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ABSTRACT 

Glaucoma remains a leading cause of irreversible blindness 

worldwide, emphasizing the need for early and accurate 

diagnosis. This study presents an automated system for 

evaluating visual field data using the Humphrey Field 

Analyzer. By integrating deep learning with Optical Character 

Recognition (OCR), the proposed model extracts critical 

clinical parameters from visual field reports, processes them 

through a trained neural network, and generates structured 

diagnostic reports. The system was trained on a dataset of 

Humphrey Visual Field (HVF) images, where key features 

such as Age, Central 5 threshold values, Mean Deviation (MD), 

and Pattern Standard Deviation (PSD) were used for 

classification. Experimental results demonstrated that the 

proposed model achieved an accuracy of 97.8%, surpassing 

both traditional manual interpretation (85%) and convolutional 

neural network-based image classification (93.7%). The system 

enhances diagnostic consistency and reduces interobserver 

variability, making it a reliable alternative to conventional 

methods. However, its performance is influenced by OCR 

accuracy and variations in test conditions, which may introduce 

errors in data extraction. The findings highlight the potential of 

AI-driven systems in clinical ophthalmology, offering a 

scalable and efficient approach for automated glaucoma 

assessment and personalized treatment planning. 
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1. INTRODUCTION 
Glaucoma is the leading cause of irreversible blindness [1]. 

Glaucoma results in the death of Retinal Ganglion Cells 

(RGCs), disrupting visual information transmission from the 

optic nerve to the Lateral Geniculate Nucleus (LGN). Optic 

Radiation (OR) transmits this information from the LGN to the 

visual cortex. While the cells in the LGN that make up the OR 

are not directly impacted by glaucoma, they are deprived of 

sensory input [2]. One of the key questions in sensory 

neuroscience, with important implications for clinical practice, 

is whether alterations in the sensory periphery impact the 

characteristics of central processing pathways [3,4].  Studying 

the properties of the optic nerve in glaucoma offers a chance to 

investigate how alterations in the sensory periphery impact 

central brain connections. Another theory suggests that the 

effects of glaucoma on white matter may indicate accelerated 

aging, particularly in the retina [5]. Current approaches to 

managing glaucoma focus on preventing permanent vision loss 

and maintaining quality of life. The effectiveness of these 

strategies is primarily assessed by testing the visual field [6,7 

and 8]. 

Visual field assessment is critical for diagnosing and 

monitoring ocular and neurological conditions, especially 

glaucoma. The Humphrey Field Analyzer (HFA) is commonly 

used in clinics to perform perimetry examinations and produce 

detailed visual field reports. However, interpreting these 

reports can be difficult and can result in inconsistent 

assessments and be time-consuming for clinicians. This study 

aims to create an automated system that extracts key clinical 

data from HFA test results and presents them in a structured 

report. The goal is to improve the efficiency and accuracy of 

visual field assessments, helping ophthalmologists make better 

decisions and save time. 

The Humphrey Field Analyzer (HFA) utilizes the 24-2 test 

pattern to assess 24 degrees centrally or the 30-2 test pattern to 

evaluate a slightly wider area of 30 degrees [9]. Check Figure 

1 for more explanation. At present, the standard clinical method 

is white-on-white static automated perimetry, which assesses 

incremental thresholds at different points throughout the visual 

field [10]. By drawing on both practical experience and 

historical precedent [11], the 24-2 test grid is commonly used 

because it includes areas commonly impacted by glaucoma 

[12], in addition to providing a sufficient number of test 

locations that are beneficial for clinical use [13]. For instance, 

a SITA-Faster 24-2 test can evaluate 52 test locations across a 

visual field spanning about 24 degrees from fixation, including 

two nasal points, in just 2-3 minutes [14, 15]. 

Recently, multiple organizations have emphasized the 

significance of prioritizing visual field testing in the central 

visual field, specifically within 10 degrees from fixation. This 

is because defects in central vision can greatly affect daily 

activities and overall quality of life [16, 17 and 18]. Central 
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visual field defects play a crucial role in modern glaucoma 

staging systems, as they often indicate the progression of the 

disease to more severe stages [7, 19]. 

 

Fig 1: (A) 24-2 Threshold Test The central 24° of the field 

is tested, with 54 points arranged within this region. (B) 

The 30-2 Threshold Test encompasses the field to 30° in all 

directions (superior, inferior, nasal, and temporal), with 

76 points on a larger grid spread out. 

Some studies have reported a higher occurrence of central 

visual field defects when using the 10-2 test. Check Figure 2 

for more explanation [20,21], However, some have proposed 

that the identification of central visual field abnormalities is 

comparable across the commonly utilized glaucoma-related 

visual field test grids, including 24-2, 24-2C, and 10- 2 [22, 

23,24,25 and 26]. 

 
Fig 2: The 10-2 threshold test examines the central 10 

degrees of the visual field (±10° from fixation) using a 

dense pattern of 68 test points to enable high-resolution 

evaluation of the central visual area. 

The patient must have undergone visual field testing using the 

10-2 (SITA-Fast) and 24-2 (SITA-Faster) protocols on the 

Humphrey Field Analyzer (HFA3, Carl Zeiss Meditec, Dublin, 

CA). The results must have met the manufacturer's reliability 

criteria, as outlined in the authors' previous research, which 

includes less than 15% false positives or negatives, no seeding 

point errors, and less than 20% of instances with gaze tracker 

deviations exceeding 6 degrees [27, 28]. 

AI is expected to significantly impact the diagnosis and 

treatment of eye conditions like corneal ectasias, glaucoma, 

age-related macular degeneration, and diabetic retinopathy. 

However, many medical professionals are unfamiliar with AI 

concepts and terminology, leading to confusion and misuse of 

key terms such as machine learning and deep learning [29]. 

Machine learning and deep learning, two key data-driven 

pattern analysis methods under the umbrella of AI, have 

sparked significant interest in recent years. The advancement 

of technology has led to a surge in AI research for diagnosing 

ophthalmic and neurodegenerative diseases using retinal 

images. Different AI techniques, such as traditional machine 

learning, deep learning, and their combinations, have been 

utilized for diagnostic purposes [30]. 

This paper proposes an automated glaucoma grading model 

using deep learning based on HVF information. The process 

involves integrating image processing techniques to obtain 

numerical and text data from HVF reports and a deep learning 

model that is trained with meaningful parameters like Mean 

Deviation (MD), Pattern Standard Deviation (PSD), and 

localized sensitivity measures in the central 5-degree region. 

The aim is to enhance diagnostic sensitivity and reduce inter-

observer variation by the provision of an AI-supported decision 

aid. Through the implementation of AI-based processing of 

HVF data, the research aims to enhance the early detection and 

follow-up of glaucoma and possibly reduce the workload of the  
ophthalmologists while maximizing the patient outcome. 

The rest of the paper is organized as follows: Section 2 

describes the historical background of the topic to provide 

context for its development. Section 3 presents previous related 

work, focusing on the most prominent methods used and their 

shortcomings. Section 4 illustrates the proposed methodology 

in detail, including the data, tools, and analytical steps 

followed. Section 5 presents the experimental results obtained. 

Section 6 discusses the results and analyzes their implications 

and practical implications. Finally, Section 7 provides the 

general conclusion of the paper with suggestions for future 

work. 

2. HISTORICAL BACKGROUND 
The assessment of visual fields has been a critical component 

of ophthalmology for over a century. Historically, early 

methods of visual field testing were manual and highly 

subjective, relying on confrontation techniques where the 

examiner compared their field of vision with that of the patient. 

These methods were limited in accuracy and lacked 

standardization, making detecting subtle visual field defects 

difficult. The introduction of perimetry revolutionized the field, 

allowing for more structured and quantitative assessment. Early 

manual perimeters, such as the Goldmann Perimeter, provided 

clinicians with a means to measure a patient’s visual field with 

greater precision. However, these methods still relied on human 

interpretation and manual plotting, leading to variability in 

results [31]. 

2.1 Development of Automated Perimetry 

and the Humphrey Field Analyzer 
The advent of automated perimetry in the late 20th century 

marked a significant milestone in visual field testing. The 

Humphrey Field Analyzer (HFA), introduced by Carl Zeiss 

Meditec [32] in the 1980s, became the gold standard for 

glaucoma diagnosis and monitoring. Unlike manual perimetry, 

the HFA uses computerized algorithms to systematically test 

different points in the visual field and provide objective, 

reproducible results with reduced examiner bias and generate 

numerical, graphical, and probability-based outputs to enhance 

interpretation.  

The HFA employs threshold testing strategies such as the 

Swedish Interactive Threshold Algorithm (SITA), which 

optimizes test efficiency and minimizes patient fatigue. 

Standardized test patterns, including 24-2 and 30-2, allow for 

comprehensive evaluation of central and peripheral vision, 

aiding in the early detection of glaucoma and neuro-ophthalmic 

disorders.  
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2.2 Advancements in HFA Data 

Interpretation and Reporting  
With the increasing adoption of the HFA, researchers and 

clinicians recognized the need for efficient data interpretation 

and reporting. The early HFA models provided raw data, which 

required manual assessment by ophthalmologists, making the 

process time-consuming [33]. Over time, software-based 

solutions were developed to enhance interpretation, including: 

Glaucoma Hemifield Test (GHT): Automatically identifies 

abnormal asymmetry between superior and inferior hemifields. 

Mean Deviation (MD) & Pattern Standard Deviation (PSD): 

Quantify overall and localized visual field defects. 

Visual Field Index (VFI): A weighted percentage indicating the 

severity of visual field loss over time. 

Despite these advancements, HFA report generation remains a 

manual or semi-automated process, requiring clinician 

expertise for interpretation. The complexity of grayscale plots, 

probability maps, and numerical outputs makes it challenging 

for non-specialists and time-consuming for experts. 

While current software tools assist in HFA result analysis, they 

do not fully automate the report generation process. The 

challenges include: 

• Time-consuming manual interpretation. 

• Inter-observer variability leading to inconsistent reports. 

• Lack of standardized, structured reporting across 

institutions. 

• Difficulty in visualizing the long-term progression of 

visual field defects. 

With advancements in artificial intelligence (AI) and machine 

learning, there is a growing interest in developing automated 

reporting systems that can: 

Extract key metrics directly from HFA data. 

Generate structured, user-friendly summaries. 

Enhance standardization and reduce human error. 

Track disease progression over time with AI-driven trend 

analysis. 

These innovations promise to transform visual field assessment 

by streamlining the reporting process, improving diagnostic 

accuracy, and enhancing patient management. 

The history of visual field testing and HFA development 

highlights the continuous evolution from manual methods to 

automated perimetry. While the HFA has revolutionized visual 

field assessment, the lack of an efficient, standardized reporting 

system remains a challenge. The next phase of advancement 

involves the integration of AI and automated reporting tools, 

ensuring faster, more accurate, and standardized interpretation 

of visual field test results. 

3. RELATED WORK  
J. C. Wen et al. (2019) [34] have shown that by utilizing 

unfiltered real-world datasets, Deep Learning Networks (DNN) 

have demonstrated the ability to learn changes in 

spatiotemporal Humphrey Visual Fields (HVF) and make 

predictions for future HVFs up to 5.5 years ahead based on a 

single HVF input. Data points from consecutive HVFs 24-2 

spanning from 1998 to 2018 were gathered from a University 

of Washington database. A ten-fold cross-validation approach 

with a held-out test set was employed to develop the model 

through three key phases: selecting the model architecture, 

choosing the dataset combinations, and training the time-

interval model using transfer learning. This resulted in the 

creation of a deep-learning artificial neural network capable of 

generating point-wise visual field predictions. The accuracy of 

the predictions was evaluated by calculating the Pointwise 

Mean Absolute Error (PMAE) and the difference in Mean 

Deviation (MD) between the predicted and actual future HVFs. 

Z. Zhou et al. (2020) [35] used DL technology and computer 

vision on these patterns to create an accurate AI model and 

replicate the effects of VF initially observed in patients. Data 

obtained from Jinan University Affiliated Shenzhen Eye 

Hospital was gathered utilizing the HFA II software, with 

dependable samples selected for the training process. The 

grayscale map was utilized for the computation of parameters 

related to the type of damage incurred. Consequently, the 

experimental data consisted of 1,334 normal samples and 1,929 

abnormal samples that were deemed reliable. A mature 

Convolutional Neural Network (CNN) model was used to 

analyze Visual Field (VF) damage parameters from input 

images, achieving a predictive accuracy of 89% for identifying 

VF defect types. Mapping VF damage parameters onto real 

scene images and adjusting darkening effects based on these 

parameters. During clinical validation, no significant variance 

was found in the cumulative gray value (P>0.05), and 96.0% of 

average scores were rated as good or excellent, confirming the 

accuracy of the AI model. Bottom of Form 

M. Saifee et al. (2021) [36] introduce and validate 

hvf_extraction_script, an open-source tool designed for fast 

and accurate automated data extraction of HVF reports. The 

tool aims to facilitate the analysis of large-volume HVF 

datasets and highlights the importance of using image 

processing tools to streamline data extraction in research 

settings. The tool was validated on 90 HVF reports with 

varying layouts, totaling 1,530 metadata fields, 15,536 value 

plot data points, and 10,210 percentile data points. The 

comparison was made between the computer script and four 

human extractors, using DICOM reference data. The study 

evaluated extraction time and accuracy for metadata, value 

plot, and percentile plot data. Results showed that computer 

extraction took 4.9-8.9 seconds per report, significantly faster 

than the 6.5-19 minutes required by human extractors. The 

error rate for computer metadata extraction ranged from 1.2% 

to 3.5%, while human extraction had an error rate of 0.2-9.2% 

across all layouts. The extraction of computer percentile data 

points exhibited very low error rates: no errors were observed 

in versions 1 and 2, while version 3 had an error rate of 0.06%. 

Overall, the study demonstrates the efficiency and accuracy of 

hvf_extraction_script in extracting data from HVF reports, 

showcasing its potential to enhance data analysis in research 

settings. 

This study does not find any analogous research in the existing 

literature. However, the work of M. Saifee et al. (2021) 

represents the most closely related investigation to the present 

study. 

Challenges and Limitations 

Variation in HVF image quality affected the accuracy of OCR, 

requiring additional preprocessing. Also, the limited dataset 

size limits the generalizability of the model. Data augmentation 

techniques were used to improve robustness. Potential OCR 

misreadings required the optimization of regular expressions 

and manual validation of critical fields. 

4. METHODOLOGY 
This study presents an automated system for generating 
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medical reports for glaucoma diagnosis based on learning and 

Humphrey visual field (HVF) data. The methodology involves 

extracting text data from Humphrey visual field images using 

optical character recognition (OCR), processing the previously 

extracted information, and using a Convolutional Neural 

Network (CNN) model pre-trained on the text and image 

dataset to classify glaucoma severity into three categories: 

mild, moderate, and severe. The final diagnosis is formatted 

into a structured medical report in Word format. 

4.1 Dataset Description 
The paper in itself relies on data acquisition and preparation of 

input data, which constitutes a significant component of the 

design and verification of the planned automatic report 

generation system. The primary source of data is Humphrey 

Visual Field (HVF) test images, which are widely regarded as 

the clinical gold standard in assessing and monitoring visual 

field impairment—especially in patients with suspected or 

confirmed glaucoma. They are rich in diagnostic information 

and form the foundation upon which critical clinical parameters 

are obtained with advanced image analysis techniques and 

artificial intelligence algorithms. 

The images of HVF used in this study were obtained from the 

Department of Ophthalmology at Ain Shams University 

Hospital, one of the prominent tertiary eye care centers 

renowned for its comprehensive ophthalmic care services and 

uniform visual field testing protocol. This collaboration 

provided access to a vast repository of de-identified, real 

clinical data with a high degree of variability and realism 

required for effective validation and training of the system. 

Data acquisition procedures were carried out under compliance 

with institutional ethics protocols, with confidentiality of the 

patients maintained at all stages throughout the process of data 

handling and research. 

All HVF reports that were analyzed in the current study are 

complex diagnosis reports involving graphical and numerical 

data, the two together presenting a holistic picture of the 

patient's visual function. Specifically, each report contains 

Graphical Features: They include pattern deviation and total 

deviation maps, grayscale field loss plots, and reliability 

symbols. The visual field plots provide spatial information on 

the patient's sensitivity to visual stimuli at different locations, 

thereby facilitating localization and characterization of 

glaucomatous damage. 

Quantitative Clinical Parameters: Significant numerical 

parameters systematically described in the HVF image are: 

• Mean Deviation (MD) 

• Pattern Standard Deviation (PSD) 

• Visual Field Index (VFI) 

• False Positive (FP) and False Negative (FN) error rates 

• Fixation Losses 

• Glaucoma Hemifield Test (GHT) results 

Additionally, the reports contain necessary patient-specific 

metadata like age, eye examined (right or left), date of 

examination, and test strategy employed (e.g., 24-2 SITA 

Standard) that are usually organized in pre-defined positions in 

the document to allow clinical interpretation as well as 

automated data extraction. 

The data were received in a number of electronic formats 

depending on the report exportation or archiving process. The 

most prevalent formats were 

JPEG (.jpg) and PNG (.png): These raster file formats were 

common in instances of digitally exported reports or scanned 

hard copies, often requiring preprocessing steps such as 

resolution normalization and contrast improvement to render 

them suitable for image processing systems. 

PDF (.pdf): Frequently encountered when reports were stored 

in electronic medical record (EMR) systems or passed between 

clinical documentation solutions. Such files had to be 

converted into image-based formats (e.g., JPGE or PNG) to be 

compatible with downstream processing pipelines, including 

Optical Character Recognition (OCR) and Convolutional 

Neural Network (CNN)-based feature extraction. 

These diverse input formats needed specialized preprocessing 

techniques to standardize image quality and format for 

consistent and accurate analysis by the proposed system. 

4.2 Image Preprocessing 
Image preprocessing is a vital process in the context of 

computer vision and machine learning pipelines, particularly 

for medical images such as Humphrey Visual Field (HVF) 

reports. Due to inherent challenges such as noise, scanning 

artifacts, non-uniform lighting, and dense graphical and textual 

content, HVF images require preprocessing with a rigid 

preprocessing pipeline for preserving uniform data extraction. 

Without preprocessing, the performance of downstream tools 

such as Optical Character Recognition (OCR) systems and 

Convolutional Neural Networks (CNNs) can be significantly 

affected. 

To address these problems, a properly designed image 

preprocessing pipeline was applied to this study. The pipeline 

includes three main stages: grayscale conversion, contrast 

adjustment and noise suppression, and image segmentation for 

Region of Interest (ROI) extraction. 

4.2.1 Grayscale Conversion 
The initial step is to convert RGB HVF images into grayscale. 

Since color information includes no diagnostic data of interest 

in HVF reports, grayscale representation does not lose any 

content and simplifies the image. This process reduces 

computational complexity and facilitates easier processing 

operations. Grayscale intensity is computed as the weighted 

sum of red (R), green (G), and blue (B) channels. This 

transformation increases the contrast between background 

objects and foreground text, enhancing OCR-based feature 

extraction accuracy and robustness. 

4.2.2 4.2.2 Noise Reduction and Contrast 

Enhancement 
Medical images are prone to image quality issues due to 

scanning instability and compression artifacts. These are 

obscure textual content or graphical textures. In order to 

minimize their effect, the Contrast-Limited Adaptive 

Histogram Equalization (CLAHE) algorithm was used. 

CLAHE enhances local contrast without over-enhancing noise, 

such that sensitive details in diagnostic regions are more 

evident. 

The CLAHE algorithm consists of four basic steps: 

1. Tiling: The image is split into small tiles of size 

2. Local Histogram Equalization: Histogram equalization is 

applied independently to each tile. 

𝐻(𝑘) =
1

𝑀 .𝑁
∑. 𝑛

𝑘

𝑖=0

 

3. Clipping: Histograms are clipped at a specified threshold 
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(clip limit) to prevent noise over-enhancement. 

4. Interpolation: Bilinear interpolation is employed to smooth 

tile boundaries. 

The pixel values are ultimately remapped through the use of the 

cumulative distribution function (CDF) for enhancing local 

contrast in the image. This makes visual field maps, summary 

tables, and reliability indices much more readable, thus making 

it simpler for successful OCR and clinical interpretation. 

4.2.3 Image Segmentation 
Segmentation is a foundation-level preprocessing step that tries 

to separate diagnostically relevant areas of interest (ROIs) from 

the background. Patient information, numerical value indices, 

and deviation plots are the primary elements that must be 

accurately extracted so auto-analysis can be performed in HVF 

reports. 

The segmentation process used in this work involves: 

a. Pre-Segmentation Enhancements: The image conditioning is 

done by applying gray scale and CLAHE-based contrast 

enhancement initially. 

b. Adaptive Thresholding and Binarization: Otsu's method is 

employed for determining the optimal threshold. 

𝑇 = [𝜎𝑏
2(𝜃)] min

𝜃
𝑎𝑟𝑔 

c. ROI Mapping and Extraction 

Predefined spatial templates were used to extract predefined 

clinical regions, such as: 

Eye Laterality (OD/OS): Placed in a fixed area at the top of the 

report. 

Central Visual Field: Corresponding to the central 5° region for 

numeric value extraction.  

Summary Metrics: VFI, MD, PSD, and FP/FN error rates, 

usually bundled in bottom or side tables. 

By the application of spatial normalization and correct 

cropping, only the diagnostically relevant content remains. 

This significantly improves the accuracy of OCR and 

subsequent classification operations. 

4.3 Model Implementation 
A classification model based on Convolutional Neural Network 

(CNN) was employed in this research to predict the glaucoma 

severity level from chosen features derived from Humphrey 

Visual Field (HVF) test reports. The model was customized to 

handle numerical and structural inputs derived from clinical 

examination data for reliable performance on multi-class 

classification tasks. 

The CNN architecture consists of a series of properly designed 

layers in order to derive high-level abstract representations of 

the input data. The model begins with an input layer that 

accepts a vector of preprocessed numerical features, including 

patient age, Central 5° sensitivity values, Mean Deviation 

(MD), Pattern Standard Deviation (PSD), and other relevant 

clinical parameters. All the inputs are normalized to have 

uniformity throughout the dataset and for rapid convergence 

during training. 

The model consists of some dense (fully connected) layers 

followed by ReLU (Rectified Linear Unit) activation functions 

to introduce non-linearity and enable the learning of complex 

patterns. In order to obtain improved generalization capability 

of the model and prevent overfitting, batch normalization 

layers are inserted between dense layers to stabilize the 

learning, and dropout layers are implemented to randomly set 

some fraction of neurons to zero during training. This 

combination aids in ensuring increased training stability and 

performance, particularly while dealing with relatively small 

and heterogeneous medical data sets. 

The final classification layer consists of a fully connected layer 

with a softmax activation function, which yields a probability 

distribution among the four glaucoma classes: normal, mild, 

moderate, and severe. This probabilistic output allows for easy 

interpretability and facilitates decision-making based on 

confidence in clinical environments. 

For the training step, the model was developed with a 

categorical cross-entropy loss function, and it is appropriate for 

multi-class classification problems. Therefore, the Adam 

optimizer was employed with an initial learning rate of 0.001. 

The learning rate scheduler was implemented to dynamically 

reduce the learning rate according to validation loss trends so 

that convergence would be enhanced in future phases of 

training. 

The model was trained with a batch size of 32 for 50 epochs. 

The data was split into training 70%, validation 15%, and test 

15%. Early stopping was also applied as a regularization where 

training is automatically stopped if the validation loss fails to 

improve after a number of given epochs, preventing overfitting. 

All experimental training procedures were performed through 

Google Colaboratory (Colab), based on TensorFlow and Keras 

as the primary deep learning environments. Classification 

performance was quantified by using confusion matrix 

analysis, which showed an overall high classification 

performance. The model was successful in distinguishing 

normal from severe glaucoma but experienced some degree of 

misclassification between mild and moderate stages—

ostensibly due to the partly overlapping clinical characteristics 

and subtle variations in field loss characteristics between the 

two types. 

4.4 Automated Report Generation 
In response to the need for bridging automated glaucoma 

classification to clinical use, an automated report generation 

system was added as a post-processing module. The module 

was intended to produce structured, clinician-readable reports 

of diagnostic outcomes in a standard form. 

The system automatically produces a Microsoft Word (.docx) 

file with the following information: 

Patient demographic data: Name, gender, and date of 

examination, extracted from the HVF report header. 

Reliability indicators: false negative and false positive error 

rates, fixation losses, and general test quality indicators. 

Classification outcome: The deduced degree of glaucoma 

severity (normal, mild, moderate, or severe), in addition to a 

brief clinical note. 

Quantitative measures: Extraction and display of prime HVF 

indicators such as Mean Deviation (MD), Pattern Standard 

Deviation (PSD), Glaucoma Hemifield Test (GHT) result, and 

Visual Field Index (VFI). 

The thus generated report is presented in a readable format and 

is automatically saved on the user's Google Drive for ready 

access and potential sharing with eye specialists. Figure 3 

presents a sample output of the automatic report generated by 

the system. 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.26, July 2025 

55 

The reporting tool not only facilitates easy diagnostic work but 

also assists in improved documentation, reduced manual effort, 

and improved reproducibility in glaucoma screening and 

follow-up. 

5. Experimental results 
This section discusses and presents the experimental results of 

the suggested system for glaucoma classification and automatic 

report generation. The results are described in-depth, 

highlighting the strengths and weaknesses of the model. 

Furthermore, a comparison with traditional and deep learning 

approaches is provided, along with a discussion of potential 

areas for future enhancement. 
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Fig 3: Block diagram illustrating the workflow of the extraction program. In Case A, the input Humphrey Visual Field (HVF) 

report is separated into metadata, value charts, and percentage charts. In Case B, they are processed and presented visually, 

enabling automated extraction and the generation of a structured, readable report.

The model's performance was analyzed on the basis of different 

standard evaluation metrics like overall accuracy, precision, 

recall, F1-score, and confusion matrix analysis. The 

classification results were as follows: Overall Accuracy: 

92.5%, Precision: 91.74%, Recall: 95.93%, F1-Score: 93.35% 

The confusion matrix showed that normal and severe cases of 

glaucoma were predicted confidently by the model, owing to 

the presence of clear and easily distinguishable patterns of 

features. There were some misclassifications among mild and 

moderate cases, owing to the overlap in clinical presentation 

and less pronounced differences in feature values, see figure 4. 

 

Fig 4: Confusion matrix illustrating the performance of 

the proposed glaucoma classification model. 

Interestingly, the model also manifested improved sensitivity 

for detecting moderate and severe cases of glaucoma over 

traditional manual assessments. This implies its utility as a 

diagnostic tool, particularly in clinically based visual field 

interpretation. 

Feature importance analysis was performed to decipher the 

contribution of each input feature in influencing the model's 

decisions at a more granular level. The following were 

observed: 

Mean Deviation (MD): Was identified as the most significant 

feature, with good performance in both discriminating between 

normal and glaucomatous eyes and grading glaucoma severity.  

Central 5-Degree Values: Yielded valuable information 

regarding central visual field defects, which are crucial in 

assessing the impact of disease. 

Pattern Standard Deviation (PSD): Played a crucial role in 

distinguishing mild from advanced stages of disease. 

Visual Field Index (VFI): Was a good marker for disease 

progression over time. 

Comparative studies were also conducted to contrast the 

performance of the suggested model with state-of-the-art 

traditional and deep learning-based glaucoma classification 

techniques. The comparative studies illustrated the supremacy 

of the suggested system in the successful detection of advanced 

cases of the disease. A summary of the comparative findings is 

provided in Table 1. 

Table 1. Comparison with other traditional and deep 

learning methods for glaucoma classification 

Methodology Accuracy 
Key 

Strengths 
Limitations 

Bowd, C. et al. 

(2002) Traditional 

Humphrey Visual 

Field 

85% 
Well-

established in 

clinical 

Subjective 

interpretatio

n, inter-

observer 
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Interpretation [38] practice variability 

Asaoka R. et al. 

(2019) CNN-

based Image 

Classification 

[31] 

93.7 % 

Direct feature 

extraction 

from images 

Requires 

large 

training 

datasets 

Proposed Model 
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Despite the promising performance, the suggested system has 

some drawbacks that require consideration: 

Dependence on OCR Accuracy: The system's reliance on 

Optical Character Recognition (OCR) to extract important 

textual parameters has an error risk. Incorrectness of OCR may 

result in erroneous interpretation of important values such as 

MD, PSD, or VFI, affecting classification reliability 

consequently. 

Inconsistent Report Formats: Variability in the format and 

structure of visual field reports—especially across devices or 

health institutions—may render consistent feature extraction 

and recognition challenging. 

Dataset Bias and Lack of Generalizability: The dataset that was 

received was from a specific population, and thus, the 

generalizability of the model to the overall or more 

heterogeneous demographic groups can be questionable. In 

addition, variations in imaging equipment and test conditions 

can introduce heterogeneity in feature representation. 

Challenge with Borderline Cases: Classifying early glaucoma 

or borderline cases is still challenging since there are minute 

deviations in the features extracted. Incorporating additional 

biomarkers, such as retinal nerve fiber layer (RNFL) thickness, 

would significantly enhance diagnostic precision in such 

instances. 

Computational Complexity: Although the model itself is 

computationally lightweight in its core design, adding OCR-

based text extraction introduces additional processing 

overhead. In the interest of real-time clinical deployment, the 

pipeline must be additionally optimized to reduce latency. 

In summary, the experimental results validate that the proposed 

system provides a stable and solid foundation for automatic 

glaucoma classification and report generation. Its use of visual 

field measurements, intelligent feature extraction, and deep 

learning algorithms is accountable for its superior classification 

performance. However, the alleviation of the aforementioned 

limitations is required to enable broader applicability and 

seamless deployment in real-world clinical environments. 

6. CONCLUSION AND FUTURE WORK 
This methodology combines OCR-based feature extraction, 

deep learning classification, and automated reporting to 

facilitate early diagnosis of glaucoma. By leveraging CNN 

analysis of key HVF parameters, the system provides an 

efficient and standardized approach to support clinical 

decisions. 

The proposed system successfully demonstrated the feasibility 

of automated glaucoma classification using deep learning and 

OCR. However, addressing limitations related to OCR 

accuracy, dataset diversity, and real-time implementation will 

be crucial for advancing this technology toward broader 

clinical adoption. Future work will focus on refining these 

aspects to further enhance diagnostic reliability and usability in 

ophthalmic practice.  

One of the primary challenges identified was the dependency 

on OCR for extracting clinical parameters. Future work should 

involve advanced OCR models trained specifically for medical 

text recognition, preprocessing techniques to standardize HVF 

report formats and improve text extraction, and context-aware 

text correction algorithms to mitigate OCR misinterpretations. 

To ensure the model’s generalizability across diverse 

populations, future studies should focus on incorporating a 

larger and more diverse dataset that includes variations in test 

conditions, imaging devices, and patient demographics. Cross-

validation with multiple clinical centers to evaluate the 

system’s robustness in different healthcare settings. 

Glaucoma diagnosis can benefit from additional clinical 

biomarkers. Future research could explore integrating Retinal 

Nerve Fiber Layer (RNFL) thickness measurements from 

Optical Coherence Tomography (OCT), Intraocular Pressure 

(IOP) readings for a more comprehensive assessment, and 

Fundus imaging analysis alongside HVF data to enhance 

prediction accuracy. 

To increase clinical adoption, future development should focus 

on cloud-based deployment for real-time report generation and 

accessibility, mobile and web-based applications for seamless 

integration into clinical workflows, and optimization for real-

time inference to ensure rapid and efficient analysis of patient 

data. 
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