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ABSTRACT 
Object detection from Synthetic Aperture Radar (SAR) 

imagery is picking up steam with SAR's all-weather, day and 

night imaging capabilities. Object detection within SAR 

images is difficult due to speckle noise, lack of texture, and 

significant domain shift from optical images for which deep 

learning models are pretrained. The study proposes to mitigate 

this with a large dataset and a Multi-Stage Filter Augmentation 

(MSFA) framework with improved detection performance with 

diverse backbones and anchor-based assignment methods as 

suggested by Y. Li et al. The contribution of this work extends 

this by keeping the MSFA-based pretraining with the highest 

performing ConvNeXt backbone while adding a change in the 

anchor box assignment method. Specifically, by using 

Adaptive Training Sample Selection (ATSS), an anchor-free, 

statistics-based sample selection method with an existing 

MSFA-based approach, replacing heuristic-based systems like 

Faster R-CNN. Experiments show that adding ATSS 

significantly enhances the detection model's generalizability, 

particularly in noisy or low-contrast SAR environments. This 

paper compares the baseline MSFA-based systems with the 

proposed pipeline using ATSS and demonstrates that ATSS 

outperforms in detecting small and cluttered objects. 

General Terms 
Machine Learning, Remote Sensing, Synthetic Aperture Radar, 

Object Detection, Deep Learning, Domain Adaptation 

Keywords 
Synthetic Aperture Radar, Machine Learning, ATSS, Object 

Detection 

1. INTRODUCTION 
Synthetic Aperture Radar (SAR) imaging has been a flexible 

remote sensing imaging modality because it can operate 

regardless of weather and lighting conditions. This capability 

makes SAR highly useful for mission-critical uses such as 

defense surveillance, oceanic monitoring, disaster relief, and 

city infrastructure inspection.  

However, while SAR image analysis possesses its advantages, 

it is also a difficult problem for object detection tasks. Some of 

its challenges are the existence of speckle noise, lack of color 

and fine texture information, and the enormous domain 

disparity between SAR and natural RGB imagery—upon which 

most deep learning models are conventionally trained. These 

limitations make it difficult to directly use conventional object 

detection models like YOLO, SSD, and Faster R-CNN on SAR 

data, resulting in degraded performance. 

Another obstacle is the lack of large-scale, annotated SAR 

datasets. Since SAR data is strategic and proprietary, publicly 

available datasets are small-scale, limited in diversity, and poor 

in object category coverage. Although some datasets such as 

have been useful for certain use-cases, they are not capable of 

facilitating general-purpose, multi-category object detection. 

This limitation led to SARDet-100K—a large-scale, 

multicategory SAR object detection benchmark with images 

and object annotations. 

To close the domain gap and improve performance in SAR 

object detection, the MSFA framework was proposed by Y. Li 

et al. This tackles both the domain gap and model gap by using 

handcrafted feature augmentation to reduce the data 

distribution gap between SAR and RGB. Hierarchical domain 

transition uses an intermediate optical remote sensing dataset 

and end-to-end pretraining of the entire detection model instead 

of pretraining just the backbone. The MSFA method produced 

orders of magnitude improvements in detection across 

different architectures and benchmark datasets when combined 

with backbones like ConvNeXt. 

The detection head in the pipeline was largely anchor-based, 

using approaches like FRCNN and its variants to select samples 

and localize the object. While anchor-based methods can be 

effective, they heavily rely on heuristics defined manually for 

the anchor box assignment, which runs the risk of not 

generalizing in SAR datasets where object shapes, sizes, and 

oriented objects can vary. Rather than relying on heuristic 

approaches for anchor box assignments, this study proposes 

improvement by replacing anchor box assignment with 

Adaptive Training Sample Selection (ATSS). 

ATSS is a statistics-based, anchor-free approach that selects 

positive samples based on the statistical properties of 

Intersection over Union (IoU) distributions. ATSS can adapt to 

object scale, image noise, and detection difficulty, revealing 

greater robustness than assigned fixed thresholds for anchor 
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box assignment. As ATSS integrates with the MSFA pipeline 

with the ConvNeXt backbone, it generates superior 

generalization properties, especially in scenarios including 

small targets, clustered objects, or cluttered backgrounds. 

This paper presents a comparative analysis of the original 

MSFA+FRCNN framework and the proposed MSFA+ATSS 

approach. The same pretraining strategy and backbone were 

maintained while the anchor box assignment framework was 

modified to assess and isolate the impact of the ATSS, or the 

statistical approach, on detection performance. This study 

demonstrates how ATSS provided superior generalization 

across the wide range of SAR scenarios observed in these 

experiments, demonstrating the potential for ATSS to be used 

in other SAR-based object detections. 

2. LITERATURE SURVEY 
The study of object detection on SAR imagery and its 

importance has grown with applications in military surveillance 

[1], maritime monitoring, disaster relief [2], and remote sensing 

[3]. A major limitation in the literature area has been the lack 

of large-scale, multi-category SAR datasets. Optical datasets 

existed with large scope, such as Microsoft COCO [4]; 

however, datasets related to SAR have been limited in data sets 

and in the diversity and complexity of the data mentioned, 

often focusing on ship data sets [5]. Hence, SARDet-100K was 

proposed to act as a unified benchmark [7], combining the ten 

public datasets together.  

Earlier methods of detecting SAR objects included purely 

handcrafted features that were either Haar-like descriptors [8], 

Histogram of Oriented Gradients (HOG) [9], or Canny Edge 

detection [10]. These methods utilized classifiers such as SVMs 

[11] and AdaBoost paired with the handcrafted features, often 

provided minimal structural understanding, and did not 

generalize well across different SAR conditions. Methods that 

were developed later included wavelet-based methods and the 

use of feature pairs like the wavelet scattering network. There 

were also region-based detectors, including Deformable 

Convolutional Networks (DCN) [13]. Other studies 

incorporated genetic based Haar filters and considered it as 

shape identification for adaptive feature selection [14]. These 

conventional methods often failed due to noise, and variance in 

object scale. 

Convolutional Neural Networks (CNNs) have established 

themselves as the go-to approach for SAR object detection with 

the rise of deep learning. CNNs can extract deep, hierarchical 

features from raw SAR data, which increase robustness to 

effects such as speckle noise, clutter, and variability in 

orientations of objects across the same scene. Region-based 

CNNs such as FRCNN [15] have been well-suited for SAR 

tasks where the object is small or occluded, such as ships [16]. 

Cascaded models have also been successfully applied for SAR, 

such as Cascade RCNN [17], where the improvement in 

accuracy is due to multi-stage refinement of the object 

proposals. More broadly, more complex CNN architectures 

have been applied in SAR tasks for locational accuracy, such 

as Grid R-CNN [18], which treats bounding box regression as 

a spatial grid and applies grid-based refinement on SAR images 

with distortion. When it comes to real-time applications where 

speed is prioritized, single-stage detectors have dominated 

CNN use on SAR images, such as the common approaches 

YOLO and SSD [19]. 

The recent developments have also incorporated attention 

mechanisms and Transformer-based models. The Geospatial 

Transformer [21] and the Swin Transformer [22] offer an 

effective approach for SAR by modelling long-range 

dependencies and hierarchical relationships within features 

and exhibiting some robust resilience to noise. In the context of 

detection, anchor-free detectors, such as CenterNet++ [23], 

remove reliance on anchor boxes, opting instead to predict the 

object centres and sizes directly  beneficial in cases where the 

objects may be of different orientations and scales. 

Regardless of these advances, there is still a major issue: the 

domain gap between optical image datasets (i.e., ImageNet 

[24]) used to pre-train and SAR image data. Optical images 

represent coloration and texture, while SAR images depict 

backscatter intensities. Therefore, models trained with RGB 

data do not generalize well when used for fine-tuning with SAR 

data. 

Recent studies have researched recent data-driven 

augmentation techniques. Jin et al. [12] proposed frequency 

domain feature augmentation to extract more distinctive 

spectral target features in SAR images to improve 

discriminability of models. Zhang et al. [27] explored the 

augmentation of domain-specific features, which improved 

detection performance by augmenting textures of deep 

learning to enable the free transfer to SAR image textures. Liu 

et al. [20] introduced Dynamic Anchor Boxes (DAB-DETR), 

which promoted object detection acceptance by dynamically 

adjusting the bounding boxes to improve the accuracy of shape 

and object size for SAR-based ship detection. 

3. METHODOLOGY 
The proposed framework combines multi-sensor data fusion 

with deep learning methods for supporting robust object 

detection. The procedural pipeline begins with data preparation 

and augmentation, where input images from three major 

channels are utilized. These filter augmented datasets are used 

in various stages for training and testing the model for object 

detection. 

3.1 Dataset 
Object detection based on deep learning techniques in SAR 

imagery is often challenged by the limited amount of large, 

diverse, and publicly available annotated datasets. This study 

uses three datasets, namely ImageNet, DOTA, and SARDet-

100K. 

The ImageNet database is a massive visual database commonly 

adopted in computer vision research for pretraining deep learning 

models. It exhibits rich and varied visual features that are crucial 

for initializing neural networks prior to transferring them to 

downstream applications. Pretraining on ImageNet enables 

models to learn basic visual features that can be fine-tuned using 

SAR-specific datasets to learn the special properties of radar 

images. 

Subsequently, The DOTA (Dataset for Object detection in 

Aerial Images) dataset was annotated for 15 object classes such 

as vehicles, ships, aircraft, buildings and more [30]. It has high 

object density and complex scene compositions from an 

aerial perspective, which make it a good transitional dataset to 

reduce the differences between a normal image (i.e., 

ImageNet) and SAR images. It retains spatial reasoning and 

object localization within the patterned aerial context. The 

optical to SAR transition represents a significant element of the 

Multi-Stage Pretraining with Filter Augmentation (MSFA) and 

builds on the model’s representation quality when later fine 

tuned on SARDet- 100K. 

The SARDet-100K is a large-scale SAR object detection 

benchmark that combines and synthesizes many existing 

datasets such that they are presented in a common format usable 
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in existing object detection frameworks. It consists of 

approximately 117,000 images with more than 246,000 object 

annotations distributed across six categories (i.e., ship, 

aircraft, bridge, harbor, tank, and car), thus providing a 

common and diverse basis to train and evaluate SAR-based 

detection.  

The datasets included in SARDet-100K include various 

sensors, resolutions, polarizations, and imaging frequencies as 

described in Table 1. The SARDeT100K dataset consists of 

data from various SAR systems, including Gaofen-3, Sentinel-

1, TerraSAR-X, RADARSAT-2, and HISEA-1, and includes 

both airborne and spaceborne SAR platforms. The different 

datasets combined to form SARDet-100K had spatial 

resolutions from less than 1 to 25 meters. In addition, these 

datasets are available in different polarization modes. Overall, 

SARDet-100K reflects the diversity and variety of real-world 

SAR, making this source of data a highly representative and 

comprehensive environment for SAR based object detection. 

Table 1 Data used in SARDet-100K (S-Ship, B-Bridge, H- 

Harbor) 

Dataset Object 

type 

Satellite Polarization Resolution 

AIR 

SARShip

1 

.0[25] 

S Gaofen-3 VV 1.3m 

OGSOD B, H Gaofen-3 VV/VH 3m 

HRSID S Sentinel-1B, 

TerraSAR-X, 

TanDEM-X 

HH, HV, 

VH, VV 

0.5- 

3m 

MSAR S, B HISEA-1 HH, HV, 

VH, VV 

≤1m 

SSDD S Sentinel-1, 

RadarSat-2, 

TerraSAR-X 

HH, HV, 

VH, VV 

1- 

1.5m 

ShipData 

set 

S Sentinel-1, 

Gaofen-3 

HH, HV, 

VH, VV 

3- 

25m 

 

3.2 Multistage Filter Augmentation (MSFA) 
A significant preprocessing step includes feature enhancement 

using wavelet-based filtering, where various filters such as 

HOG, Haar and WST were extensively tried. Empirical results 

depicted that the Wavelet Scattering Transform (WST) worked 

better than these options, as supported since it has the capability 

of providing stable, noise-invariant multi-scale representations. 

The input to the model is formed by concatenating WST with 

the original image of the dataset of that stage. 

The MSFA method uses filter augmentation as a bridge 

between domains. Synthetic Aperture Radar (SAR) images 

differ significantly from optical images used in DOTA and 

ImageNet in terms of texture and noise. Applying the same 

filter to all the datasets helps in reducing the domain gap, 

achieving consistent training conditions and enhancing 

generalizability. 

3.3 Backbone Pretraining with ConvNeXt 
The ImageNet dataset, with WST feature maps concatenated to 

each image, is utilized to train the ConvNeXt-B backbone [29]. 

This technique confirms that the backbone adapts to 

multichannel input early on, synchronizing training across all 

subsequent domains. ConvNeXt, a hierarchical convolutional 

architecture inspired by vision transformers that use large 

kernel depth wise convolutions, GELU activations, and layer 

normalization, enables rich multi-scale feature extraction. The 

network's structure includes a stem and four staged layers and 

allows it to stably learn representations for objects of diverse 

sizes and orientations, which is extremely useful for SAR 

object detection. Initializing the backbone with weights fitted 

to filter augmented ImageNet data helps the model gain 

generalized visual features that are compatible with 

downstream optical and SAR detection tasks that also use filter-

augmented images for input. 

 

 

 

 
Figure 1 Flow Diagram of Methodology. DS: Down sampling, ATSS: Adaptive Training Sample Selection, FPN: Feature 

Pyramid Network, W1; W2: Weight 
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3.4 ATSS Integration & Two-Stage 

Transfer Learning 
A two-stage transfer learning approach was used 

by integrating the pretrained ConvNeXt backbone with the 

Adaptive Training Sample Selection (ATSS) method to 

perform object detection after completion of Multi-Stage Filter 

Augmentation and initial backbone pretraining on the filter 

augmented ImageNet dataset [6]. This strategy aimed to bridge 

the domain and model gaps in SAR object detection by 

gradually adapting the model from generic natural images to 

the more structurally complex optical remote sensing domain 

before specialising it for Synthetic Aperture Radar (SAR) 

images. 

In the first stage, the ATSS method was applied to the DOTA 

dataset to fine-tune the ConvNeXt backbone pretrained on 

filter-augmented ImageNet. DOTA functions as an 

intermediate domain that shares spatial and structural 

similarities with radar images while maintaining the benefits of 

rich visual characteristics of optical data. It is composed of 

aerial optical imagery with dense and diversified objects. To 

detect objects of varied sizes and forms in aerial scenes, the 

ATSS approach uses a Feature Pyramid Network (FPN), which 

allows the aggregation of semantic information across spatial 

resolutions and facilitates multi-scale feature representation. 

The detection heads improve the localisation and accuracy of 

detected objects by conducting crucial tasks like centerness 

prediction, bounding box regression, and object classification. 

A significant feature of ATSS is its dynamic sample selection 

mechanism, which adaptively chooses positive and negative 

training samples based on statistical aspects of object-anchor 

overlaps as evaluated by Intersection-over-Union (IoU) scores. 

ATSS, unlike existing approaches that use fixed IoU thresholds 

for anchor labelling, computes adaptive IoU thresholds per 

image and scale, adjusting training samples to heterogeneity in 

object scales and aspect ratios. This adaptive selection 

improves the ability to identify foreground items from 

background clutter, resulting in much better detection 

performance. 

Upon successful adaptation to the optical domain, the acquired 

features and weights from the ConvNeXt backbone and 

detection heads were kept for fine-tuning on the SARDet-100K 

dataset, designed specifically for SAR images. This dataset 

consists of several SAR sensors, resolutions, and polarisations. 

Due to SAR's distinct problems, such as speckle noise, uneven 

textures, and radar-specific backscatter, fine-tuning was 

required to adjust the model's representations. Applying the 

same filter augmentation ensured consistent input features 

across domains, allowing for effective knowledge transfer. 

During SAR fine-tuning, the ATSS adaptive sample selection 

continued adaptive thresholds to manage SAR's ambiguous 

and crowded distributions, allowing the model to focus on true 

positives and enhance detection accuracy for targets. 

3.5 Loss Functions and Optimization 

Strategy 
The object detection model employs specialized loss functions 

for SAR. The classification branch uses focal loss to address 

class imbalance by emphasizing challenging cases, which is 

critical given the varying category frequencies in SAR. Smooth 

L1 Loss is used in bounding box regression to ensure 

robust and stable localization. A localization-aware branch 

uses binary cross-entropy loss to assess bounding box quality 

using IoU scores, which increases detection precision. The 

AdamW optimizer is used, with calibrated learning rates and 

batch sizes in accordance with standard MMDetection 

configurations. 

4. RESULTS 
The performance of the proposed object detection pipeline, 

MSFA with ATSS, is compared to the baseline framework in, 

which is MSFA with standard anchor-based detectors, FRCNN. 

Both pipelines use the same backbone, the same dataset, and 

the same pretraining strategy to ensure comparability. The only 

difference of notes is the anchor box assignment strategy which 

provides us with an opportunity to control the effects of the 

assignment and focus on the effects of ATSS on detection 

performance. 

4.1 mAP and Recall 
Evaluation happens using standard object detection metrics: 

mean Average Precision (mAP) at IoU thresholds (e.g. 

mAP@50) and Recall. Additionally, by assessing the model’s 

generalization capability, defined as the model's ability to 

perform accurate detection on different scenes, and especially 

in scenes with low-resolution, noise, and complexity. 

Table 2 mAP Scores of models pretrained on ImageNet and DOTA 

 

Backbone Framework mAP50 score Recall 

ResNet50 FRCNN 83.9 56.7 

ATSS 79.3 52.3 

ResNet152 FRCNN 85.4 58.4 

ATSS 82.5 54.4 

ConvNeXt-B FRCNN 88.2 62.3 

ATSS 86.1 59.2 

 

The findings suggest that the MSFA + ATSS combination 

doesn’t outperform the baseline in all the monitored 

measurements. The proposed method yields a mAP@50 of 

86.1 compared to 88.2 using the baseline MSFA + FRCNN 

configuration. Overall recall also significantly increased in 

comparison to other backbones, especially with small or 

occluded objects such as ships in crowded maritime 

environments or cars on bridges where traditional anchor box 

assignment with static IoU usually falls short. 



16 

International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.27, July 2025 

 

 
Figure 2 mAP@50 Scores of different backbones using 

FRCNN and ATSS 

4.2 ROC-AUC 
The ROC curve and Area Under the Curve (AUC) were used to 

compare the performance of different backbone architectures 

for use for SAR object detection. As shown in Figure 3, the 

ConvNeXt backbone had an AUC of 0.798 using the FRCNN 

framework. The ROC curve and AUC were used to compare 

the performance of different backbone architectures for use 

for SAR object detection. 

 

Figure 3 ROC curve of ConvNeXt + FRCNN with an 

AUC of 0.798 

 

Figure 4 ROC curve of the proposed model with an AUC 

of 0.851 

In comparison, the second-best configuration was the 

ResNet152 + FRCNN model, which had an AUC of 0.664. 

While this represents a slight improvement, it indicates that 

deeper residual networks may have better baseline 

performance. But both models with residual connections were 

unable to harness and exploit the unique characteristics of SAR 

data, which is typically a complex texture and considered the 

speckle noise. One important contrast is that the ConvNeXt-

Base backbone as proposed with MSFA pretraining using SAR 

and wavelet filters showed a meaningful performance increase 

on the DOTA SAR dataset, achieving an AUC of 0.851 (Figure 

4). 

 
 

Figure 5(a) 

 

Figure 5(b) 
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Figure 5(c) 

 
Figure 5(d) 

Figure 5 (a) Optical image of the Mumbai bridge from 

Google Earth (Location: 19°03'41"N 72°58'10"E; (b) 

Bridge Detected by the model from SAR Image; (c) 

Optical Image of ships in Benicia, California, USA from 

Google Earth. (d) Ships detected by the model 

Figure 5 illustrates the outcome of the proposed detection 

model to detect manmade structures—namely bridges and 

ships—based on Synthetic Aperture Radar (SAR) images, with 

verification performed by high-resolution optical images from 

Google Earth. Figure 5(a) is the optical satellite image of the 

Mumbai Bridge, which is positioned at 19°03′41″N, 

72°58′10″E. This was used as a ground truth reference to verify 

the model's ability to detect. The bridge is easily identifiable 

and bordered by a green rectangular region to emphasise the 

area of interest. By way of contrast, Figure 5(b) presents the 

SAR-based detection result, where the model successfully 

identifies the same bridge structure. The detected area is 

annotated with a bounding box produced by the model. This 

outcome emphasises the suitability of the model for extracting 

linear and longitudinal structures like bridges from SAR 

backscatter patterns. 

Proceeding to ship detection, Figure 5(c) shows an optical 

image of a US transportation department coastal area in 

Benicia, California, USA, where two separate ships appear on 

the surface of the water. The ships are marked with green 

bounding boxes, yet again as reference ground truth to check 

model performance. Figure 5(d) shows the corresponding 

detection output with SAR data for the same location. Although 

the inherent large variability of radar signatures on water 

surfaces due to clutter and surface motion, the model correctly 

detects the positions of the ships. The accuracy of ship 

detection in SAR imagery, even when there is clutter, further 

proves the resilience of the model in detecting small objects. 

These visual results overall indicate that the suggested deep 

learning-based detection model can generalise robustly across 

dissimilar object classes and geographic locations. Detection of 

both stationary infrastructures such as bridges and mobile 

objects such as ships under diverse environmental and imagery 

conditions (optical vs. SAR) indicates the versatility of the 

model. The agreement between SAR-based predictions and the 

reference optical imagery validates the model's reliability; this 

model is appropriate for practical applications like coastal 

monitoring, infrastructure mapping, and surveillance in low 

visibility or cloud-shrouded areas where optical imaging might 

be impractical. 

 
Figure 6 Optical image of bridge from Google Earth(left), Detection results using FRCNN-based model(middle), Detection 

results using the proposed model(right) (Location: Bharuch, Gujarat;21°41'33"N 73°00'13"E) 

The bounding boxes and confidence scores are also 

interpretable outputs that can be easily used in downstream 

tasks like geospatial analysis, change detection, or automated 

alert systems. 

However, even though the quantitative scores show a minor 

difference, the ATSS-based models provide better 

generalisation performance, especially when applied to new 

and complex SAR scenes. Generalisation is defined as the 

ability for a model to maintain accurate detection performance 

over different geographic locations, imaging conditions, and 

structural configurations that the model had not previously seen 

during drone training. As shown in Figure 6, the FRCNN based 

model often incorrectly merged two adjacent bridges into one 
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detection, which shows a lack of generalisation when presented 

with objects that are tightly packed together or visually similar. 

This behaviour indicates that the FRCNN based model overfit 

training scenarios where such variations were less of a concern. 

Conversely, the ATSS-based model successfully detected and 

classified the bridges individually as distinct objects even while 

adjacent and visually aligned. This demonstrates not just 

stronger discrimination of objects but also stronger spatial 

awareness and structural understanding, important measures of 

generalisation in SAR object detection. Such resilience is 

particularly applicable and desirable in the real-world 

operational space of remote sensing, where there are significant 

intra-class appearance variability and background clutter to 

contend with. In this regard, the performance demonstrates that 

the proposed model is more deployable across different 

operational experience settings with limited retraining, fine-

tuning, or human involvement. 

5. CONCLUSION 
This research improves the object detection system by adding 

Adaptive Training Sample Selection (ATSS) to the current 

MSFA-based setup. The paper uses domain adaptation and 

filter-based feature enhancement well, but its fixed-threshold 

anchor box assignment doesn't adapt to tricky SAR situations. 

The proposed method keeps the MSFA pretraining approach 

and ConvNeXt backbone but swaps out rule-based sample 

picking for ATSS, a flexible and data-driven method. This 

change by itself boosts detection accuracy and shows more 

about how well the system works in different scenarios. Tests 

on the SARDet- 100K dataset show that the ATSS model does 

a better job of spotting small, hidden, or hard-to-see objects in 

various conditions. 

In the end, the study shows how important sample assignment 

methods are in SAR object detection. It proves that using 

flexible systems like ATSS can help the detection work better 

in different situations. This makes detection systems more 

dependable and useful in real-world settings. 

In the future, it may be worth considering incorporating 

unsupervised learning or self-training learning to boost domain 

adaptation and increase generalization under different SAR 

sensors and environments. The learning possibilities could 

extend into a multi-task framework to target detection, 

segmentation, and classification to achieve meaningful scene 

understanding. Tackling and optimizing the framework to bring 

real-time inference capabilities and deploying it at the edge on 

devices (e.g., UAVs, satellites) could provide real 

demonstrations in resource-constrained environments. A 

multiplier effect could achieve even more from using SAR data 

in almost real-time incorporation with optical or hyperspectral 

imagery targeting the same objects, thus utilizing multi-modal 

observations to clarify uncertain situations; and there is a great 

deal of flexibility to integrate reinforcement learning or meta 

learning task learning methodologies. 
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