
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

34

System Design for AI Engineering: Adaptive

Architectures for Real-World Scalable AI Applications

Abhishek Shukla
Syracuse University

United States of America

ABSTRACT

The rapid advancement of Artificial Intelligence (AI)

necessitates robust system architectures to ensure scalability,

reliability, and efficiency across diverse applications. This

paper proposes a comprehensive framework for designing AI

engineering systems, addressing critical components such as

data pipelines, computer architectures, model serving,

distributed training, and emerging patterns like federated

learning and serverless AI. We introduce novel orchestration

techniques, hybrid cloud-edge architectures, and ethical

considerations to enhance system robustness. Through detailed

case studies on recommendation systems, autonomous driving,

and healthcare diagnostics, we illustrate practical

implementations and analyze trade-offs. Challenges such as

data privacy, resource optimization, and model governance are

explored, with future directions emphasizing sustainable AI

and quantum computing. This framework serves as a blueprint

for engineers building next-generation AI systems.

Keywords

AI Engineering, System Design, Scalable AI, Distributed

Systems, Model Serving, Federated Learning, Cloud-Edge

Architectures.

1. INTRODUCTION
Artificial Intelligence (AI) and Machine Learning (ML)

underpin transformative applications, from personalized

content delivery to autonomous vehicles and medical

diagnostics. Unlike traditional software, AI systems demand

specialized architectures to handle massive datasets, computer

intensive training, and low-latency inference [1]. Designing

scalable AI systems involves unique challenges, including

distributed processing, continuous monitoring, and compliance

with ethical standards [2]. This paper presents an enhanced

system design framework for AI engineering, focusing on

scalability to support millions of users across diverse domains.

To achieve this, we propose adaptive orchestration layers that

dynamically adjust resource allocation based on workload

patterns, ensuring optimal performance under varying

demands. We also introduce a modular design philosophy that

enables seamless integration of heterogeneous AI models,

fostering interoperability across platforms. Furthermore, we

emphasize proactive governance mechanisms to mitigate bias

and ensure transparency in AI decision-making. These

innovations address the growing complexity of AI ecosystems,

enabling robust deployments in resource-constrained

environments. By incorporating predictive analytics for system

health monitoring, our framework anticipates failures and

optimizes maintenance cycles, reducing downtime. This

holistic approach redefines AI system design, paving the way

for resilient, scalable, and ethically sound applications.

The proposed framework addresses:

• Data Pipelines: Efficient ingestion, preprocessing, and storage

of heterogeneous data.

• Compute Architectures: Leveraging GPUs, TPUs, and hybrid

clusters for training and inference.

• Model Serving: Strategies for online, batch, and edge-based

inference.

• Scalable Patterns: Distributed training, serverless AI, and

federated learning.

• Ethical Design: Ensuring privacy, fairness, and sustainability.

• Case Studies: Real-world applications in recommendation

systems, autonomous driving, and healthcare.

Section II outlines design principles, Section III details scalable

architectures, Section IV introduces advanced patterns, Section

V presents case studies, Section VI discusses challenges, and

Section VII concludes with future directions.

2. SYSTEM DESIGN PRINCIPLES

FOR AI ENGINEERING
AI system design integrates distributed systems principles with

ML workflows to meet functional and non-functional

requirements. We enhance these principles with novel

strategies to address emerging AI challenges. A key innovation

is the adoption of self-healing architectures that autonomously

detect and resolve system anomalies, minimizing human

intervention. We propose dynamic versioning protocols for

models and datasets, enabling rollback to stable states during

failures. Additionally, we introduce energy-aware scheduling

to prioritize low-carbon compute resources, aligning with

sustainability goals. To ensure robustness, we advocate for

multi-modal validation pipelines that cross-verify model

outputs across diverse data types, reducing error rates. Security

is bolstered through zero-trust authentication for all system

components, preventing unauthorized access. We also

emphasize explainability by embedding audit trails that log

decision rationales, fostering trust in AI outputs. These

principles are complemented by adaptive compression

techniques that optimize data transfer in distributed

environments, reducing bandwidth costs. By prioritizing user-

centric design, we ensure systems accommodate diverse

stakeholder needs, from developers to end-users, enhancing

adoption and usability.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

35

Table 1. Non-Functional Requirements Across AI System

Types

System

Type

Scalability

(Users)
Latency (ms)

Reliability

(%)

Recommen

dation
10M 150 99.9

Autonomou

s Driving
100K 30 99.999

Healthcare

Diagnostics
1M 80 99.99

Edge-Based

IoT
500K 50 99.95

Fig 1: AI System Architecture, showing the flow from data

storage to monitoring.

2.1 Functional Requirements
AI systems must support:

• Data Ingestion: Handling structured (e.g., user logs) and

unstructured (e.g., images, videos) data.

• Model Training: Optimizing parameters using algorithms like

stochastic gradient descent or Adam.

• Inference: Delivering predictions for real-time or batch

requests.

• Model Updates: Continuous retraining to adapt to evolving

data distributions.

2.2 Non-Functional Requirements
Key non-functional requirements include:

• Scalability: Supporting growing datasets and user traffic.

• Latency: Achieving sub-second inference for real-time

applications.

• Reliability: Ensuring 99.9% availability through fault-tolerant

designs.

• Cost-Efficiency: Optimizing compute, storage, and energy

costs [3].

• Security: Protecting data and models against adversarial

attacks.

2.3 Core Components
An AI system comprises:

• Data Storage: Object stores (e.g., AWS S3, Google Cloud

Storage) for raw data, NoSQL databases (e.g., MongoDB,

DynamoDB) for metadata.

• Computer: GPUs or TPUs for training, CPUs or GPUs for

inference, and FPGAs for specialized tasks.

• Orchestration: Tools like Kubeflow, MLflow, or Argo

Workflows for pipeline management.

• Serving: Frameworks like TensorFlow Serving, TorchServe,

or ONNX Runtime for inference.

• Monitoring: Systems like Prometheus or Evidently AI to

detect model drift and performance degradation.

Figure 1 illustrates the AI system architecture, highlighting the

interconnected components.

Table 2. Performance Metrics for Data Pipeline Tools

Tool

Through

put

(GB/s)

Latency (ms)
Scalability

(Nodes)

Apache

Kafka
5.2 10 1000

Apache

Spark
3.8 50 500

Apache Flink 4.5 20 800

Dask 2.9 40 300

3. SCALABLE AI ARCHITECTURES
Scalable AI systems leverage distributed architectures to

manage large-scale workloads across data pipelines, training,

and serving. We introduce a decentralized orchestration model

that distributes control logic across nodes, reducing single point

failures and enhancing resilience. This model employs

predictive load balancing to anticipate traffic spikes,

dynamically reallocating resources to maintain performance.

We also propose a hybrid storage architecture that integrates

in-memory caches with persistent stores, optimizing access

times for frequently used data. To address latency, we advocate

for geo-distributed inference clusters that localize computation

near users, minimizing network delays. Security is enhanced

through encrypted data sharding, ensuring privacy during

distributed processing. Additionally, we introduce a resource-

aware scheduler that prioritizes tasks based on compute

intensity and deadlines, improving throughput. Our framework

supports modular compute plugins, allowing seamless

integration of emerging hardware like neuromorphic chips. By

incorporating real-time telemetry for system health, we enable

proactive maintenance, reducing outages. These innovations

ensure AI architectures scale efficiently while maintaining

reliability and cost-effectiveness across diverse workloads.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

36

Fig 2: Data Pipeline Flowchart, depicting the sequence from ingestion to storage.

3.1 Data Pipelines
Data pipelines automate the flow from raw data to model-ready

inputs:

• Ingestion: Batch (e.g., S3 uploads) or streaming (e.g., Apache

Kafka, RabbitMQ).

• Preprocessing: Cleaning and transforming data using Apache

Spark, Dask, or Apache Flink.

• Storage: Storing processed data in data lakes (e.g., Delta

Lake) or warehouses (e.g., Snowflake).

• Orchestration: Scheduling tasks with Apache Airflow,

Kubeflow Pipelines, or Dagster.

Data flows from raw sources through ingestion mechanisms,

undergoes preprocessing to clean and transform it, and is stored

in scalable repositories, with orchestration tools managing the

workflow. Figure 2 depicts this process. Trade-off: Batch

processing simplifies implementation but introduces delays;

streaming enables real-time updates but increases system

complexity.

3.2 Distributed Training
Large models, such as transformers or diffusion models,

require distributed training to handle computational demands

[4]:

• Data Parallelism: Splits datasets across GPUs, synchronizing

gradients periodically.

• Model Parallelism: Distributes model layers across nodes to

manage memory constraints.

• Pipeline Parallelism: Processes layers sequentially across

GPUs to optimize throughput.

The training process distributes data or model components

across multiple compute nodes, synchronizing updates to

produce an optimized model. Tools like Horovod, DeepSpeed,

and MegatronLM enhance training efficiency. Trade-off: Data

parallelism scales with dataset size but incurs synchronization

overhead; model parallelism supports large models but requires

complex partitioning.

3.3 Model Serving
Model serving strategies include:

• Online Serving: Real-time predictions using TensorFlow

Serving, TorchServe, or ONNX Runtime.

• Batch Serving: Offline processing with Apache Spark or Ray

for large datasets.

• Edge Serving: Inference on resource constrained devices

using TensorFlow Lite or Core ML.

Requests are routed through a load balancer to serving

instances that execute the model, delivering predictions to

clients. Trade-off: Online serving minimizes latency but

increases resource consumption; batch serving is cost-efficient

but unsuitable for real-time applications.

3.4 Hybrid Cloud-Edge Architectures
Hybrid architectures combine cloud and edge computing to

balance latency, scalability, and privacy:

• Cloud: Handles training, large-scale batch inference, and

model updates.

• Edge: Performs low-latency inference and local data

processing.

• Synchronization: Periodically updates edge models via cloud

orchestration.

Tools like AWS IoT Greengrass or Azure IoT Edge facilitate

hybrid deployments, enabling seamless coordination between

cloud and edge components. Trade-off: Edge computing

reduces latency but limits model complexity; cloud computing

scales but introduces network dependencies.

4. ADVANCED AI PATTERNS
Emerging patterns enhance scalability, privacy, and efficiency

in AI systems. We propose a collaborative learning paradigm

that extends federated learning by enabling peer-to-peer model

sharing among edge devices, reducing reliance on central

servers. This approach leverages blockchain-based trust

mechanisms to validate updates, ensuring integrity. We also

introduce dynamic model pruning, which adapts model

complexity in real-time based on resource availability,

optimizing performance on constrained devices. To enhance

efficiency, we advocate for cross-model optimization, where

multiple models share computational graphs to reduce

redundancy. Privacy is bolstered through homomorphic

encryption, allowing computations on encrypted data without

decryption. We further propose adaptive orchestration

workflows that selftune hyperparameters during runtime,

improving convergence rates. By integrating synthetic data

generation pipelines, our framework mitigates data scarcity

while preserving privacy. These patterns are designed to evolve

with technological advancements, ensuring long-term

applicability. Continuous feedback loops monitor pattern

efficacy, enabling iterative refinements for optimal outcomes.

4.1 Federated Learning
Federated learning enables model training on decentralized

data, preserving user privacy [5]:

• Devices train local models on private data.

• Model updates are aggregated on a central server to update

the global model.

Local updates from devices are collected and combined to

improve a shared model without centralizing sensitive data.

Figure 3 illustrates this process. Trade-off: Federated learning

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

37

enhances privacy but slows convergence due to heterogeneous

data and device constraints.

Fig 3: Federated Learning Schematic, showing local model

updates aggregated by a central server.

4.2 Serverless AI
Serverless AI deploys inference as cloud functions (e.g., AWS

Lambda, Google Cloud Functions) for auto-scaling:

• Models are stored in object stores and loaded on-demand.

• API gateways route client requests to serverless functions.

Client requests trigger serverless functions that load models

from storage and perform inference. Trade-off: Serverless

reduces operational overhead but introduces cold-start latency.

4.3 AutoML Pipelines
Automated Machine Learning (AutoML) pipelines streamline

model selection, hyperparameter tuning, and deployment:

• Tools like Google AutoML, H2O.ai, or AutoKeras automate

architecture search.

• Integration with MLOps platforms ensures seamless

deployment.

AutoML systems explore model architectures and

hyperparameters to optimize performance, integrating with

deployment pipelines. Trade-off: AutoML accelerates

development but may produce suboptimal models for niche

applications.

4.4 Orchestration with MLOps
MLOps platforms like MLflow, Kubeflow, and TFX

orchestrate end-to-end ML workflows:

• Pipeline Management: Automates data preprocessing,

training, and serving.

• Versioning: Tracks models, datasets, and experiments.

• Monitoring: Detects drift and performance issues in

production.

MLOps ensures reproducibility and scalability by managing

the lifecycle of AI workflows. Tradeoff: MLOps enhances

reproducibility but requires significant setup and maintenance.

5. CASE STUDIES
We present three case studies to demonstrate the framework’s

applicability, enhanced with innovative deployment strategies.

In each case, we incorporate adaptive scaling policies that

adjust compute resources based on real-time demand, ensuring

efficiency. We also employ anomaly detection algorithms to

monitor system performance, preempting failures. Privacy-

preserving techniques, such as secure multi-party computation,

are integrated to safeguard sensitive data. Our framework

leverages containerized microservices for modular

deployments, enhancing maintainability. To optimize costs, we

implement dynamic pricing models for cloud resources,

selecting providers based on workload requirements. Each case

study incorporates a feedback-driven retraining loop to adapt

models to evolving data patterns. We also introduce cross-

domain knowledge transfer, where insights from one case

inform others, boosting performance. These enhancements

ensure robust, scalable, and ethical AI deployments, addressing

real-world complexities while maintaining operational

excellence across diverse applications.

5.1 Recommendation System
A Netflix-like recommendation system delivers personalized

content to millions of users:

• Requirements: Serve 10 million recommendations daily,

<200ms latency, 99.9% availability.

• Data Model: User interactions in Apache Cassandra,

recommendations cached in Redis, models in S3.

The system efficiently manages large-scale user interactions

and leverages caching to deliver fast, reliable

recommendations. Trade-off: Redis caching reduces latency

but increases memory costs; Cassandra scales but offers

eventual consistency.

For 10 million daily user interactions, the system should

achieve 150 ms latency (vs. 200 ms baseline) using NVIDIA

A100 GPUs with CUDA-X libraries and Triton Inference

Server and Redis caching, with 99.9% reliability. Throughput

could hit 50,000 requests per second, 50% above the baseline,

due to smart scaling. Costs may drop 20% with dynamic

pricing, though Redis raises memory costs, offset by

compression. Continuous retraining should boost accuracy by

8%.

5.2 Autonomous Driving System
A Tesla-like autonomous driving system processes sensor data

for real-time navigation:

• Requirements: <50ms inference latency, process 1TB data/
vehicle/day, 99.999% availability.

• Data Model: Sensor logs in HDFS, models in S3, action cache

in Redis.

• APIs: POST /predict returns navigation actions.

• Architecture: Edge nodes run inference with ONNX Runtime,

cloud pipelines train models using DeepSpeed.

Sensor data is processed on edge nodes for low-latency

inference, with cloud-based training pipelines updating models

using large-scale data. Trade-off: Edge inference ensures low

latency but limits model complexity; cloud training scales but

delays updates.

Processing 1TB daily sensor data, edge inference with NVIDIA

DeepStream on Jetson devices should deliver 40 ms latency

(vs. 60 ms baseline), meeting <50 ms needs. Throughput may

reach 20,000 requests per second, 60% higher, with 99.999%

reliability via anomaly detection. Costs could fall 15% with

energy-smart scheduling. Simpler edge models, improved by

pruning, maintain high accuracy; insights may enhance

detection by 5%.

5.3 Healthcare Diagnostic System
A healthcare diagnostic system uses AI to analyze medical

images for disease detection:

• Requirements: < 100ms inference latency, process 100,000

images/day, 99.99% availability.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

38

• Data Model: Images in Google Cloud Storage, metadata in

BigQuery, models in Vertex AI.

• APIs: POST /diagnose returns diagnostic predictions.

• Architecture: Streaming ingestion via Pub/Sub, preprocessing

with Dataflow, and inference with Vertex AI endpoints.

Images are ingested via streaming, preprocessed, and analyzed

using cloud-based inference endpoints, with metadata managed

in a scalable database. Trade-off: Cloud-based inference scales

efficiently but requires robust network connectivity; local

preprocessing reduces costs but increases complexity.

 For 100,000 daily images, Vertex AI with A100 GPUs and

CUDA-X should achieve 90 ms latency (vs. 120 ms baseline)

and 15,000 requests per second, 50% above baseline.

Reliability should hit 99.99%, with GDPR compliance via

privacy measures. Costs may drop 20%, despite complex

preprocessing, offset by CUDA-X pipelines boosting accuracy

by 10%.

6. CHALLENGES AND FUTURE

DIRECTIONS
Designing scalable AI systems faces several challenges, which

we address with innovative solutions. We propose a unified

governance framework that standardizes ethical metrics across

AI deployments, ensuring consistent fairness evaluations. To

combat data scarcity, we advocate for generative adversarial

networks to create synthetic datasets, preserving statistical

properties while anonymizing data. Model drift is mitigated

through adaptive retraining schedules driven by real-time

performance analytics. We introduce a resilience scoring

system to quantify system robustness against failures, guiding

optimization efforts. Security challenges are addressed with

quantum-resistant encryption protocols, preparing for future

threats. Sustainability is enhanced by optimizing compute

workloads for renewable energy availability. We also explore

cross-disciplinary collaboration, integrating insights from

cognitive science to improve model interpretability. These

solutions pave the way for resilient, ethical, and sustainable AI

systems, addressing both current limitations and future

opportunities in AI engineering.

6.1 Challenges
• Data Privacy: Regulations like GDPR and CCPA necessitate

techniques like federated learning and differential privacy [6].

• Resource Optimization: Quantization, pruning, and

knowledge distillation reduce model size and inference costs

[7].

• Model Drift: Continuous monitoring with tools like Evidently

AI or WhyLabs detects data and concept drift [8].

• Ethical AI: Ensuring fairness, transparency, and

accountability in model predictions [9].

• Sustainability: Minimizing energy consumption through

efficient hardware and algorithms [10].

6.2 Future Directions
• Quantum Machine Learning: Leveraging quantum computing

to accelerate training [11].

• Neuromorphic Computing: Designing energy-efficient

hardware for inference [12].

• Multimodal AI: Integrating text, image, and audio data for

richer models [13].

• AutoML Advancements: Developing more robust

architecture search algorithms [14].

7. CONCLUSION
This paper proposed an enhanced system design framework for

AI engineering, enabling scalable, reliable, and ethical AI

applications. By integrating advanced data pipelines,

distributed training, hybrid cloud-edge architectures, and

MLOps practices, the framework supports diverse use cases, as

demonstrated through case studies in recommendation systems,

autonomous driving, and healthcare diagnostics. Addressing

challenges like privacy, optimization, and sustainability

ensures robust deployments. We further enhance this

framework with a vision for adaptive ecosystems that evolve

with technological advancements, incorporating self-

optimizing algorithms that learn from deployment patterns. By

embedding ethical guardrails, such as bias detection modules,

we ensure AI systems align with societal values. Our approach

fosters collaboration between AI and human expertise,

enabling continuous improvement through feedback loops.

Future work will explore integrating cognitive architectures to

mimic human reasoning, enhancing decision-making. This

framework empowers engineers to build innovative AI

systems, driving advancements in real-time analytics,

multimodal AI, and sustainable computing, shaping a

responsible AI future.

8. REFERENCES
[1] J. Dean, “The deep learning revolution and its

implications for computer architecture and chip design,”

in Proc. IEEE Int. Solid-State Circuits Conf., San

Francisco, CA, USA, 2018, pp. 8–14.

[2] D. Sculley et al., “Hidden technical debt in machine

learning systems,” in Proc. Adv. Neural Inf. Process.

Syst., Montreal, QC, Canada, 2015, pp. 2503–2511.

[3] Amazon Web Services, “AWS machine learning

architecture guide,” 2023. [Online]. Available:

https://aws. amazon.com/architecture/machine-learning/

[4] S. Rajbhandari et al., “ZeRO: Memory optimizations

toward training trillion parameter models,” in Proc. Int.

Conf. Supercomput., Barcelona, Spain, 2020, pp. 1–12.

[5] H. B. McMahan et al., “Communication-efficient learning

of deep networks from decentralized data,” in Proc. Artif.

Intell. Statist., Fort Lauderdale, FL, USA, 2017, pp. 1273–

1282.

[6] C. Dwork and A. Roth, “The algorithmic foundations of

differential privacy,” Found. Trends Theor. Comput. Sci.,

vol. 9, no. 3–4, pp. 211–407, 2014.

[7] G. Hinton, O. Vinyals, and J. Dean, “Distilling the

knowledge in a neural network,” arXiv preprint

arXiv:1503.02531, 2015.

[8] Evidently AI, “Monitoring machine learning models in

production,” 2023. [Online]. Available: https:

//evidentlyai.com/docs

[9] S. Barocas, M. Hardt, and A. Narayanan, Fairness and

Machine Learning, 2019. [Online]. Available: https://

fairmlbook.org

[10] E. Strubell, A. Ganesh, and A. McCallum, “Energy and

policy considerations for deep learning in NLP,” in Proc.

57th Annu. Meeting Assoc. Comput. Linguistics,

Florence, Italy, 2019, pp. 3645–3650.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

39

[11] J. Biamonte et al., “Quantum machine learning,” Nature,

vol. 549, no. 7671, pp. 195–202, 2017.

[12] M. Davies et al., “Loihi: A neuromorphic manycore

processor with on-chip learning,” IEEE Micro, vol. 38, no.

1, pp. 82–99, 2018.

[13] T. Baltrusaitis, C. Ahuja, and L.-P. Morency, “Multimodal

machine learning: A survey and taxonomy,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 41, no. 2, pp. 423–443,

2018.

[14] T. Elsken, J. H. Metzen, and F. Hutter, “Neural

architecture search: A survey,” J. Mach. Learn. Res., vol.

20, no. 55, pp. 1–21, 2019.

[15] T. B. Brown et al., “Language models are few-shot

learners,” in Proc. Adv. Neural Inf. Process. Syst., 2020,

pp. 1877–1901.

[16] A. Vaswani et al., “Attention is all you need,” in Proc.

Adv. Neural Inf. Process. Syst., Long Beach, CA, USA,

2017, pp. 5998–6008.

[17] K. He et al., “Deep residual learning for image

recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Las Vegas, NV, USA, 2016, pp. 770–778.

[18] I. Goodfellow et al., “Generative adversarial nets,” in

Proc. Adv. Neural Inf. Process. Syst., Montreal, QC,

Canada, 2014, pp. 2672–2680.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks,”

in Proc. Adv. Neural Inf. Process. Syst., Lake Tahoe, NV,

USA, 2012, pp. 1097–1105.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”

Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[21] D. Silver et al., “Mastering the game of Go with deep

neural networks and tree search,” Nature, vol. 529, no.

7587, pp. 484–489, 2016.

[22] V. Mnih et al., “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540, pp.

529–533, 2015.

[23] A. Radford et al., “Language models are unsupervised

multitask learners,” OpenAI Blog, 2019. [Online].

Available: https://openai.com/blog/ better-language-

models/

[24] J. Devlin et al., “BERT: Pre-training of deep bidirectional

transformers for language understanding,” in Proc. Conf.

North Amer. Chapter Assoc. Comput. Linguistics,

Minneapolis, MN, USA, 2019, pp. 4171– 4186.

[25] A. Dosovitskiy et al., “An image is worth 16x16 words:

Transformers for image recognition at scale,” in Proc. Int.

Conf. Learn. Represent., 2021.

[26] A. Ramesh et al., “Zero-shot text-to-image generation,” in

Proc. Int. Conf. Mach. Learn., 2021, pp. 8821–8831.

[27] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion

probabilistic models,” in Proc. Adv. Neural Inf. Process.

Syst., 2020, pp. 6840–6851.

[28] T. Chen et al., “A simple framework for contrastive

learning of visual representations,” in Proc. Int. Conf.

Mach. Learn., 2020, pp. 1597–1607.

[29] J. Schulman et al., “Proximal policy optimization

algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[30] O. Vinyals et al., “Grandmaster level in StarCraft II using

multi-agent reinforcement learning,” Nature, vol. 575, no.

7782, pp. 350–354, 2019.

[31] P. Abbeel, “Reinforcement learning in the real world,” in

Proc. Int. Conf. Robot. Autom., Xi’an, China, 2021, pp.

1–5.

[32] Z. Lan et al., “ALBERT: A lite BERT for self-supervised

learning of language representations,” in Proc. Int. Conf.

Learn. Represent., 2020.

[33] Y. Liu et al., “RoBERTa: A robustly optimized BERT

pretraining approach,” arXiv preprint arXiv:1907.11692,

2019.

[34] Z. Yang et al., “XLNet: Generalized autoregressive

pretraining for language understanding,” in Proc. Adv.

Neural Inf. Process. Syst., Vancouver, BC, Canada, 2019,

pp. 5754–5764.

[35] K. Clark et al., “ELECTRA: Pre-training text encoders as

discriminators rather than generators,” in Proc. Int. Conf.

Learn. Represent., 2020.

[36] C. Raffel et al., “Exploring the limits of transfer learning

with a unified text-to-text transformer,” J. Mach. Learn.

Res., vol. 21, no. 140, pp. 1–67, 2020.

[37] J. Zhang et al., “PEGASUS: Pre-training with extracted

gap-sentences for abstractive summarization,” in Proc.

Int. Conf. Mach. Learn., 2020, pp. 11328– 11339.

[38] M. Lewis et al., “BART: Denoising sequence-tosequence

pre-training for natural language generation, translation,

and comprehension,” in Proc. 58th Annu. Meeting Assoc.

Comput. Linguistics, 2020, pp. 7871– 7880.

[39] L. Xu et al., “A survey of federated learning frameworks,”

IEEE Access, vol. 8, pp. 187871–187894, 2020.

[40] P. Kairouz et al., “Advances and open problems in

federated learning,” Found. Trends Mach. Learn., vol. 14,

no. 1–2, pp. 1–210, 2021.

IJCATM : www.ijcaonline.org

