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ABSTRACT 
Lassa fever (LF), an acute viral hemorrhagic illness prevalent 

in West Africa, significantly impacts public health due to its 

varied clinical manifestations and high mortality rate. In severe 

cases of LF, the disease can progress to more critical conditions 

such as hemorrhaging, respiratory distress, and organ failure 

which is notorious for its high mortality rate, especially in cases 

of delayed or misdiagnosed treatment. Prevention and control 

efforts involve a multi-faceted approach. Hence, this study 

develops a predictive framework for assessing the severity of 

Lassa fever using a Risk Matrix approach and Machine 

Learning (ML) techniques for categorizing symptoms into 

various risk levels to prioritize healthcare responses. 

Traditional severity assessments were subjective, but ML 

provided an objective alternative. The study developed an ML 

based severity classification using clinical parameters from 239 

confirmed LF patient records. Features included; age, blood 

pressure, sore throat, fever, cough, abdominal pain, vomiting, 

headaches, diarrhea, nose bleeding, myalgia and depression. 

ML models including Artificial Neural Network (ANN), 

Decision Tree (DT) and Random Forest (RF) were tested, with 

the derived Risk matrix across class levels of low, moderate 

and high risk, optimizing performance through cross-

validation. RF achieved the highest accuracy at 93.7%, DT 

reached 92% and ANN followed with 83%. Therefore, RF was 

selected for the development and deployment of a user interface 

in R for predicting Lassa fever severity. The proposed 

framework achieved high accuracy and demonstrated potential 

for clinical integration to assist decision-making in resource-

limited settings.  
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1. INTRODUCTION 
Lassa fever remains a significant public health threat in West 

Africa, particularly in Nigeria, Sierra Leone, Liberia, and 

Guinea. The zoonotic Lassa fever was first described in 1969 

from a case in a missionary nurse in the town of Lassa, in Borno 

State, Nigeria, hence its name. Since then, the disease has been 

a recurring public health concern in West Africa, leading to 

sporadic outbreaks and persistent endemicity [1].  With 

mortality rates varying from 1% in general cases to 15% in 

hospitalized patients, timely and accurate severity assessment 

is essential. Traditional clinical methods are often insufficient 

due to resource constraints. It is a viral hemorrhagic illness 

endemic in nature. The disease presents a spectrum of severity, 

from mild febrile illness to multi-organ failure and death [2] 

[3]. Despite its public health impact, predictive models for 

clinical severity remain underdeveloped. Traditional methods 

rely on physician judgment, which can be inconsistent, 

especially in resource-limited settings [4]. Machine learning 

offers a promising solution by leveraging data to make real-

time, evidence-based predictions. Machine learning (ML) has 

proven effective in disease prediction and prognosis, 

particularly for infectious diseases like COVID-19, dengue, 

malaria, and Ebola [5] [6] [7] [8]. In these contexts, ML 

algorithms have enabled early detection, risk stratification, and 

real-time surveillance. However, few studies have applied ML 

to Lassa fever, and those that exist often lack generalizability 

and interpretability [9] [10]. 

2. RELATED WORKS 
Prior studies have applied ML to infectious diseases like Ebola 

and COVID-19, achieving notable success in early detection 

and severity classification. However, limited research focuses 

on Lassa fever. Existing models often lack explainability and 

generalizability due to small sample sizes and limited regional 

data. Ensemble methods such as Random Forest and XGBoost 

are widely used in clinical prediction due to their robustness to 

missing data and superior accuracy [11] [12]. These models 

handle complex interactions among clinical features and have 

demonstrated efficacy in predicting patient outcomes across 

various domains [13] [14]. For instance, in sepsis prediction, 

XGBoost has outperformed logistic regression and SVM in 

both accuracy and sensitivity [15]. Interpretability is essential 

for clinical adoption of ML models. SHAP (SHapley Additive 

exPlanations) has been used for explaining model decisions in 

healthcare by quantifying each feature's contribution to a 

prediction [16] [17]. Studies incorporating SHAP showed 

improved clinician trust and enabled actionable insights into 

disease mechanisms [18]. 

Recent works have shown that liver enzymes (AST, ALT), 

renal function markers (creatinine), and platelet counts are key 

predictors of Lassa fever severity [9]. These features align with 

known pathophysiology of viral hemorrhagic fevers [3]. 

Demographic variables such as age and sex have also been 

associated with worse outcomes [2]. In addition to structured 

clinical data, the integration of electronic health records 

(EHRs) with ML pipelines has enhanced predictive capabilities 

in high-burden disease areas [14] [19]. Yet, the availability of 

digitized health data in endemic regions remains limited, 

posing a barrier to scalability [18] [8]. The WHO and local 

healthcare ministries have emphasized the need for data-driven 

approaches to improve Lassa fever response [4]. However, ML 

applications are constrained by data scarcity, poor 

infrastructure, and lack of localized validation [7, 19]. Despite 

these challenges, the potential benefits of ML, which include; 

early severity prediction, optimized triage, and targeted 

resource allocation make it a promising avenue for LF 

management. There is a clear gap in the literature for an 

interpretable, validated ML framework specific to LF using 

real-world data [9] [20]. 
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A study done by [21] on recursive prediction model focused on 

enhancing the reporting and prediction of LF cases in Nigeria. 

The study estimated LF cases based on onset data using 

Pearson correlation coefficient (R) and R². It employed onset 

data which is limited and incomplete in terms of number of 

infected persons and important features such as symptoms 

level, for in-depth analysis and prediction of LF burden and 

outbreak. It is imperative to give heed to these details if a total, 

complete and efficient analysis is to be done. From the report 

in the existing system, it is obvious that the existing system 

under analysis ignored the place of ML models in its 

predictions and rather adopted the Pearson correlation 

coefficient (R) and R² in its predictions. It is anticipated that 

ML would do better in the prediction of LF severity. Hence, the 

proposed approach, aims to improve the existing system under 

review, using a ML learning approach to carry out analysis and 

prediction of LF severity, an approach that will not only update 

the existing system, but will equally introduce a more efficient, 

reliable and effective approach to handling the complex case of 

LF.  

3. MATERIALS AND METHODS 
This study is centered on prediction of LF severity. The 

approach used in this study involves data collection, severity 

assessment, data preprocessing, ML prediction that involves 

model training and testing. The conceptual framework is 

presented in Figure 1. 

 

Fig. 1: Framework for the prediction of LF Severity 

3.1 Dataset 
Patient’s LF symptom data as shown in Table 1 was gathered 

from the Institute of Lassa fever Research and Control (ILFRC) 

in Irrua Specialist Teaching Hospital (ISTH), Edo State, where 

folders of 239 patients who had confirmed diagnosis of Lassa 

fever in ILFRC was accessed.  

Table 1: Cross Section of encoded LF data 

 

3.2 Severity Assessment 
Risk matrix is employed in assessing the severity of Lassa fever 

in this study. The risk matrix combines likelihood and severity 

to assign risk, it is expressed in Equation 1: 

𝑅𝑖𝑠𝑘 =Likelihood of occurrence * Severity of Harm           (1) 

Table 2: Populated Risk Matrix 

 

Applying the risk matrix the derived risk level for the LF 

symptom is attached to each symptom as shown in Table 2. The 

severity column in the data set is calculated as average severity 

(avg sev) derived from the weighted severity as shown in 

Equations 2 and 3. 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 (wtsev𝑖) = severity ∗ 𝑟𝑖𝑠𝑘 𝑙𝑒𝑣𝑒𝑙𝑖   (2) 

avg sevi= ROUND ((
10
∑

𝑗 = 1
𝑤𝑡𝑠𝑒𝑣𝑗/

10
∑

𝑖 = 1
𝑟𝑖𝑠𝑘 𝑙𝑒𝑣𝑒𝑙𝑖))  (3) 

The severity column classifies each instance of the study 

recorded symptom as being Low (0), Moderate (1) or High (2). 

3.3 Exploratory Data Analysis 
This is a classification technique which employ visual means 

for examining the dataset, extraction of key variables and 

discovery of potential relationships between factors.  The 

structure of the LF dataset is shown in Figure 2. 

 

Fig. 2: LF data structure 

3.4 Feature Ranking 
Principal components analysis (PCA) was used to normalize 

and rank the symptom feature levels of importance as shown in 

Figure 3.  
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Fig. 3: Normalized PCA 

The weighted measure of importance for each feature from 

descending order is shown in Figure 4. 

 

Fig. 4: Feature ranking with importance 

3.5 Model Development and 

Implementation 
In this study, three ML models were applied to the 

classification of the LF severity as seen Figure 5 to 8. PCA 

feature selection was used to identify the most relevant features 

for prediction, thus improving both performance and 

interpretability. The models were trained on the complete 

feature sets for performance comparison.  

RF is a robust ensemble method that aggregates predictions 

from multiple decision trees to improve accuracy and reduce 

overfitting. It effectively handles complex feature interactions 

and has been widely applied in disease classification [22]. 

Figure 5 shows the training result for the RF model. 

 
Fig. 5: RF training result 

It is summarized as follows. 

• Formula: The model predicts 'Severity' using all 

other variables in the 'train' dataset (Severity ~.). 

• Type of Random Forest: Classification 

• Number of Trees: 601 

• Number of Variables Tried at Each Split: 3 

• Out-of-Bag (OOB) Error Rate: The OOB error rate 

is 4.18%. 

The DT training result is shown in Figure 6.  

 
Fig. 6: DT training result 

The canonical tree representation of this result is seen in Figure 

7 

 

Fig. 7: The canonical tree representation of the results 

Figure 8 shows the summary of the ANN training result. 

 
Fig. 8: ANN training result 

4. RESULTS AND ANALYSIS 
The models were trained with the data which is split into 70% 

for training and 30% for testing.  The models were evaluated 

using confusion matrix metrics as shown in Figure 9 to 11 for; 

sensitivity, specificity, precision, F1-score and accuracy. A 10-

fold cross-validation approach ensured robustness is carried out 

for the DT, RF and ANN models. The model evaluation metric 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.27, July 2025 

23 

are shown in Equations 4, 5, 6, 7 and 8. Where t𝑝 denotes the 

true positives, f𝑛 denotes the false negatives, f𝑝 denotes the 

false positives, and t𝑛  denotes the true negatives.  

Recall or Sensitivity is computed in Equation 4: 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) =
𝑡𝑝

𝑡𝑝+f𝑛
                                                (4) 

Specificity measures the ability of the test to correctly identify 

negatives cases and is given in Equation 5: 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆) =
𝑡𝑛

𝑡𝑛+f𝑝
                                                              (5) 

Precision is given by Equation 6: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =
𝑡𝑝

𝑡𝑝+f𝑝
                                         (6) 

F1-score, a standard measure of classification accuracy is 

given in Equation 7: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑃𝑅

𝑃+𝑅
                                                    (7) 

Accuracy is given in Equation 8: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
tp+ tn

tp + tn + fp +fn
                                 (8) 

 

Fig. 9: DT metrics 

 

Fig. 10: RF metrics 

 

Fig. 11: ANN metrics 

4.1 Model Comparison 
The result in Figure 6 shows that RF outperformed the other 

models in being able to classify High risk severity with a 

sensitivity of 98%, specificity and precision of 100%, F1-score 

of 99% and accuracy of 99%. This is closely followed by DT 

and ANN. 

 

Fig. 12: Evaluation of model based on class High 

In Figure 13, RF also outperformed the other models in being 

able to classify Moderate risk severity with a sensitivity of 

100%, specificity and precision of 93.1%, F1-score of 95.5% 

and accuracy of 96.6%. This is again is closely followed by DT 

with a sensitivity of 95.2%, specificity of 89.7%, precision of 

87.0%, F1-score of 90.9% and accuracy of 92.5%. ANN 

follows with a sensitivity of 71.4%, specificity of 91.4%, and 

precision of 85.7%, F1-score of 77.9% and accuracy of 81.4%. 

 

Fig. 13: Evaluation of model based on class Moderate 

In Figure 14, RF performed averagely with the other models in 

being able to classify Low risk severity with a sensitivity of 

70.0%, specificity and precision of 100%, F1-score of 82.4% 

and accuracy of 85.0%. This is again is closely followed by DT 

with a sensitivity of 80.0%, specificity of 98.9%, precision of 

88.9%, F1-score of 84.2% and accuracy of 89.4%. 

 

Fig. 14: Evaluation of model based on class Low 

4.2 Discussion 
Overall, Random Forest (RF) outperformed the other models 

an average accuracy of 93.7%. DT reached 92% and ANN 

followed with 83%. The key feature predictors in order of 

importance were sore throat, fever, cough, abdominal pains, 
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vomiting, headache, diarrhea, nasal bleeding, myalgia and 

depression. 

5. CONCLUSIONS 
This study aimed to develop and evaluate a ML models for 

classifying Lassa fever severity using a risk matrix which is 

important for early intervention and personalized treatment. 

Three models; RF, DT and ANN were assessed using R and the 

full feature set. Results indicated that RF achieved the highest 

classification accuracy of 93.7% outperforming DT (92%) and 

ANN (82%).  Feature selection influenced the performance as 

PCA selected features improved RF and DT and ANN 

remained lower. These findings emphasize that while feature 

selection reduces dimensionality, it may also exclude critical 

predictive variables necessary for optimal classification. The 

superior performance of RF in this study aligns with previous 

research demonstrating RF’s effectiveness in medical 

classifications. The study highlights ML potential in LF 

severity risk classification. RF performed best with the full 

feature set, highlighting comprehensive data’s role in accuracy. 

Future research should explore deep learning, alternative 

feature selection and diverse datasets to enhance 

generalizability of the model and its applicability in clinical 

settings.  
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