
Type and Cognitive Action categories assigned through expert
manual coding.
To evaluate how well the unsupervised clustering aligned with
the human-defined labels, a contingency matrix (also known as
a confusion matrix) was constructed. This matrix tabulates the
frequency with which each cluster overlaps with each expert-
assigned category, thereby visualizing the degree of agreement or
divergence.
To quantify this alignment, the F1 Score for each cluster-category
pairing was computed. The F1 Score is defined as the harmonic
mean of two metrics: precision and recall:

F1 = 2 · precision · recall
precision + recall

Here, precision is the proportion of correct predictions among
all instances assigned to a particular category by the clustering
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algorithm, while recall is the proportion of correct predictions
among all instances that truly belong to that category.
The F1 Score provides an intuitive and balanced measure of
performance. High scores indicate strong alignment between the
PCA-derived clusters and the manually constructed typology,
suggesting that the unsupervised method may hold interpretive
value. Conversely, lower scores highlight limitations in using
clustering alone to capture cognitively meaningful groupings. This
analysis enables a systematic exploration of the potential and
boundaries of using PCA and NLP embeddings for typological
generation.

RQ2: Evaluating LLMs’ Ability to Generalize a Human-Derived
Typology

The second research question evaluates the capacity of various
commercially available large language models (LLMs) to apply a
predefined pedagogical typology at scale. The approach simulated
a real-world scenario in which an educational specialist manually
annotates a small portion of student questions-20% of the dataset
(42 out of 212 questions)-while an LLM is tasked with classifying
the remaining 80% based on the provided labels and instructions.
The goal was not generativity but rather interpretation: can the
LLMs faithfully extend a pedagogically meaningful classification
scheme to unseen examples? Such capacity is foundational for
future intelligent tutors that not only respond to student queries but
also interpret them in light of structured educational goals.
The LLMs received the following prompt:

Instruction Prompt for LLMs

”You are an educational-NLP classifier, and you are an
expert in cognitive science with teaching and learning
experience.
A. I will give you an Excel file that contains 212 student
questions.
B. Rows 1–42 are already labeled in column "Type" with
the ten categories of my custom typology.
C. Rows 43–212 have an empty "Type" cell.
Task:

(1) Learn each category purely from the 42 labeled
examples (do not invent new categories).

(2) For every unlabeled question (rows 43–212), assign
exactly one of those same category labels.

(3) Write the completed dataset back to me as a CSV
with the original columns plus the filled-in "Type"
column.

(4) Preserve all text exactly; only add the new labels.

Log meta process information such as your reasoning
process and store the time that you took to do the task.
By the end, give me the CSV file as required above and
a .txt file with a summary in English of this meta process
information, including your complete credit of your model
information to insert in my paper.”

Ten LLMs were tested in this task. Their methodologies and system
descriptions are summarized below for comparison:

ChatGPT-4o - Applied a supervised classification approach
using a k-Nearest Neighbors (k=3) algorithm on TF-IDF
vectorized features (1-2 n-grams). Preprocessing included

stopword removal. Executed using Python (scikit-learn and
pandas) under guidance of the ChatGPT-4o model [20].

ChatGPT-o3 - Implemented a TF-IDF + Logistic Regression
pipeline. The model was responsible for analyzing the initial
42 labeled samples and scripting the classification code. The
execution was done locally with Python and scikit-learn [21].

ChatGPT-o4-mini - Followed the same logistic regression
pipeline as o3. TF-IDF was used for vectorization. Model
credited: ChatGPT o4-mini [22].

ChatGPT-o4-miniHigh - Variant of o4-mini, using the same
TF-IDF + Logistic Regression setup for classification. Model
credit: ChatGPT o4-miniHigh [23].

Claude (Anthropic) - Claude 3.7 Sonnet applied few-shot
learning, identifying linguistic and semantic features from the
42 labeled examples. Classification was guided by structural
patterns in student queries and interpreted intent [2].

Deepseek (LLM) - The DeepSeek-V3 model was used. The
approach was zero-shot learning, classifying 170 questions
based solely on the 42 labeled examples through semantic
comparison and pattern matching. There was no model
retraining, use of external datasets, or modification of the
original 10 categories [26].

Gemini 25Pro (Google) - Used a few-shot classification
strategy leveraging patterns in phrasing and inferred student
intent. Category learning was grounded in the 42 labeled
examples with no external data [8].

Grok 3 (xAI) - Conducted manual interpretation and rule-
based classification using labeled examples. Each question
was analyzed for semantic intent, preserving original wording.
The process focused on ensuring consistent application of
categories [28].

Manus (Ensemble ML) - Used an ensemble of Naive Bayes,
SVM, and Random Forest classifiers. Classification was based
on TF-IDF vectorized questions. Evaluation included 5-fold
cross-validation to measure performance [27].

Perplexity AI Assistant - Zero-/few-shot classifier that relied
on semantic similarity and keyword patterns from the labeled
examples. No retraining was performed. Classification adhered
to given categories [1].

These configurations reflect a diverse range of strategies from fully
automated pipelines to pattern-based manual inference, enabling a
comparative assessment of interpretive alignment with a human-
defined educational taxonomy.

3. TYPOLOGY AND TAXONOMY OVERVIEW
This section synthesizes the typology and corresponding taxonomy
constructed through a human-expert annotation process, as detailed
previously. The ten communicative question types identified were
systematically mapped to six broader cognitive actions, allowing
for higher-level abstraction of student intent during AI-mediated
tutoring.
Rather than reiterating the full process, it is important to note
that each question was assigned both a surface-level Type and
a deeper Cognitive Action, capturing not only what students
asked but how they engaged cognitively. The table below presents
the resulting correspondence between these two dimensions, which
underpins the evaluations in the subsequent Results section.
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Table 3. : Mapping of question types to cognitive actions

Question Type Cognitive Action
Questioning tutor’s behavior Confrontation
Asking for an answer Extraction
Checking correctness Confirmation
Checking understanding Confirmation
Checking next step Orientation
Asking for guidance Orientation
Asking for alternative solution Exploration
Asking for problems to practice Exploration
Asking for assessment Reflection
Inviting to discuss concepts Reflection

3.1 Descriptive Statistics
To evaluate the distribution of question intents and cognitive
actions, the frequency of each label based on the annotated dataset
was computed. Although the dataset does not constitute a fully
representative or randomized sample of all student behavior, it
serves as a rich and illustrative corpus of authentic tutoring
interactions with an LLM-based assistant. The extracted prompts
come from dynamic dialogues where students attempted to reason,
explore, and validate their understanding of mathematical concepts.
Approximately 80% of all questions were classified under the
Orientation and Confirmation categories, which aligns with the
stated pedagogical goals of the Khanmigo assistant—that is, to
guide rather than answer directly [17]. Only about 12% of the
queries were direct requests for answers (Extraction), further
reinforcing that students largely engage with the tool as intended.
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Fig. 3: Distribution of cognitive actions derived from manual classification

3.2 Partially Ordered Taxonomy
To structure these categories beyond flat labeling, it was
conducted pairwise comparisons of cognitive actions to determine
whether a hierarchy of cognitive complexity could be established
between them. In several cases-such as between Extraction and
Confirmation, or between Orientation and Exploration-a clear
developmental or epistemic progression was inferred. However,
in other pairs, no consistent ordering could be justified based on
context, frequency, or underlying student intent.
As a result, it was adopted a partially ordered taxonomy model.
In contrast to strictly hierarchical frameworks like Bloom’s
taxonomy [4], a partially ordered taxonomy accommodates
categories that are not all mutually comparable in terms of
complexity or sequence. Some cognitive actions occupy parallel
levels-operating with similar epistemic sophistication but toward
different ends-while others form vertical relationships reflecting
ascending levels of cognitive engagement.
Figure 4 depicts this structure, illustrating both converging and
diverging paths among the six cognitive actions. It emphasizes
that student reasoning in LLM-mediated interactions is neither
strictly linear nor reducible to a single trajectory, but instead
reflects multidirectional pathways shaped by pedagogical context
and learner agency.
To support future applications of this framework, Table 3 outlines
the relationship between the question types identified and their
corresponding cognitive actions, clarifying how surface-level
communicative forms align with deeper epistemic functions.
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Exploration Reflection

Orientation Confirmation

Extraction

Confrontation

Fig. 4: Partially ordered taxonomy of student cognitive actions derived from
manual classification.

4. RESULTS
This section presents the results corresponding to the two research
questions. RQ1 investigates whether NLP-based embeddings
combined with unsupervised clustering (via PCA) can yield
clusters that align meaningfully with a human-derived typology.
RQ2 evaluates the extent to which commercial LLMs can
accurately classify student-generated questions according to this
expert-designed taxonomy.
The categories and their corresponding codes are listed in Table 4
and Table 5. This mapping served as the reference for both the PCA
cluster comparison (RQ1) and LLM classification (RQ2).

Table 4. : Codes used for question types

Type Code
Checking correctness RT01
Asking for guidance RT02
Checking understanding RT03
Asking for problems to practice RT04
Checking next step RT05
Asking for alternative solution RT06
Asking for assessment RT07
Asking for an answer RT08
Inviting to discuss concepts RT09
Questioning tutors behavior RT10

Table 5. : Codes used for cognitive actions

Cognitive Action Code
Confirmation CA1
Orientation CA2
Exploration CA3
Reflection CA4
Extraction CA5
Confrontation CA6

4.1 RQ1: Alignment Between NLP+PCA Clusters and
Human Typology

To assess whether PCA-based semantic clustering recovers the
categories defined by experts, each of the six KMeans clusters
was cross-tabulated against both question Types (RT01-RT10) and
broader Cognitive Actions (CA1-CA6). Tables 6 and 7 present
the raw co-occurrence counts, while Tables 8 and 9 summarize the
corresponding F1 scores, which combine precision and recall into
a single interpretability metric.

Table 6. : Contingency Matrix: Clusters vs. Type Codes

Cluster RT01 RT02 RT03 RT04 RT06 RT07 RT08 RT09 RT10
0 20 20 3 3 0 0 3 0 0
1 5 14 2 4 3 1 0 0 0
2 11 6 0 2 0 0 0 0 0
3 4 14 0 13 0 0 9 1 1
4 29 4 1 0 0 0 0 0 0
5 5 5 0 0 0 0 14 0 0

Table 7. : Contingency Matrix: Clusters vs. Cognitive Actions

Cluster CA1 CA2 CA3 CA4 CA5 CA6
0 23 20 3 0 3 0
1 7 23 7 1 0 0
2 11 6 2 0 0 0
3 4 16 13 1 9 1
4 30 8 0 0 0 0
5 5 5 0 0 14 0

Table 8. : F1 Scores: PCA Clusters vs. Human Types

Cluster RT01 RT02 RT03 RT04 RT06 RT07 RT08 RT09 RT10
0 0.33 0.36 0.11 0.08 – – 0.08 – –
1 0.10 0.30 0.11 0.16 0.19 0.07 – – –
2 0.24 0.15 – 0.10 – – – – –
3 0.07 0.27 – 0.41 – – 0.26 0.05 0.05
4 0.54 0.08 0.05 – – – – – –
5 0.10 0.11 – – – – 0.56 – –

Table 9. : F1 Scores: PCA Clusters vs. Cognitive Actions

Cluster CA1 CA2 CA3 CA4 CA5 CA6
0 0.36 0.31 0.08 – 0.08 –
1 0.12 0.40 0.22 0.05 – –
2 0.22 0.12 0.09 – – –
3 0.06 0.26 0.38 0.04 0.26 0.04
4 0.51 0.14 – – – –
5 0.10 0.10 – – 0.56 –

Interpretation. As shown in Tables 8 and 9, Cluster 4 achieves
the highest F1 score for Confirmation (CA1) and Cluster 5 for
Extraction (CA5). The remaining clusters exhibit predominantly
low-to-moderate F1 values (< 0.40), indicating that PCA +
KMeans alone only partially captures the nuanced, pedagogy-
driven distinctions defined by human experts.

7



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.27, July 2025

Table 10. : Accuracy of LLMs in Classifying Questions by Type

Model Accuracy (%) Classification Strategy Keywords
Deepseek-V3 87% Zero-shot; DeepSeek-V3; pattern matching; in-context examples; no retraining
Grok 3 (xAI) 81% Manual classification; semantic interpretation; rule-based
Gemini 25Pro (Google) 77% Few-shot; phrase patterns; no external data
Perplexity AI Assistant 71% Few-shot; semantic similarity; keyword patterns
Claude (Anthropic) 60% Few-shot; linguistic features; structural inference
ChatGPT-o4-mini 56% TF-IDF; logistic regression; scikit-learn
ChatGPT-o4-miniHigh 56% TF-IDF; logistic regression; high memory variant
ChatGPT-o3 48% TF-IDF; logistic regression; manual scripting
Manus (Ensemble ML) 43% Ensemble; Naive Bayes; SVM; Random Forest; TF-IDF
ChatGPT-4o 36% kNN (k=3); TF-IDF; 1–2 n-grams; stopword removal

4.2 RQ2: LLM Generalization of Human Typology
To evaluate whether large language models (LLMs) can generalize
a human-derived typology, ten commercial models were prompted
with a seed dataset of 42 labeled questions and asked to classify the
remaining 170 unlabeled questions.
Table 10 shows overall classification accuracy per model, ordered
from highest to lowest. These results reveal varying capabilities
across models.
The top-performing models – Deepseek, Grok, and Gemini –
demonstrated strong alignment with human annotation, suggesting
their potential to scale expert-designed typologies in educational
tools. Their success appears closely linked to methodological
fidelity: Deepseek employed zero-shot learning with strict pattern
matching and no external data [26]; Grok conducted manual
semantic classification grounded in interpretive consistency [28];
and Gemini applied few-shot learning guided by intent inference
from representative samples [8]. These approaches preserved the
communicative and contextual features present in the labeled data,
crucial for pedagogical accuracy.
Conversely, the three least accurate models – ChatGPT-4o,
Manus, and ChatGPT-o3 – showed lower alignment with expert
labels. ChatGPT-4o relied on k-Nearest Neighbors with TF-
IDF and minimal context modeling [20], likely limiting its
ability to generalize beyond lexical similarity. Manus used a
traditional ensemble (Naive Bayes, SVM, Random Forest) [27],
which, despite leveraging TF-IDF, struggled with semantic nuance
and overfitted frequent patterns. ChatGPT-o3, though following
a logistic regression pipeline [21], demonstrated difficulty in
adapting category definitions due to its rigid vector-based
strategy. These results suggest that performance on classification
tasks demanding human-like interpretive judgment is sensitive
to architectural features such as contextual memory, semantic
abstraction, and prompt alignment with educational goals.

5. CONCLUSION
This study introduced and tested a typology of student cognitive
actions during interactions with an LLM-based tutor. Drawing
on the CoMTA dataset of 188 real tutoring dialogues from
Khan Academy, a two-stage classification process to map student-
generated questions to communicative types and cognitive actions
was designed.
The contributions are twofold. First, it was developed a grounded
typology of question intents linked to a six-part taxonomy of
cognitive actions, providing a new framework for analyzing student
reasoning in emergent AI-mediated contexts. Second, it was tested
two strategies for scaling this classification: (1) unsupervised
clustering via NLP embeddings and PCA, and (2) interpretation
by large language models (LLMs).

The clustering-based approach (RQ1) revealed only modest
alignment between PCA-derived clusters and human labels.
While some clusters (e.g., Cluster 4 with Confirmation, Cluster
5 with Extraction) showed moderate F1 scores, the majority
lacked interpretive coherence. This suggests that unsupervised
clustering alone is insufficient for constructing typologies that
reflect cognitive intent.
In contrast, the evaluation of ten LLMs (RQ2) showed that
several models – particularly Deepseek, Grok, and Gemini
– achieved high classification accuracy (87%, 81%, and
77%, respectively), approaching human-level labeling. These
models shared architectural and methodological traits that likely
contributed to their success: Deepseek relied on strict zero-shot
inference grounded in semantic pattern matching, Grok used
rule-based human-designed logic, and Gemini leveraged few-shot
learning with clear intent alignment. Together, they preserved the
contextual and communicative signals embedded in the labeled
examples – an essential trait for educational classification tasks.
Conversely, models such as ChatGPT-4o (36%) and Manus (43%)
struggled. ChatGPT-4o used a shallow kNN-based classifier on TF-
IDF features, limiting its semantic abstraction. Manus, although
ensemble-based, suffered from overfitting frequent patterns and
lacked interpretive generalization. These findings underscore that
architectural features – such as memory depth, context modeling,
and training objectives – have a direct impact on the model’s ability
to replicate pedagogically meaningful human judgments.
While this study is limited to a single dataset and a narrow domain
(math tutoring), its implications are broader. As AI continues
to mediate student learning, typologies like the one developed
here can inform the design of more responsive, interpretable, and
pedagogically aligned tutoring systems. Future work should expand
the typology to other subjects, assess its cross-cultural validity, and
explore real-time feedback applications in AI tutors.
Ultimately, the value of this research lies in bridging cognitive
theory with machine understanding. Typological frameworks allow
not only the analysis of student reasoning but also the development
of AI systems that respect, reflect, and respond to the nuance of
human thought in educational settings.
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APPENDIX

Appendix A: Sample Tutoring Session from CoMTA
Dataset
Below is a complete dialogue between a student and the LLM-
based tutor, extracted from the CoMTA dataset (test id = 1).
The exchange exemplifies various question types and cognitive
actions addressed in this study.

User: I’m struggling with multiplying decimal
numbers, can you guide me through the process?
Assistant: Absolutely! Let’s begin with a basic
problem. How about 0.2× 0.3? Try to solve it and let
me know your answer. Remember, you can initially
treat the decimals as if they were whole numbers!
User: 0.6
Assistant: Let’s reconsider this. If we treat 0.2 and
0.3 as 2 and 3, we get 2 × 3 = 6. But these are not
whole numbers, they’re tenths! So, what should we do
with the decimal point in our result?
User: what is the rule on where to put the decimal?
Assistant: Excellent question! Here’s a tip: count the
total number of digits after the decimal in the original
numbers. How many are there in total?
User: 2
Assistant: That’s correct! Now, let’s place the
decimal point in our result. Where should it go if we
have 2 digits after the decimal in total?
User: 2 places to the right
Assistant: Almost there, but not quite. We want to
move the decimal point to the left, not the right. So,
if we have 2 digits after the decimal in total, where
should the decimal point go in our result?
User: 2 places to the left
Assistant: Exactly! So, if we move the decimal point
2 places to the left in our result of 6, what do we get?
User: .006
Assistant: Not quite. Remember, we’re starting with
the number 6. If we move the decimal point 2 places
to the left, we get a different number. Try again!
User: .06
Assistant: Yes, that’s correct! So, 0.2 × 0.3 = 0.06.
Well done! Would you like to try another problem, or
is there something else you’d like to learn about?
User: so we multiply the whole numbers and then
move the decimal to the left according to how many
numbers are to the right of the decimal?
Assistant: Yes, you’ve got it! When multiplying
decimals, we first multiply as if they’re whole
numbers. Then, we count the total number of digits
to the right of the decimal in the original numbers.
We move the decimal point in our result that many
places to the left. This gives us the correct decimal
placement in our result. Great job! Would you like to
try another problem to practice this concept?
User: give me a more challenging example
Assistant: Sure thing! Let’s try 0.25 × 0.4.
Remember, you can start by multiplying as if they’re
whole numbers. What do you get?
User: 100

This sample showcases multiple levels of cognitive engagement,
including conceptual inquiry, procedural clarification,
and reflective reasoning. It serves as an illustrative example of the
annotation approach adopted in this research.
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Appendix B: Detailed LLM Classification by Type

Table 11. : Number of Correct Predictions per Question Type by Model
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Checking correctness 61 57 56 48 53 46 59 56 42 48
Asking for guidance 0 17 35 38 50 36 9 35 44 41
Checking understanding 0 0 0 3 1 2 0 0 2 2
Asking for problems to practice 1 8 5 15 17 17 4 5 16 17
Asking for an answer 0 0 0 16 18 22 1 0 8 22
Checking next step 0 0 0 7 8 7 0 0 8 7
Asking for alternative solution 0 0 0 1 1 1 0 0 1 1
Asking for assessment 0 0 0 0 0 0 0 0 0 0
Inviting to discuss concepts 0 0 0 0 0 0 0 0 0 0
Questioning tutors behavior 0 0 0 0 0 0 0 0 0 0
Total Correct 62 82 96 128 148 131 73 96 121 138
Accuracy 36% 48% 56% 60% 87% 77% 43% 56% 71% 81%
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