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ABSTRACT 
Person Re-Identification (Re-ID) through gait analysis is 

gaining attention as a powerful and practical method for 

recognizing people across different camera views without 

depending on facial features or what they are wearing. Since 

the way a person walks are distinctive and tends to stay 

consistent even with changes in clothing, lighting, or camera 

angles, gait offers a reliable biometric for long-distance 

surveillance and security. In this study, a simplified and 

effective framework for person Re-ID that relies on analyzing 

how people walk in video footage is presented. The system 

works by first extracting a person’s silhouette and then using 

Deep Learning (DL) to understand both how their body looks 

and how it moves over time. To do this, Convolutional Neural 

Networks (CNNs) to capture visual details with Recurrent 

Neural Networks (RNNs) to track motion across frames are 

combined. This combination helps the system better recognize 

and tell individuals apart based on their unique walking 

patterns. The system is tested on publicly available gait datasets 

and found that it performs exceptionally well, even under 

different conditions. The system also includes a detection 

component to automatically identify and track people across 

different scenes before applying the gait recognition process. 

Our experimental results show that the method is highly robust 

in real-world situations, making it a promising tool for 

applications like surveillance, access control, and forensic 

analysis. This research moves forward the development of non-

intrusive, reliable technologies for person Re-ID using gait. 
Keywords 
Convolutional Neural Networks, Deep Learning, Gait Analysis, 

Person Re-identification, Recurrent Neural Networks. 

1. INTRODUCTION 
Gait recognition is a biometric technique that identifies persons 

based on their body form and walking pattern. Unlike other 

biometrics such as face, fingerprint, and iris, gait can be 

collected at a range employing off-the-shelf sensors in a hidden 

manner.  For these factors, gait is a viable biometric attribute 

for situations in which the face is not visible clearly enough to 

be recognized. With the rapid growth of video devices, greater 

monitoring systems are being implemented in everyday 

situations and performing an increasingly important role in 

defending our society's security. Numerous security 

technologies, like face recognition, person re-identification, 

and gait recognition, have emerged as a result of advancements 

in artificial intelligence (AI) and broad demand in the area of 

social security. These advancements greatly minimize the 

amount of data and increase social security's efficiency. The 

detection and characterization of a person's walking pattern and 

kinematics is typically the first step in the investigation of 

human gait periodic movement. The gait cycle insight can be 

extracted from data collected by sensors methods and modelled 

using various data-driven methodologies [1][2]. Yet, two 

components are required for accurate gait analysis: a suitable 

wearable gait mobility data gathering system and 

methodologies for reliable gait tracking, evaluation, and 

recognition. A wearable device having sensors, a unit for 

processing, and connectivity built into a tiny lightweight 

housing is typically preferred for long-term everyday use. A 

wearable device must also have minimal power consumption, 

adequate external memory storage, and a user interface for 

web-based information display and monitoring. Many Machine 

Learning (ML) approaches now include feature extraction 

capabilities. 

The process of detection and recognition of Person Re-ID 

through gait analysis using CNN and RNN involves multiple 

stages. First, CNNs extract spatial features from gait silhouettes 

or motion sensor data, capturing unique walking patterns for 

each individual. Then, RNNs, particularly Long Short-Term 

Memory (LSTM) or Gated Recurrent Units (GRU) [3], model 

the temporal dependencies in gait sequences, ensuring the 

system learns how movement evolves over time. The extracted 

gait embeddings are compared with stored profiles using metric 

learning techniques like Triplet Loss or Cosine Similarity for 
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re-identification. This approach enables cross-camera tracking, 

allowing individuals to be recognized across different 

locations. Advanced feature engineering and augmentation 

techniques help improve recognition accuracy despite 

variations in clothing, lighting, or walking surfaces. In real-

world circumstances, the end targets of Re-ID and gait 

recognition remain identical, that is, identify the intended 

person among cameras, as illustrated in Figure 1. 

 
Figure 1: Comparison of Person Re-ID and Gait 

Recognition for Person Retrieval 

2. RELATED WORK 
Previous research [5,6] compared the results of video-based 

Re-ID and recognition of gait on video-based Re-identification 

datasets that were cloth-unchanged. There is little research on 

these cloth-changing situations, and no comparable 

experiments have been undertaken using video-based Re-

identification and gait recognition. The primary problem is the 

absence of a cloth-changing standard for comparing cloth-

changing situations. So, it's time to create a cloth-changing 

dataset for video-based Re-ID and gait identification. 

According to Leightley et al. [7], computational models should 

not rely on individual interpretation, and the way decisions are 

made should help medical professionals. Innovations in 

research have assisted physicians in improving physical and 

behavioral approaches for their patients. Sok et al. [4] reported 

that biomechanical gait studies were beneficial in diagnosing 

gait abnormalities and defining treatment plans for individuals 

with more than fixed, complicated classifications, but 

interaction with a wide range of motor system input was 

extremely hard. To analyze relevant logo equipment input 

combinations having precision ranges greater than 80%, ML 

models are utilized to depict various behaviors in healthy and 

afflicted patients. The created optimization models lowered 

study duration and can also help physicians choose the 

important pathological category variables [8, 9]. 

Most gait photographs are taken with static cameras on a basic 

background or perhaps in close proximity to a green screen to 

make it easier to obtain pedestrian silhouettes. Certain data sets 

are acquired in interior spaces to improve ambient illumination 

regulation. Such constraints limit the investigation of gait 

detection in real-world circumstances. More crucially, 

participants in these datasets are cooperative, and they are 

instructed to travel in a straight line toward the camera or the 

focal point of a camera array. As a result, the angle between the 

camera and the pedestrian's walking path remains unchanged. 

The extent of viewpoint relies on a set of cameras, which is 

typically below fifteen [8][9]. In 2021, numerous new datasets 

comprising gait data gathered in uncontrolled circumstances 

were made available. In paper [10], the authors provided the 

Re-ID gait dataset, which was gathered over a 15-month period 

as the patients walked independently in an indoor corridor. 

These two traits (long time period and free walking pattern) 

weren't previously present in earlier gait datasets. N. Nazmi 

et.al., [11] released the GREW dataset, an extensive gait dataset 

collected in real-life situations. As only a few gait systems built 

on both of these gait datasets were published, the focus of gait 

identification research has shifted from regulated to real-world 

circumstances. 

Appearance-based gait detection systems typically process 

pedestrian photos using a deep CNN afterwards detect 

pedestrians using acquired gait embeddings. These techniques 

can be further separated into three groups depending on the input 

data: set-based methods, sequence-based methods, and template-

based techniques.  Template-based approaches, like the Gait 

Energy images (GEI) [12, 13] utilize CNNs to gather information 

from a single gait picture. CNNs with various designs were 

suggested by authors in paper [14] in order to enhance cross-

view detection of gait ability. Related research is available in 

[15], [16], and [17]. In addition, models that are generative, such 

as those constructed using auto-encoders [18] and generative 

adversarial networks (GAN) [19][20][21], have been suggested 

as well to convert gait photos from one perspective to other. 

Body motion is abstracted by template-based representations 

using basic processes. For a thorough examination of motion, 

sequence-based or video-based methods are created because this 

abstraction loses a lot of motion data. Three-dimensional (3D) 

CNN [25][26] and LSTM [22][23][24] are the models most 

frequently employed for periodic extraction of features of gait. A 

CNN was created by Lai et.al., for combining gait silhouette 

sequences [27]. For view-invariant gait identification, S. Adil 

et.al., suggested a 3D-CNN that concurrently records spatial and 

temporal data [28]. For cross-view gait identification, Li et al. 

[29] presented a thorough model that included both residual 

focus and LSTM elements. Improved illustrations of gait features 

are obtained because these investigations utilize both frame-level 

spatial and temporal data. Large gait data have demonstrated 

advanced accuracy with set-based methods. Identical modules 

are present in the Micro-motion Capture method [20], the LSTM 

attention method [31], and the Feature Map Pooling approach 

[30] Ferreira et.al., used LSTM attention algorithms in 

conjunction with CNNs to derive frame features [32]. A new 

parts-based system featuring a micro-motion recording module 

was presented by Goh et.al., [33].  

3. METHODOLOGY 

3.1 Data Collection 
The datasets provided contain sensor data collected from real 

world actions worn by individuals performing various physical 

activities. The training set includes 7,352 observations, while the 

test set contains 2,947, each with 563 features. These features 

capture measurements from accelerometers and gyroscopes, 

including means, standard deviations, maximums, and angles 

across time and frequency domains. Each row represents a 

snapshot of a subject's movement, identified by the subject 

column, and is labeled with the corresponding physical activity 

such as "STANDING" or "WALKING". This data is typically 

used for human activity recognition tasks in ML.  

3.2 Data Preprocessing 
To prepare the dataset for applying CNN and RNN algorithms, 

several preprocessing steps are essential. First, normalize or 

standardize the feature values to ensure uniformity in scale, 

which helps neural networks converge efficiently. Then, reshape 

the data appropriately where CNNs usually require a 2D or 3D 

input shape, while RNNs require sequential data formatted as 

time steps with features. Convert categorical labels, such as 

activities, into one-hot encoded vectors for classification. Lastly, 

to accurately assess model performance, divide the dataset into 

training, validation, and testing sets. 

3.3 Techniques Used 
The detection and recognition of person Re-ID through gait 
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analysis using CNN and RNN involve multiple stages. CNNs are 

utilized to extract spatial features from gait silhouettes or 

skeleton-based representations, capturing unique walking 

patterns. These extracted gait features are then fed into RNNs, 

such as LSTMs GRUs to model the temporal dependencies in 

human motion across frames. By combining CNNs and RNNs, 

the system leverages both spatial and temporal information, 

significantly improving gait recognition accuracy. This 

integrated approach is robust to challenges such as changes in 

viewpoint, clothing, and partial occlusions. To further enhance 

recognition, metric learning techniques like Triplet Loss or 

Contrastive Loss are applied. These methods help refine the 

feature representation by increasing the difference between 

features of different individuals while minimizing differences for 

the same individual under various conditions. 

For person Re-ID, the extracted gait signatures are compared 

with a pre-stored database. Similarity measures such as Cosine 

Similarity and Euclidean Distance are used to determine the 

closest match. Finally, the system supports cross-camera tracking 

and recognition, allowing continuous monitoring of individuals 

across different camera views and locations. This makes it highly 

suitable for applications in security surveillance, forensic 

investigations, and smart monitoring environments. 

3.4 Proposed Architecture 
Figure 2 illustrates the overall workflow of a person Re-ID 

system, broken down into two main phases: training phase and 

testing phase. In the training phase, the process starts by 

collecting people’s data from multiple cameras (Camera 1, 2, …, 

n). Once people are detected, key features are extracted from 

these individuals. This important information such as visual 

patterns or unique characteristics is then processed to learn and 

store meaningful patterns. The learned features are saved into a 

database for future use. In the testing phase, the system tries to 

re-identify a person. It begins by detecting a person from one or 

more cameras (Camera 1, 2, …, m). Key features are then 

extracted from the detected individuals, just like in the training 

phase. These features are described using the previously learned 

format, and then compared against the saved information in the 

database. Finally, the system matches the data and returns a 

result, indicating the identity or closest match of the person. 

Overall, the process uses a combination of detecting, learning, 

storing, and matching to recognize individuals effectively across 

different camera views. 

 
Figure 2: Flow diagram of Person Re-ID using Gait 

analysis 

4. RESULTS AND DISCUSSIONS 
Figure 3 box plot visualizes the importance of the accelerometer 

magnitude mean across different physical activities. The vertical 

axis represents the normalized mean values of acceleration, while 

the horizontal axis lists the activities. Static activities like 

standing, sitting, and laying show low and tightly grouped values, 

indicating minimal movement, whereas dynamic activities like 

walking and stair use exhibit higher and more variable values. 

The dashed green and magenta lines likely represent threshold 

levels used to distinguish between low and high activity intensity. 

 
Figure 3: Box Plot of Accelerometer Magnitude Mean 

Across Physical Activities 

Figure 4 pie chart displays the distribution of different physical 

activities in the dataset. Each colored segment represents a 

specific activity such as laying, standing, sitting, walking, 

walking upstairs, and walking downstairs. The percentage values 

indicate how much each activity contributes to the total dataset, 

with laying being the most frequent (19.1%) and walking 

downstairs the least (13.4%). This visualization helps understand 

the balance or imbalance of activity samples used in analysis or 

ML models. 

 
Figure 4: Proportion of Activities in Collected Data 

 

The classification report shown in Figure 5 indicates that the 

CNN model performs exceptionally well across all activity 

classes, with precision, recall, and F1-scores close to or equal to 

1.00, indicating highly accurate predictions. Activities like 

"LAYING" and "WALKING_DOWNSTAIRS" are predicted 

perfectly, while minor confusion exists between similar actions 

like "SITTING" and "STANDING". The overall accuracy is 

98%, reflecting strong generalization to unseen data. The macro 

and weighted averages confirm consistent performance across 

both frequent and less frequent activity classes. 

 
Figure 5: The Classification Report for CNN 

The normalized confusion matrix demonstrated in Figure 6 

shows the classification performance of a gait-based activity 

recognition model, revealing some noticeable 

misclassifications. While LAYING and WALKING are 
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identified with high accuracy (100% and 95% respectively), 

significant confusion exists between SITTING and 

STANDING, and between WALKING_DOWNSTAIRS and 

WALKING_UPSTAIRS. WALKING_DOWNSTAIRS is 

particularly misclassified, with only 63% correctly identified. 

Overall, the model performs moderately well but struggles with 

differentiating between visually and biomechanically similar 

activities. 

 
Figure 6: Confusion Matrix for CNN model performance 

Figure 7 contains the training and validation accuracy and loss of 

a model over 10 epochs. The accuracy curve shows a steady 

improvement in both training and validation performance, 

reaching over 97%, showing good model performance. The loss 

graph shows a consistent decrease in both training and validation 

loss, suggesting effective learning without overfitting. Overall, 

the model demonstrates strong convergence and generalization 

across the dataset. 

 
Figure 7: CNN model Accuracy and Loss Representation 

The classification report shown in Figure 8 explains that the RNN 

model attained a high overall accuracy of 94% on the test dataset. 

Precision, recall, and F1-scores are consistently strong across all 

activity classes, with the best performance seen in detecting the 

LAYING and WALKING activities. The slightly lower F1-score 

for SITTING and STANDING suggests some overlap or 

confusion between these postures. Overall, the model generalizes 

well and performs robust activity recognition across all six 

classes. 

 
Figure 8: Classification report for RNN 

 

The confusion matrix in Figure 9 shows that most activities were 

correctly classified by the RNN model, with strong diagonal 

values indicating accurate predictions. Misclassifications are 

mostly seen between SITTING and STANDING, as well as 

between WALKING_DOWNSTAIRS and 

WALKING_UPSTAIRS, which are likely due to their similar 

motion patterns. For example, 54 instances of SITTING were 

misclassified as STANDING. Despite these confusions, the 

overall classification performance remains high with minimal 

off-diagonal errors. 

 
Figure 9: Confusion Matrix for RNN model performance 

Figure 10 shows that the training accuracy steadily increases and 

reaches nearly 99%, while validation accuracy fluctuates around 

93-94%, suggesting potential overfitting. The two accuracies rise 

at first as the model learns from the data, but between epochs 4 

and 5, the train accuracy keeps increasing progressively while the 

validation accuracy reaches a plateau and then starts to slightly 

decrease. This suggests that the model is beginning to overfit by 

remembering the training data instead of extending effectively to 

unseen data. 

Similar patterns are seen: the validation loss first drops but then 

varies and stays reasonably high, further supporting overfitting, 

whereas the train loss drops significantly and stabilizes at a low 

value. The model's performance on fresh, unknown data may 

suffer as a result of this discrepancy between train and validation 

parameters, which indicates that the model has grown 

excessively focused in fitting the training set. Techniques like 

regularization, early halting (around epoch 4–5), or diversifying 

the training data might be used to lessen this. 

 
Figure 10: RNN model Accuracy and Loss Representation 

Table 1 shows the model performance summary that compares 

the accuracy and loss of CNN and RNN. The CNN outperforms 

the RNN with a higher accuracy of 98.03% and a significantly 

lower loss of 4.31%. In contrast, the RNN shows a lower 

accuracy of 93.89% and a much higher loss of 19.74%, indicating 

it is less effective on this task. These results suggest that the CNN 

model generalizes better and makes more reliable predictions 

compared to the RNN. 

Table 1. Problems with PDS 

Model Accuracy (%) Loss (%) 

CNN 98.03 4.31 

RNN 93.89 19.74 

 

5. CONCLUSION AND FUTURE SCOPE 
In this study, we have proposed a simplified yet effective 

framework for person Re-ID through gait analysis, leveraging the 

unique and consistent nature of human walking patterns. By 

integrating CNN for spatial feature extraction and RNN for 

capturing temporal dynamics, the system successfully identifies 

individuals across varied scenes and camera views. Unlike 
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traditional biometric methods that rely heavily on facial features 

or appearance-based cues, our approach demonstrates strong 

robustness under changes in clothing, lighting, and viewpoints. 

The inclusion of an automated detection and tracking module 

further enhances the practicality of the system for real-world 

applications. Experimental evaluations on publicly available gait 

datasets confirm the model's high accuracy and resilience, 

underscoring its potential for deployment in surveillance, access 

control, and forensic scenarios. Overall, this research contributes 

to the advancement of non-intrusive and reliable person Re-ID 

technologies and highlights gait analysis as a viable and scalable 

biometric approach for long-distance and unconstrained 

environments. 

Future work in the field of person Re-ID should focus on 

developing more robust and comprehensive frameworks capable 

of handling the multitude of challenges posed by real-world 

surveillance environments. One promising direction is the 

integration of multi-modal data, such as combining gait, facial 

features, and clothing appearance, to improve recognition 

performance across varied viewpoints, lighting conditions, and 

occlusions. Additionally, leveraging DL models with domain 

adaptation techniques can significantly enhance the 

generalizability of Re-ID systems to unseen environments. Real-

time implementation remains a key challenge; thus, future 

systems must aim to balance accuracy with computational 

efficiency, making use of lightweight models and hardware 

acceleration. Moreover, addressing the issue of clothing changes 

over time and introducing methods for long-term person Re-ID 

will be crucial. Finally, more extensive and diverse benchmark 

datasets, including those simulating real-world complexities like 

dense crowds and dynamic lighting, should be developed to 

evaluate and compare system performance more effectively. 
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