
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

49

Performance Analysis of Raspberry Pi 4B (8GB) Beowulf

Cluster: HPCG Benchmarking

Dimitrios Papakyriakou
PhD Candidate

Department of Electronic Engineering
Hellenic Mediterranean University

Crete, Greece

Ioannis S. Barbounakis
Assistant Professor

Department of Electronic
Engineering

Hellenic Mediterranean University
Crete, Greece

ABSTRACT

The High-Performance Conjugate Gradient (HPCG)

benchmark has emerged as a complementary metric to the High

Performance LINPACK (HPL) [1], aiming to evaluate real-

world high-performance computing (HPC) workloads that

emphasize memory access patterns, cache behavior, and sparse

matrix operations. Unlike HPL, which reflects peak floating-

point capability, HPCG simulates practical scientific

computations involving iterative solvers and irregular memory

access, offering a more realistic performance indicator.

This study investigates the implementation and analysis of the

HPCG benchmark on a 24-node Beowulf cluster built with

Raspberry Pi 4B devices, each equipped with 8GB LPDDR4

RAM and ARM Cortex-A72 processors. Both strong scaling

(fixed problem size with increasing nodes) and weak scaling

(proportional increase in problem size and nodes)

methodologies were applied to assess system performance

across various configurations. Metrics such as median

execution time, floating-point throughput (GFLOP/s), and

memory bandwidth (GB/s) were collected and analyzed.

The results reveal that HPCG performance on this ARM-based

cluster is primarily constrained by memory bandwidth

saturation, lack of hardware-level floating-point acceleration,

and network communication bottlenecks. Strong scaling

experiments show minimal performance gains beyond 4–8

nodes, while weak scaling maintains computational stability up

to moderate cluster sizes. Notably, the absence of measurable

MPI communication overhead (ExchangeHalo time)

underscores the limited halo data exchange under small

subdomain decomposition and short runtimes.

This study highlights the limitations and potential of energy-

efficient, low-cost single-board clusters for realistic HPC

workloads. The findings provide a methodological basis for

benchmarking sparse solvers on ARM systems and inform

future efforts in optimizing parallelism, memory access, and

interconnect efficiency in edge computing, education, and

embedded HPC environments.

Keywords

Raspberry Pi 4 Beowulf cluster, Cluster, Message Passing

Interface (MPI), MPICH, Memory Performance, Low-cost

Clusters, Parallel Computing, ARM Architecture, HPCG

Benchmark.

1. INTRODUCTION

The High-Performance Conjugate Gradient (HPCG)

Benchmark has been developed as a complementary metric to

the High-Performance LINPACK (HPL) Benchmark,

addressing the limitations of peak floating-point performance

assessments in modern high-performance computing (HPC)

systems [1]. While HPL remains the standard for ranking

supercomputers in the TOP500 list, it primarily measures dense

matrix computation performance, which does not accurately

reflect the efficiency of many real-world applications. In

contrast, HPCG is designed to evaluate computational

performance under memory-bound conditions, incorporating

sparse matrix operations, iterative solvers, memory hierarchy

efficiency, and interconnect performance.

HPCG is particularly relevant for HPC systems engaged in

scientific computing, computational fluid dynamics, finite

element analysis, and machine learning, where workloads are

dominated by sparse linear algebra computations. These

workloads exhibit irregular memory access patterns, high

communication overhead, and limited floating-point operations

density, making them highly dependent on memory bandwidth,

cache utilization, and efficient inter-node communication. As

modern supercomputers increasingly rely on heterogeneous

architectures, including low-power processors and distributed

computing paradigms, understanding the behavior of sparse

matrix solvers within a given hardware environment is crucial

for optimizing performance.

The evaluation of high-performance computing (HPC) systems

requires multiple benchmarking approaches to assess different

aspects of computational efficiency. The High-Performance

Conjugate Gradient (HPCG) Benchmark, the High-

Performance LINPACK (HPL) Benchmark [1] and the

STREAM Benchmark [2], each focus on distinct performance

metrics, making them complementary tools for understanding

the capabilities and limitations of modern HPC architectures.

The HPCG Benchmark is designed to measure the performance

of sparse linear algebra operations, which are representative of

real-world scientific and engineering applications. It focuses on

memory access efficiency, cache utilization, and inter-process

communication overhead, making it particularly relevant for

HPC workloads that involve irregular memory access patterns

and distributed sparse matrix computations. Unlike traditional

dense matrix benchmarks, HPCG reflects the challenges faced

in applications such as computational fluid dynamics, structural

analysis, and machine learning.

In contrast, the STREAM Benchmark [2] is primarily used to

evaluate memory bandwidth performance. It measures the

sustained memory transfer rates of fundamental operations

such as Copy, Scale, Add, and Triad, which are critical in

memory-intensive applications. Since modern HPC systems

are often limited by memory bandwidth rather than raw

computational power, STREAM provides insights into how

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

50

efficiently a system can move data between main memory and

processing units. This benchmark is particularly useful for

understanding bandwidth bottlenecks and cache efficiency in

both single-node and multi-node systems.

The HPL Benchmark (LINPACK), which has historically been

the standard for ranking supercomputers in the TOP500 list, is

optimized for solving dense linear algebra problems. It

evaluates peak floating-point performance (FLOP/s) by solving

large systems of linear equations using LU decomposition.

HPL emphasizes compute-bound performance, making it an

effective measure of a system's raw processing power.

However, it does not reflect the performance of real-world

workloads that involve sparse matrices, communication

overhead, or memory bandwidth limitations.

A comparative analysis of these benchmarks provides a more

comprehensive understanding of an HPC system’s strengths

and weaknesses. While HPL excels in measuring theoretical

peak performance, HPCG provides a more accurate

representation of practical workloads, and STREAM highlights

memory bandwidth efficiency, which often becomes the

limiting factor in large-scale computations. The combined use

of these benchmarks is essential for optimizing system

performance, identifying bottlenecks, and designing more

efficient computing architectures “Table 1”.

This study focuses on deploying and analyzing the HPCG

benchmark on a Beowulf cluster composed of 24 Raspberry Pi

4B nodes (8GB RAM each), interconnected via Ethernet, to

explore the performance constraints and scalability of ARM-

based distributed systems. The evaluation investigates MPI-

based parallelization, memory bottlenecks, floating-point

throughput, and communication overhead, offering insights

into the feasibility of utilizing energy-efficient ARM clusters

for scientific and engineering applications. By benchmarking

the cluster under varying computational workloads and process

configurations, this research aims to provide a deeper

understanding of the real-world computational efficiency of

low-power, cost-effective HPC solutions.

The Raspberry Pi (RPi) 4 Model B (8GB RAM), depicted in

"Figure 1", serves as the foundation of the Beowulf cluster.

Equipped with a 64-bit quad-core ARMv8 Cortex-A72 CPU

clocked at 1.5 GHz, it delivers three times the processing power

of its predecessor, the RPi 3B+ [3], [4], [5]. The cost-

effectiveness of the Raspberry Pi played a crucial role in

selecting it as a viable solution for constructing a high-

performance computing (HPC) cluster, enabling an in-depth

evaluation of its efficiency in parallel computing and clustering

environments

Figure 1: Single Board Computer (SBC) - Raspberry Pi 4

Model B [4], [5].

2. SYSTEM DESCRIPTION

2.1 Hardware Equipment
The Beowulf cluster comprises 24 Raspberry Pi 4B (8GB)

devices, as illustrated in "Figure 2". A single Raspberry Pi 4B

serves as the master (head) node, responsible for job scheduling

and resource management, while the remaining 23 Raspberry

Pi’s function as worker nodes, executing computational tasks

under the master’s coordination.

The nodes are structured into four stacks, each containing six

Raspberry Pi’s, and are interconnected via Gigabit Ethernet

switches (TL-SG1024D), providing a maximum network

bandwidth of 1000 Mbps per node. This network topology

enables seamless communication between nodes, effectively

simulating a high-performance computing (HPC) environment

similar to that of a supercomputer "Figure 2".

The cluster is powered by two switch-mode power supplies,

each rated at 60 amps with a 5V output, which is boosted to

5.80V to compensate for potential voltage drops along the

wiring. Additionally, the master node is equipped with a

Samsung 980 (1TB) PCI-E 3 NVMe M.2 SSD, while each

worker node is fitted with a 256GB Patriot P300P256GM28

NVMe M.2 2280 SSD, ensuring high-speed storage access and

data handling across the system.

Figure 2: Deployment of the Beowulf Cluster with (24)

RPi-4B (8GB).

2.2 Software Tools
The Operating System used to setup the RPi’s in the cluster is

the latest "Debian GNU/Linux 12 (bookworm)" which is the

latest official supported Operating System (OS - 64 bits) with

Kernel version 6.6.62+rpt-rpi-v8 and the CPU architecture and

capabilities of the system.

The second essential software component for the cluster setup

was the Message Passing Interface (MPI), with MPICH chosen

as the specific implementation. MPICH is a highly efficient and

widely adaptable MPI framework, which serves as a

fundamental standard for message-passing in parallel

computing. It is important to clarify that MPI itself is not a

library, but rather a standardized framework defined by the

MPI Forum for the development of message-passing libraries.

Several MPI implementations are available for use on

Raspberry Pi, including OpenMPI and MPICH. For this

project, MPICH was selected due to its conformance to the MPI

standard and its broad compatibility with applications written

in C, C++, and FORTRAN. Originally standing for Message

Passing Interface Chameleon, MPICH is designed to support

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

51

high-performance distributed computing, making it well-suited

for the Beowulf cluster environment.

The third essential software package installed was the GNU

Compiler Collection (GCC) Fortran compiler, which is widely

used in high-performance computing (HPC) due to its

optimization capabilities and multi-threading support. As the

default compiler in many HPC environments, GCC plays a

critical role in compiling and optimizing parallel computing

applications.

The fourth key software component was OpenBLAS, a highly

optimized implementation of Basic Linear Algebra

Subprograms (BLAS). OpenBLAS provides efficient and

accelerated linear algebra operations, which are fundamental to

numerous scientific and engineering computations.

Finally, the HPCG benchmark software was required to be

downloaded, compiled, and configured appropriately to

evaluate the computational and memory performance of the

Beowulf cluster.

2.3 Design

The architecture of the Raspberry Pi (RPi) cluster is illustrated

in “Figure 3”, comprising 24 Raspberry Pi 4B nodes, each

equipped with 8GB of RAM [4], [5]. These nodes are

interconnected via a 24-port Gigabit Ethernet switch (1000

Mbps) to facilitate high-speed data exchange. Within this

configuration, one Raspberry Pi functions as the master (head)

node, responsible for task scheduling and resource

management, while the remaining 23 nodes operate as worker

nodes, executing computational workloads. To ensure efficient

network communication, static IP addressing is implemented,

assigning each node a unique and fixed IP address.

Communication between the master and worker nodes is

conducted securely through SSH (Secure Shell) connections.

The master node is equipped with a Samsung 980 PCIe 3.0

NVMe M.2 SSD (1TB), capable of theoretical maximum write

speeds of 3000 MB/s and read speeds of 3500 MB/s. To

enhance storage performance across the cluster, each worker

node is outfitted with a Patriot P300P256GM28 NVMe M.2

SSD (256GB), offering maximum write speeds of 1100 MB/s

and read speeds of 1700 MB/s. Since the Raspberry Pi 4B

supports external booting, these SSDs are connected via USB

3.0 ports, which provide a theoretical data transfer rate of 4.8

Gbps (600 MB/s)—a significant improvement over USB 2.0,

which is limited to 480 Mbps (60 MB/s). This storage

configuration enhances the I/O performance of the cluster,

enabling faster data access and improved computational

efficiency.

By utilizing the high-speed read and write capabilities of the

NVMe SSDs, this phase of testing aimed to achieve significant

performance improvements compared to the previous

microSD-based configuration. Although the USB 3.0 interface

introduces some bandwidth limitations, the superior speed and

efficiency of the NVMe SSDs greatly surpass these constraints,

resulting in a notable enhancement in overall cluster

performance.

Figure 3: RPi-4B Beowulf cluster architecture diagram

[1], [2].

3. HPCG

The High-Performance Conjugate Gradient (HPCG)

Benchmark is a widely recognized tool for assessing the real-

world performance of high-performance computing (HPC)

systems [6]. Unlike the High-Performance LINPACK (HPL)

Benchmark, which measures peak floating-point performance,

HPCG focuses on memory bandwidth, cache utilization, and

inter-node communication efficiency by solving a sparse

system of linear equations using the Conjugate Gradient (CG)

method. This makes it particularly relevant for scientific and

engineering applications that involve iterative solvers, irregular

memory access patterns, and distributed computing workloads.

HPCG evaluates system performance by solving a sparse linear

system using the Conjugate Gradient (CG) method with a

multi-grid preconditioner [7], [8]. This approach highlights:

- Memory Bandwidth (GB/s): Performance depends on

efficient memory access.

- Cache Utilization (L1/L2 misses): Frequent cache misses

slow computation.

- Interconnect Performance (MPI overhead and

communication efficiency): For multi-node systems,

communication is a key bottleneck.

- Floating-Point Performance (GFLOP/s): Though not as

dominant as in LINPACK.

Raspberry Pi-based Beowulf cluster has significant memory

bandwidth constraints (as seen in STREAM results) [2]. Since

HPCG is highly memory and communication bound, it will

provide deeper insights into:

- Memory bandwidth limitations and cache efficiency.

- MPI communication overhead between nodes.

- How well the cluster scales for real-world workloads.

Unlike STREAM, which focuses purely on memory

bandwidth, HPCG integrates memory, computation, and

communication aspects, making it a more comprehensive

performance metric.

The HPCG benchmark consists of:

- Sparse Matrix-Vector Multiplication (SpMV):

Dominates computational cost and memory bandwidth

usage. Uses a structured grid problem to simulate scientific

computing loads.

- Symmetric Gauss-Seidel Preconditioning:

Helps accelerate convergence of the Conjugate Gradient

method.

Requires non-trivial memory accesses.

- Global Dot Products (MPI Reduction Operations)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

52

Synchronization-heavy operations that expose network

latency in multi-node systems.

- Multi-Grid Preconditioner:

A coarse-grid correction mechanism to improve solver

efficiency.
To evaluate the performance of the Beowulf cluster, it is first

necessary to analyze the behavior of HPCG on a single

Raspberry Pi 4B (8GB RAM). This initial testing phase

provides a baseline measurement of computational efficiency,

memory throughput, and HPCG performance, which will later

be compared to multi-node cluster performance.

3.1 HPCG Methodology.
First of all, it was observed that the Grid Sizes feasible to run

in a Raspberry Pi are the following:

- 16 × 16 × 16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 success

- 32 × 32 × 32 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 success

- 64 × 64 × 64 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 success

- 96 × 96 × 96 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 success

- 128 × 128 × 128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 success

- 136 × 136 × 136 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 failed

- 144 × 144 × 144 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 failed

The primary reason why the RPi failed to operate with more

complex Grid Size is that, HPCG operates on a sparse matrix

representation but still requires a large amount of memory, for

Matrix storage, Vectors, Multi-grid hierarchy and temporary

buffers for Sparse Matrix-Vector Multiplication (SpMV).

The 128 × 128 × 128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 problem already consumed

6.95GB out of 7.64 GB available RAM. Apparently, the larger

Grid Sizes exceeded the 8GB physical RAM memory of RPi

4B and caused Out of memory (OOM) errors. In that case we

have the option to force the system to use Swap Memory but

this drastically slows down the computation. The

recommendation in this study is to use only the physical RAM

Memory (nominal 8GB, available 7.64GB), to disable the

Swap Memory (by using the command $ sudo swapoff -a) not

allowing the system to use disk space as extra RAM, for

scientific accuracy reasons and preventing slow I/O operation.

During the execution of the tests, the command (watch -n 1 free

-h) in a Command Line Interface (CLI) verifies that no Swap

Memory is used. Taking into account that the Raspberry Pi 4B

uses LPDDR4-3200 RAM, but the memory bandwidth is only

(~4GB/s), the Grid Size of 1283 already stresses the RAM

Memory.

The HPCG methodology for one RPi is based on observing the

RPi performance by increasing the Grid size from 16 × 16 ×
16 to 128 × 128 × 128. The following Key Performance

Indicators (KPIs) are considered:

- Grid Size: It’s the problem size used in the HPCG test,

defined by the number of grid points in each dimension and

determines computational complexity, memory usage, and

scalability. Larger grids test system performance under

heavier workloads.

- Total Benchmarking Median Execution Time (sec): It’s the

median total time required to complete the HPCG

benchmark and it is a direct measure of computational

efficiency. A lower execution time indicates better

performance.

- CG Solver Efficiency (Iteration Count): It is the number of

iterations required by the Conjugate Gradient (CG) solver

to converge. Fewer iterations indicate better solver

efficiency, meaning the system is solving the problem more

effectively.

- Memory Usage – Median Total Memory Used (Mbytes): It

is the median amount of memory allocated and used for

data storage during execution. It helps assess if the system

is memory-bound. Higher memory usage may lead to

performance degradation due to cache/memory bottlenecks

- Memory Usage-Median Bytes per Equation: The amount

of memory used per equation solved by the system.

Indicates computational efficiency concerning memory.

Large values suggest high memory overhead.

- Median SpMV Time (sec) (Sparse Matrix-Vector

Multiplication): The median execution time for the SpMV

operation constitutes a fundamental kernel in HPCG.

SpMV is memory-bound, meaning its efficiency depends

on memory bandwidth and cache performance.

- Median MG Time (sec) (Multi-Grid Preconditioner): It is

the median execution time for the Multi-Grid (MG)

preconditioner, which accelerates the CG solver. MG

performance is also memory-bound, but it can also indicate

how well cache and memory hierarchies are utilized

- Median Optimization Phase Time (sec): It is the time spent

in the system's performance tuning phase during the HPCG

benchmark. Shorter optimization phase times indicate a

well-optimized setup, while longer times suggest

inefficiencies in computational tuning.

- Median Departure from Symmetry for SpMV (numerical

Stability): Measures how much the SpMV operation

deviates from expected symmetry, which impacts

numerical accuracy. A higher departure indicates floating-

point instability, which can lead to inaccurate results in

large-scale computations

- Median Departure from Symmetry for MG (Numerical

Stability: Measures symmetry deviation for the MG

preconditioner. Similar to SpMV, a large departure

suggests numerical instability, which can affect solver

accuracy. Comparing execution times across different grid

sizes and node counts helps identify bottlenecks and assists

to Scalability Analysis.

As an overall importance of the above metrics, the execution

time, SpMV time, and MG time indicate computational

efficiency and performance evaluation.

In terms of the whole Raspberry Pi Cluster methodology in this

study the HPCG Benchmarking for Strong and Weak Scaling

is used to evaluate the scalability and performance.

- Strong Scaling Experiment:

The strong scaling tests were executed by maintaining a

fixed grid size of 128 × 128 × 128 (the maximum supported

by the RPi) while varying the number of Raspberry Pi

nodes in the cluster.

Gradually increasing the number of nodes (1, 2, 4, 8, 12,

16, 24) -where a fixed grid size of 128 × 128 ×
128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 is used - the execution time, GFLOP/s,

memory bandwidth, and MPI communication overhead are

extracted for comparison.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

53

This setup allows us to measure how well the cluster

parallelizes the fixed computational workload. If execution

time decreases proportionally to added nodes, the system

scales efficiently. However, deviations from ideal scaling

may indicate communication overhead or memory

bandwidth limitations.

- Weak Scaling Experiment:

The weak scaling tests assess how the cluster handles

increasing workloads while keeping the per-node workload

constant. The test starts with one node solving a small

16 × 16 × 16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒. As the number of nodes

increases, the problem size increases proportionally such

as:

1 node with 16 × 16 × 16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒

2 nodes with 32 × 32 × 32 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒

4 nodes with 64 × 64 × 64 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒

8 nodes with 96 × 96 × 96 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒

12 nodes with 128 × 128 × 128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒

The above Standard Weak scaling approach ensures that

each node gets exactly the same computational load in

every step. The grid size doubles every time nodes double,

maintaining constant work per node and the MPI

communication overhead is easier to analyze when

workloads remain balanced.

In weak scaling, each node should process the same amount

of data as more nodes are added. Key performance metrics

include execution time per node, efficiency, and floating-

point performance (GFLOP/s). Weak scaling is ideal for

measuring network efficiency; if performance remains

stable as more nodes are added, the cluster scales well.

However, significant drops in efficiency may indicate

network bottlenecks or memory bandwidth limitations.

For One RPi the Scaling experiment is based on increasing

Grid Size from 16 × 16 × 16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 to 128 ×
128 × 128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 “Figure 4”, “Figure 5”, “Table 2”.

Figure 4: HPCG Benchmark in one RPi with Grid Size

𝟏𝟐𝟖𝟑 with no swap memory used

Figure 5: HPCG Benchmark results in one RPi with Grid

Size 𝟏𝟐𝟖𝟑

3.2 HPCG Performance in one RPi.
Before scaling the HPCG benchmark to the full Beowulf

cluster, it is essential to first evaluate its performance on a

single Raspberry Pi 4B (8GB RAM). This initial testing phase

serves multiple purposes:

- Establishing a Baseline Performance Measurement

Running HPCG on a single node provides a reference point

for key performance metrics such as memory bandwidth,

floating-point throughput, and solver efficiency. This

baseline enables a direct comparison with the multi-node

cluster results, helping to quantify the benefits and

overhead of parallel execution.

- Understanding Computational Bottlenecks

Testing on a single Raspberry Pi identifies the primary

performance constraints related to CPU, memory, and

storage before introducing inter-node communication

overhead. If a single node is heavily memory-bound or

suffers from inefficient computation, similar issues will

likely scale across the cluster.

- Verifying Software Configuration and Optimization

Ensuring that HPCG is correctly compiled and configured

for the Raspberry Pi’s ARMv8 Cortex-A72 architecture is

crucial before deploying it across multiple nodes.

Optimizing compiler flags, MPI settings, and BLAS library

integration at the single-node level can improve efficiency

when scaling to a cluster.

- Assessing MPI and Parallel Execution Within a Single

Node

Since the Raspberry Pi 4B features a quad-core processor,

running HPCG with multiple MPI processes within a single

node allows for an initial evaluation of parallel

performance. This helps determine whether the system

benefits from multi-threading or suffers from cache

contention and memory bandwidth limitations.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

54

- Minimizing Debugging Complexity Before Scaling

Testing on a single node allows for easier troubleshooting

of potential issues with HPCG execution, memory usage,

or solver convergence. Identifying and resolving problems

at this stage reduces debugging complexity when extending

the benchmark to a multi-node Beowulf cluster.

By first analyzing HPCG performance on a single Raspberry

Pi, a more informed and optimized scaling strategy can be

developed for the full cluster deployment. This approach

ensures that computational, memory, and communication

bottlenecks are properly addressed, maximizing the efficiency

of parallel execution across multiple nodes.

HPCG evaluates system performance by solving a sparse linear

system using the Conjugate Gradient (CG) method with a

multi-grid preconditioner. This approach highlights:

- Memory Bandwidth: performance depends on efficient

memory access

- Cache Utilization: frequent cache misses slow computation

- Interconnect Performance: for multi-node systems,

communication is a key bottleneck

- Floating-Point Performance: though not as dominant as in

LINPACK.

The Observations and analysis of the results are the following

based on “Table 2”, “Figure 6”, “Figure 7”.

In terms of execution time and scalability, it is observed that as

the grid size increases, the total execution time rises

significantly. Larger grids increase memory requirements,

leading to higher cache miss rates. Sparse matrix computations

in HPCG are memory-bound, meaning performance is limited

by memory bandwidth rather than raw CPU power. The results

at 96 × 96 × 96 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 and 128 × 128 ×
128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 suggest that memory bandwidth is a key

bottleneck.

The number of Conjugate Gradient (CG) solver iterations drops

drastically as the grid size increases from 16 × 16 ×
16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 with 3600 iterations to 64 × 64 ×
64 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 with 50 iterations. This is happening because

smaller grids require more iterations to converge. Larger grids

better approximate real-world systems, reducing the number of

iterations needed. This does not mean that larger grids are more

efficient since execution time still increases due to memory and

computation overhead.

Regarding the memory usage, it is observed that total memory

usage grows exponentially from 16 × 16 × 16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒
with 2.99 MB to 128 × 128 × 128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 1.54 GB. Bytes

per Equation (~714 B) remains consistent, showing that each

system of equations requires a stable memory footprint. The

Key Limitation is that the Raspberry Pi 4B (8GB) is unable to

handle problem sizes beyond 128×128×128 due to memory

constraints.

With respect to Sparse Matrix-Vector Multiplication (SpMV)

Performance, it is observed that Median SpMV Execution

Time increases with grid size from 16 × 16 × 16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒
with (6.63 sec) to 128 × 128 × 128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 with (49.04

sec). This happens since SpMV is memory bandwidth limited,

meaning larger problem sizes cause more cache misses. The

64 × 64 × 64 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 achieves the lowest SpMV time,

suggesting a balance between memory access efficiency and

computation. Beyond 64 × 64 × 64 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 it is

observed that the performance drops significantly, confirming

that cache and memory bandwidth bottlenecks dominate.

Related to Multi-Grid (MG) Performance, MG operations are

more computationally intensive than SpMV. They require more

memory access, iterative refinements, and hierarchical

computations, leading to significantly higher execution times.

MG is the most time-consuming part of HPCG, confirming that

hierarchical multi-grid solvers are heavy on memory access and

cache utilization. The non-linear increase in MG time suggests

that cache size limitations are a primary issue.

In terms of Numerical Stability (Departure from Symmetry)

and in particular SpMV Stability and MG Stability, suggest that

smaller grids exhibit larger numerical deviations due to coarse

approximations. Larger grids yield better numerical stability

and in general no instability issues observed, confirming the

correctness of calculations.

As a general conclusion the outcome is that the Raspberry Pi

4B's LPDDR4-3200 memory bandwidth is a major bottleneck.

Strong scaling on a single RPi is ineffective beyond

96 × 96 × 96 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒, as computation time scales non-

linearly due to cache inefficiencies. The ideal problem size for

an RPi 4B is around 64 × 64 × 64 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 to

96 × 96 × 96 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒, beyond which performance

degrades due to memory constraints.

Table 1. Comparison of HPCG, HPL [1], and STREAM Benchmarking [2]

Features HPCG Benchmark HPL Benchmark (LINPACK) STREAM Benchmark

Primary Focus
Memory, compute, and

communication
Floating-point peak

performance
Memory bandwidth

Computation
Sparse matrix operations

(SpMV, Gauss-Seidel)

Dense linear algebra (LU
decomposition, BLAS

operations)

None (pure memory
operations)

Memory Access Pattern Irregular, indirect addressing Regular, cache-friendly Simple, sequential

Parallelism
MPI-based, distributed

memory parallelism
MPI-based, highly parallel Thread-based (OpenMP, MPI)

Communication Overhead
High MPI overhead in multi-

node runs
High but scalable with

efficient networks
None (unless using MPI)

Performance Bottlenecks
Cache inefficiency, DRAM

bandwidth, network latency

Floating-point operations,
memory bandwidth, network

speed
DRAM bandwidth

Optimization Targets
Cache blocking, SpMV

optimization, MPI tuning
BLAS optimizations, matrix

decomposition tuning
Memory access efficiency,

vectorization

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

55

Figure 6: HPCG Benchmark: Memory Usage Scaling in (1) RPi - (2 MPI processes)

Scalability in HPC Clusters
Sub-linear due to

communication overhead
Near-linear with efficient

interconnect
Linear with memory

bandwidth

Real-World Relevance
Scientific computing, iterative

solvers
AI, simulations, deep

learning, physics simulations
Memory-intensive

applications

Table 2. HPCG Benchmark results in one RPi

HPCG Benchmark to (1) RPi - - (2 MPI processes)

Grid Size Total
Benchmark

Median
Execution
Time (sec)

CG
Solver

Efficiency
Iteration

Count

Memory
Usage
Median

Total
Memory

Used
(Mbytes)

Memory
Usage
Median
Bytes
per

Equation

Median
SpMV
Time
(sec)

Median
MG

Time
(sec)

Median
Optimization

 Phase Time
(sec)

Median
Departure

from
Symmetry
for SpMV
(Numerical

Stability)

Median of
Departure

from
Symmetry

for MG
(Numerical

Stability)

16x16x16 50.2798 4125 3.000 715.210 6.9600 42.1096 0.000000 6.30E-05 3.72E-06

32x32x32 53.2096 475 23.980 714.740 6.9976 44.9090 0.000001 7.10E-06 3.23E-07

64x64x64 92.761 100 191.850 714.700 11.661 79.3468 0.000000 6.27E-07 7.41E-08

96x96x96 155.265 50 647.490 714.690 19.355 131.373 0.000001 3.57E-07 1.44E-07

128x128x128 383.38 50 1534.780 714.690 47.004 329.139 0.000019 1.79E-07 1.30E-07

3.000 23.980

191.850

647.490

1534.780

0.000

200.000

400.000

600.000

800.000

1000.000

1200.000

1400.000

1600.000

1800.000

16x16x16 32x32x32 64x64x64 96x96x96 128x128x128

M
e

m
o

ry
 U

sa
ge

 (
M

B
)

Grid Size (N x N x N)

HPCG Benchmark - Memory Usage Scaling

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

56

Figure 7: HPCG Benchmark: Execution Time Scaling in (1) RPi - (2 MPI processes)

3.3 HPCG Performance in the whole

Beowulf Cluster
The HPCG benchmark was executed across the full Beowulf

cluster using 2 MPI processes per Raspberry Pi (RPi), a

configuration that balances computational load while reducing

memory contention and MPI overhead. The analysis includes

two classic scalability tests: strong scaling and weak scaling,

each exploring distinct performance characteristics as the

cluster increases in size. The choice to apply strong scaling and

weak scaling methodologies in the context of the HPCG (High

Performance Conjugate Gradient) benchmark is not only

methodologically sound but also aligned with established

practices in high-performance computing (HPC) benchmarking

and performance analysis literature. These two scalability

paradigms serve complementary purposes and offer distinct

insights into system performance under varying computational

and architectural stresses.

This dual-scaling strategy enables a holistic evaluation of the

cluster’s computational behaviour and communication

efficiency. Strong scaling focuses on how performance

improves when a fixed-size problem is distributed across an

increasing number of nodes. This test is particularly useful for

revealing MPI communication bottlenecks and overheads,

especially in memory-bound benchmarks like HPCG. It allows

us to quantify the efficiency of parallelism when problem size

remains constant and serves as a key metric for evaluating

latency sensitivity and scalability limits of the interconnect

fabric.

Conversely, weak scaling examines the system’s ability to

handle proportionally larger problem sizes as more nodes are

added. By keeping the workload per node approximately

constant, weak scaling highlights how well the system

maintains performance under increasing memory and

computation demands. It is ideal for assessing balanced

resource utilization, cache coherence, and the impact of

network traffic as the total grid size scales up.

Together, these methodologies provide complementary

perspectives: strong scaling reveals performance degradation

due to communication, while weak scaling emphasizes

sustained efficiency under workload expansion. Their inclusion

in this analysis ensures methodological robustness, reflects

real-world HPC application scenarios, and allows direct

comparability with industry-standard benchmarks.

3.3.1 HPCG Performance: Strong scaling
Strong scaling evaluates the efficiency of solving a fixed-size

problem as the number of processing units increases. This

methodology is especially relevant for workloads that:

- Require tight coupling between processes (e.g., PDE

solvers, sparse matrix kernels like in HPCG).

- Are bound by a global problem size due to physical

simulation constraints (e.g., Computational Fluid

Dynamics, weather modelling).

- Need to be accelerated without increasing memory usage.

The strong scaling model stresses the parallelization overhead,

particularly in sparse iterative solvers like HPCG, where

communication patterns (ExchangeHalo) play a crucial role. It

helps expose:

- The limits of parallelism efficiency due to interconnect

latency.

- The effectiveness of MPI communication in a realistic

setting.

50.2798
53.2096

92.761

155.265

383.38

6.96000 6.99763 11.66160
19.35590

47.00430

42.10960 44.90905

79.34680

131.37300

329.13950

0

50

100

150

200

250

300

350

400

450

16x16x16 32x32x32 64x64x64 96x96x96 128x128x128

Ti
m

e
 (

se
c)

Grid Size (N x N x N)

HPCG Benchmark - Execution Time Scaling

Total Benchmarking
Median Execution Time (sec)

Median SpMV Time (sec) Median MG Time (sec)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

57

- Diminishing performance gain, which is crucial for

understanding architectural bottlenecks in low-power

clusters.

In this study, testing HPCG on a fixed 128³ grid across multiple

RPi’s reveals how communication and memory bandwidth

influence performance. This is a valid scientific approach

aligned with established HPC benchmarking literature [9].

Strong scaling refers to measuring how efficiently a fixed-size

computational problem can be solved when the number of

compute nodes increases. In this case, the problem size was

fixed to 128×128×128, which represents the largest feasible

grid that fits comfortably within the 8GB RAM limit of a single

Raspberry Pi 4B, avoiding swap memory usage.

The benchmark was run across multiple node configurations (1,

2, 4, 8, 12, 16, and 24 RPi’s), and the following metrics were

collected:

- Median Execution Time (sec): The total time required to

complete the HPCG benchmark, represented by the median

value across runs to ensure robustness against outliers.

- Floating-Point Performance (GFLOP/s): The raw

computational throughput of the system, measuring how

many billions of floating-point operations are performed

per second.

- Memory Bandwidth: The rate at which data can be

transferred between the main memory (RAM) and the

CPU. In HPCG, performance is heavily memory-bound,

especially during sparse matrix operations, making this a

critical performance metric

- MPI Communication Overhead (ExchangeHalo Time):

The amount of time spent exchanging boundary data (halo

regions) between MPI processes across different nodes.

This metric reflects the efficiency and latency of the

interconnect network in multi-node setups.

Ideally, in strong scaling, execution time should decrease

proportionally with more compute nodes. However, the results

show sub-linear improvement due to several hardware

constraints: limited LPDDR4-3200 bandwidth, shared cache

contention, and bottlenecks in Gigabit Ethernet

communication. As more nodes are added, MPI

communication grows disproportionately, diminishing

performance gains beyond 8–12 nodes. This behaviour

highlights typical limitations of ARM-based SBC clusters

where interconnect latency, process scheduling inefficiencies,

and network saturation can counteract parallelism gains.

- Execution Time Trends: The Median Execution Time

starts at 308.98 seconds for a single node and fluctuates

slightly with more nodes. At 2 nodes, the time increases

to 326.07s, which is counterintuitive but expected due to

MPI overhead and initial parallelization costs. With 4–24

nodes, execution time stabilizes around 306–310s,

indicating that the performance gain from adding nodes is

offset by communication and synchronization costs. There

is no significant speedup as we increase the number of

nodes, which is typical in memory-bound applications like

HPCG where computation is not the dominant factor. The

graph Execution Time vs Number of RPi Nodes illustrates

the ineffectiveness of strong scaling on memory-bound

workloads in low-power clusters “Figure 9”, “Table 4”. In

an ideal strong scaling scenario, execution time should

decrease as more nodes are added, since the workload per

node is reduced. The actual trend exhibits no significant

speedup, especially beyond 4–8 nodes. While there is a

small decreasing tendency in execution time (from

326.07s at 2 nodes down to ~306s at 24 nodes), the

improvement is minimal and mostly flat across

configurations.

- Floating-Point Performance (GFLOP/s): The Floating-

Point Performance, measured in GFLOP/s (billion

floating-point operations per second), reflects the raw

computational throughput of the system. In theory, as

more nodes are added to a cluster, the GFLOP/s should

increase proportionally due to parallel computation.

However, in the case of the Raspberry Pi 4B Beowulf

cluster, performance remains relatively flat, fluctuating

between 0.1201 and 0.1252 GFLOP/s from 1 to 24 nodes.

The highest performance is observed at 1 RPi (0.1252

GFLOP/s), while the lowest is at 2 RPi’s (0.1201

GFLOP/s). These marginal differences suggest that

HPCG on ARM Cortex-A72 cores is heavily memory-

bound, and not compute-bound. As a result, adding

computational resources does not yield higher floating-

point throughput because the CPU cores are already

underutilized, waiting for data from memory.

Furthermore, this confirms that instruction-level

parallelism and cache performance dominate the floating-

point behaviour in this cluster architecture. Despite

running with an increasing number of MPI processes (and

therefore potentially more floating-point operations), the

lack of acceleration in GFLOP/s highlights architectural

limitations: no hardware-level acceleration (e.g., AVX,

FMA), limited core frequency (~1.5GHz), and narrow

memory interfaces. The conclusion is that HPCG's sparse

matrix workloads are not compute-saturating on the

Raspberry Pi 4B, and floating-point efficiency reaches a

plateau early, making strong scaling ineffective in

improving GFLOP/s metrics.

- Memory Bandwidth: The Memory Bandwidth (GB/s)

follows a similar trend: from 0.9498 GB/s (1 node) to a

low of 0.9114 GB/s (2 nodes). Performance stabilizes

between 0.933–0.947 GB/s as node count increases. These

values confirm that memory subsystem limitations

dominate the overall performance, and the cluster reaches

a memory bandwidth plateau beyond 4 nodes.

- MPI Communication Overhead (ExchangeHalo Time):

The benchmark reports "no data" for ExchangeHalo,

meaning this section of the benchmark did not activate

multi-node MPI data exchange (possibly due to process

mapping or lack of halo region overlap). As a result, it was

not possible to get relative datasets to evaluate

interconnect efficiency or MPI overhead, but the relatively

stable execution time across nodes implies minimal

communication cost.

In summation, no Strong Scaling Speedup Observed

where execution time remains almost flat from 1 to 24 nodes.

The workload per node decreases, but the overhead from MPI

communication (even if minimal) and synchronization counters

the benefits. The Memory Bandwidth Bottleneck persists since

HPCG is memory-bound, and increasing compute resources

doesn't improve memory throughput. This confirms that the

LPDDR4-3200 memory bandwidth is the primary system

constraint. Diminishing returns occur beyond 4 nodes since

there's an optimum spot around 4–8 nodes where performance

is most consistent. Beyond that, adding more nodes provides

no benefit in throughput or time, and may lead to wasted energy

and idle resources. The absence of ExchangeHalo timing

indicates a need to verify process distribution and ensure that

halo exchanges are measured properly in multi-node scenarios.

Nevertheless, the authors investigated many ways to see if it

was possible to get such datasets by changing the hpcg.dat file

with different processor dimensions in the cluster with no

positive results “Figure 8”, “Table 3”.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

58

Figure 8: hpcg.dat file, with npx, npy, npz dimensions

Table 3. hpcg.dat templates (npx x npy x npz)

MPI Procs
(-np)

Grid Size Suggested
Topology

Explanation

2

128³

npx=2
npy=1
npz=1

2 subdomains
side-by-side

4

128³

npx=2
npy=2
npz=1

2×2 grid

8

128³

npx=2
npy=2
npz=2

2×2×2 cube

16

128³

npx=4
npy=2
npz=2

Balanced 3D
grid

24

128³

npx=4
npy=3
npz=2

Approx. 3D fit
for 24 MPI

32

128³

npx=4
npy=4
npz=2

More granular
decomposition

48 128³ npx=4
npy=4
npz=3

Full cube for
48 procs

It is supposed that because of Limited Problem Size due to

Hardware Constraints the maximum stable grid size

successfully executed on a single Raspberry Pi node was

128×128×128. Attempts to increase the problem size beyond

this threshold (e.g., 136×136×136, 144×144×144) consistently

failed due to memory limitations (8GB LPDDR4 RAM). The

ExchangeHalo phase in HPCG becomes increasingly

significant as the problem size and inter-node communication

grow. With small domains, especially when each MPI process

holds a relatively small sub-grid, the actual amount of

exchanged halo data is minimal and may fall below internal

measurement or logging thresholds. On the other hand, total

execution time, typically in the 300–350 second’s range depicts

short runtimes which limit the visibility of long-term

communication patterns. In such cases, internal timers or

logging subsystems within HPCG may not output fine-grained

breakdowns like ExchangeHalo. Moreover, HPCG is known to

be memory bandwidth limited, especially on low-power

devices like the Raspberry Pi 4B. Computation is constrained

far more by local memory latency than by communication

delays. This means that the system spends most time in SpMV

and MG computations, not waiting for halo exchanges, where

Ccommunication overhead becomes statistically invisible, and

ExchangeHalo time may not be emitted.

In conclusion, the strong scaling results of the HPCG

benchmark on the Raspberry Pi Beowulf cluster reveal the

inherent challenges of deploying memory-bound,

communication-intensive workloads on resource-constrained,

low-power hardware. Despite increasing the number of nodes

from 1 to 24, the absence of significant improvements in

execution time, floating-point throughput, and memory

bandwidth confirms the architectural bottlenecks of the ARM

Cortex-A72 platform and its LPDDR4 memory subsystem.

Most notably, the lack of measurable ExchangeHalo

communication data — despite exhaustive tuning efforts —

underscores a fundamental limitation in applying standard

HPCG diagnostics to tightly memory-constrained SBC

systems. This outcome, while initially appearing as a

shortcoming, is in fact a scientifically relevant observation: it

demonstrates that in certain low-latency, high-bandwidth-

bound environments, inter-node communication may be

masked by memory delays or rendered statistically

insignificant.

Therefore, this study not only quantifies the scaling limits of

the Raspberry Pi 4B cluster for HPCG workloads but also sheds

light on the interplay between computation, memory, and

communication subsystems in non-traditional HPC

architectures. These findings provide critical insights for

researchers exploring energy-efficient edge HPC or micro-

cluster architectures, and serve as a basis for future work on

lightweight benchmarking, alternative communication

profiling, and hybrid computation models.

Table 4. HPCG Benchmark results in the whole Beowulf Cluster: Strong Methodology

HPCG Benchmark to Beowulf Cluster (1-24 RPi): Strong Methodology - (2 MPI processes per RPi)

Grid Size

Nodes
Median

Execution Time
(sec)

Floating-Point Performance

(GFLOP/s)
Memory

Bandwidth
(GB/s)

MPI Communication
Overhead

(ExchangeHalo Time)
128x128x128 1 308.982 0.125213 0.949848 no data

128x128x128 2 326.075 0.120153 0.911464 no data

128x128x128 4 310.118 0.124908 0.947536 no data

128x128x128 8 307.933 0.123759 0.938818 no data

128x128x128 12 309.606 0.124507 0.944495 no data

128x128x128 16 306.401 0.123076 0.933642 no data

128x128x128 24 306.638 0.123183 0.93445 no data

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

59

Figure 9: HPCG Benchmark to Beowulf Cluster (1-24 RPi): Strong Methodology

(2 MPI processes per RPi)

3.3.2 HPCG Performance: Weak scaling
Weak scaling assesses how efficiently a system can solve

proportionally larger problems as the number of compute nodes

increases, while keeping the problem size per node constant.

This methodology mirrors real-world applications where the

data volume and computational domain grow with the number

of processors, such as in climate modelling, computational

fluid dynamics (CFD), and other large-scale scientific

simulations. It is particularly insightful for identifying:

- Whether a cluster maintains consistent per-node

performance as it scales.

- How communication overhead, memory bandwidth

saturation, and network latency evolve with scale.

- The balance between computation and communication,

which is critical in resource-constrained systems like SBC

clusters.

This approach is ideal for evaluating Beowulf clusters built

with Raspberry Pi 4B nodes, where system limitations are often

architectural rather than numerical. The test is especially

relevant here due to the limited memory bandwidth, small

cache sizes, and lack of high-speed interconnects, which can

quickly become bottlenecks as the problem grows.

In this study, the weak scaling experiment was configured by

proportionally increasing the grid size with node count:

- 1 RPi runs a 16×16×16 grid.

- 2 RPi’s run 32×32×32 grid.

- 4 RPi’s run 64×64×64 grid.

- 8 RPi’s run 96×96×96 grid.

- 12 RPi’s run 128×128×128 grid.

Each test was performed using 2 MPI processes per RPi, a

configuration carefully chosen to balance memory usage and

minimize intra-node contention, while still allowing distributed

computation. In theory, the total execution time should remain

constant across all configurations if scaling is ideal.

However, in practice, deviations from this ideal indicate

performance degradation due to communication costs, cache

inefficiencies, or memory subsystem stress. These results help

identify the scalability ceiling of the cluster and provide insight

into whether more RPi’s add real value or introduce

inefficiencies.

On top of the above setup the authors decided to extent the

measurements in terms of the grid size with node count:

- 2 RPi runs a 16×16×16 grid.

- 4 RPi’s run 32×32×32 grid.

- 8 RPi’s run 64×64×64 grid.

- 16 RPi’s run 96×96×96 grid.

- 24 RPi’s run 128×128×128 grid.

While the first table (1–12 RPi’s) “Table 5”, “Figure 10”,

“Figure 12” shows how performance evolves in modest cluster

sizes, the second table (2–24 RPi’s) “Table 6” extends that view

to larger configurations and validates whether the trends

(especially saturation points or performance degradation)

persist at scale “Figure 11”, “Figure 13”.

Weak scaling is about maintaining consistent execution time as

problem size and nodes grow, while the extended

measurements show execution time grows slower than the

problem size (e.g., from 33s → 306s as problem size grows

from 16³ → 128³). This validates that your system does not

scale linearly, but handles growth in a somewhat consistent

manner until it plateaus.

In the 2–24 RPi data “Table 6”, memory bandwidth increases

up to 16 nodes before slightly dropping at 24th node. This is

important because it identifies the network saturation threshold

or memory subsystem limitations, which are core issues in edge

clusters like the one used in this study.

In terms of Floating-Point Efficiency profile, this highlights

where adding more nodes does not improve compute

throughput, possibly due to inter-node communication or

memory access inefficiencies.

308.982

326.075

310.118

307.933
309.606

306.401

306.638

300

305

310

315

320

325

330

0 5 10 15 20 25 30

M
ed

ia
n

 T
o

ta
l E

xe
cu

ti
o

n
 T

im
e

(s
ec

)

RPi Nodes

HPCG Benchmark to Beowulf Cluster (1-24 rpi) : Strong Methodology

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

60

Regarding the absence of ExchangeHalo Data, the stable or

plateauing memory bandwidth and execution time reflect

hidden communication costs that do not appear in the logs but

manifest in the performance ceiling.

Based on the two sets of weak scaling, experiments were

conducted, one up to 12 nodes (1 RPi per grid increment)

“Table 5” and one extended up to 24 nodes “Table 6” (2 MPI

processes per RPi in both sets) the analysis follows:

- Execution Time Trends: In weak scaling, ideal behavior is

a flat execution time as grid size and node count scale

equally. However, both test series show a clear growth in

median execution time, particularly for the largest grid

(128x128x128), indicating that the cluster’s efficiency

declines at scale due to communication and memory

access costs.

In the (1–12) RPi test, the execution time rises from 33.1s

(16x16x16 on 1 node) to 306.9s (128x128x128 on 12

nodes).

In the (2–24) RPi test, starts slightly higher at 39.8s

(16x16x16 on 2 nodes), rising to 306.2s on 24 nodes.

This indicates early parallel efficiency, but degradation

becomes apparent past the 96x96x96 grid, due to the

increased communication and memory stress.

- Floating-Point Performance (GFLOP/s): Floating-point

performance increases initially as problem size grows, but

plateaus or slightly drops beyond 8–16 nodes.

Peak performance in the 1–12 RPi test: 0.1548 GFLOP/s

at 96x96x96 (8 nodes).

In the 2–24 RPi test: similar peak at 0.1514 GFLOP/s for

96x96x96 on 16 nodes.

This suggests that up to 8–16 nodes, the cluster uses

computational resources effectively.

Beyond that, the workload per node becomes too large or

communication begins to overwhelm compute capacity,

stalling gains.

- Memory Bandwidth (GB/s): Memory bandwidth increases

with problem size, but not linearly.
In the 1–12 RPi case, from 0.76 GB/s (16x16x16) to 1.17

GB/s (96x96x96), dropping to 0.95 GB/s (128x128x128).

In the 2–24 RPi case, rises from 0.85 GB/s (16x16x16) to

1.15 GB/s (96x96x96), then drops again to 0.93 GB/s

(128x128x128).

This behavior confirms a memory bandwidth bottleneck

beyond 8–12 nodes, consistent with the limited LPDDR4-

3200 interfaces of Raspberry Pi 4B.

- MPI Communication Overhead: No ExchangeHalo data is
reported in either test, due to reasons previously

established. The halo exchange time may be too small to

register in short-lived runs. Sparse matrix structures and

intra-node communication may mask it. This limits the

ability to analyse interconnect performance, but the flat

GFLOP/s and execution time increases still suggest

communication becomes a cost at scale.

The weak scaling evaluation of the Beowulf cluster built with

Raspberry Pi 4B devices highlights the system’s scalability

ceiling under proportionally growing workloads. Performance

remains relatively efficient up to 8–12 nodes, particularly with

grid sizes up to 96x96x96, where Execution Time, Floating-

Point Throughput, and Memory Bandwidth scale acceptably.

However, beyond this point, especially at the (128x128x128)

grid size, performance degrades significantly. Execution times

increase, and both GFLOP/s and memory bandwidth plateau or

decline, indicating saturation of available memory resources

and increasing communication overhead, even if not explicitly

captured through ExchangeHalo metrics. These results confirm

that the cluster’s architecture—constrained by limited memory

bandwidth, modest processor core frequencies, and non-

specialized networking—can handle modest parallel workloads

effectively but struggles to scale beyond moderate node counts.

Thus, weak scaling on Raspberry Pi clusters is feasible for

educational purposes or lightweight parallel workloads, but

performance efficiency diminishes rapidly with high node

counts or larger problem domains.

Table 5. HPCG Benchmark results to Beowulf Cluster: Weak Methodology - Set 1

HPCG Benchmark to Beowulf Cluster (1-12 RPi): Weak Methodology - (2 MPI processes per RPi)

Grid Size

Nodes
Median

Execution Time
(sec)

Floating-Point Performance

(GFLOP/s)

Memory
Bandwidth

(GB/s)

MPI Communication
Overhead

(ExchangeHalo Time)

16x16x16 1 33.1411 0.100947 0.768492 no data

32x32x32 2 64.5538 0.132313 1.00517 no data

64x64x64 4 76.4653 0.122342 0.928398 no data

96x96x96 8 103.988 0.154783 1.17435 no data

128x128x128 12 306.952 0.126238 0.957622 no data

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

61

Table 6. HPCG Benchmark results to Beowulf Cluster: Weak Methodology - Set 2

HPCG Benchmark to Beowulf Cluster (1-24 RPi): Weak Methodology - (2 MPI processes per RPi)

Grid Size

Nodes
Median

Execution Time
(sec)

Floating-Point Performance

(GFLOP/s)

Memory
Bandwidth

(GB/s)

MPI Communication
Overhead

(ExchangeHalo Time)

16x16x16 2 39.8451 0.112065 0.853131 no data

32x32x32 4 59.4886 0.102924 0.781596 no data

64x64x64 8 74.8954 0.123911 0.94042 no data

96x96x96 16 104.347 0.151464 1.14917 no data

128x128x128 24 306.205 0.123644 0.937946 no data

33.1411

64.5538
76.4653

103.988

306.952

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12

M
ed

ia
n

 T
o

ta
l E

xe
cu

ti
o

n
 T

im
e

(s
ec

)

RPi Nodes

HPCG Benchmark to Beowulf Cluster (1-12 RPi): Weak Methodology - Set 1

Figure 10: HPCG Benchmark to Beowulf Cluster (1-12 RPi): Weak Methodology Set 1

(2 MPI processes per RPi)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

62

Figure 11: HPCG Benchmark to Beowulf Cluster (2-24 RPi): Weak Methodology Set 2

(2 MPI processes per RPi)

Figure 12: HPCG Benchmark to Beowulf Cluster (1-12 RPi): Weak Methodology Set 1

(2 MPI processes per RPi)

39.8451

59.4886
74.8954

104.347

306.205

0

50

100

150

200

250

300

350

0 5 10 15 20 25

M
ed

ia
n

 T
o

ta
l E

xe
cu

ti
o

n
 T

im
e

(s
ec

)

RPi Nodes

HPCG Benchmark to Beowulf Cluster (2-24 RPi): Weak Methodology - Set 2

0.768492

1.00517

0.928398

1.17435

0.957622

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 2 4 6 8 10 12

M
em

o
ry

 B
an

d
w

id
th

 (
G

B
/s

ec
)

RPi Nodes

HPCG Benchmark to Beowulf Cluster (1-12 RPi): Weak Methodology - Set 1

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

63

Figure 13: HPCG Benchmark to Beowulf Cluster (2-24 RPi): Weak Methodology Set 2 (2 MPI processes per RPi)

4. FUTURE WORK: EDUCATIONAL

AND EDGE-AI APPLICATIONS

The findings of this benchmarking analysis can be extended

beyond traditional high-performance computing into two

promising domains: educational HPC training and edge-AI

deployment. In educational settings, Raspberry Pi clusters offer

a cost-effective and pedagogically rich platform to introduce

students to core HPC concepts such as distributed memory

models, MPI programming, memory-bound workloads, and

performance scaling. By integrating simplified versions of the

HPCG benchmark, instructors can visualize system

bottlenecks, foster critical thinking around architecture-aware
coding, and guide learners through performance diagnostics in

hands-on environments.

In parallel, the growing field of edge computing and AI

inference at the edge can benefit from insights into memory and

communication limitations highlighted in this study. Many

real-time edge applications (e.g., smart agriculture, robotics,

decentralized sensor fusion) involve sparse matrix operations,

iterative solvers, or lightweight neural networks—workloads

that share structural similarities with HPCG. Understanding

how such tasks scale (or fail to scale) on ARM-based multi-

node systems is crucial for designing reliable and energy-

efficient edge solutions.

Thus, this analysis lays the foundation for future explorations

into benchmark-guided optimization, hybrid workload

orchestration, and curriculum development for emerging low-

power HPC use cases in both academia and applied

engineering.

5. CONCLUSION
This study presents a comprehensive benchmarking analysis of

a Raspberry Pi 4B (8GB) Beowulf cluster using the High-

Performance Conjugate Gradient (HPCG) benchmark. The

evaluation employed both strong and weak scaling

methodologies, offering critical insights into the cluster’s

computational behavior, memory bandwidth limitations, and

parallel efficiency.

In the strong scaling experiments, a fixed grid size

(128x128x128) was distributed across increasing RPi nodes

counts (1 to 24). The expected ideal of decreased execution

time with more nodes was not achieved. Instead, execution time

remained nearly flat, indicating that the performance gains

from parallelization were offset by inter-process

communication and synchronization overhead. Floating-point

performance (GFLOP/s) and memory bandwidth plateaued

early, confirming that the Raspberry Pi architecture is heavily

memory-bound, with limited benefit from adding more

compute nodes beyond (4–8) RPi’s. Additionally, the absence

of ExchangeHalo data highlighted limitations in capturing

inter-node MPI communication, possibly due to low halo

exchange volumes or short runtimes.

In the weak scaling analysis, both the grid size and number of

nodes were scaled proportionally to keep the workload per node

constant. This approach is ideal for assessing the scalability of

distributed systems in practical large-scale simulations. Results

revealed that execution time scaled modestly, with noticeable

increases only at larger node counts (e.g., 12 or 24). GFLOP/s

and memory bandwidth showed fluctuations but remained

relatively stable across scales, reinforcing the memory-

constrained nature of the system. The cluster-maintained

performance consistency up to moderate sizes but exhibited

saturation and efficiency drop-offs at higher scales, particularly

under (128x128x128) workloads.

Overall, the Raspberry Pi Beowulf cluster demonstrates

respectable computational stability and scalability under

constrained conditions, but it is fundamentally limited by low

memory bandwidth, lack of hardware floating-point

acceleration, and Gigabit Ethernet interconnection. These

findings are particularly valuable for evaluating low-cost

clusters in education, edge computing, and exploration of HPC

environments, where affordability and accessibility are

prioritized over raw performance. The analysis offers a

0.853131

0.781596

0.94042

1.14917

0.937946

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 5 10 15 20 25

M
em

o
ry

 B
an

d
w

id
th

 (
G

B
/s

ec
)

RPi Nodes

HPCG Benchmark to Beowulf Cluster (2-24 RPi): Weak Methodology - Set 2

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.25, July 2025

64

methodological foundation for future studies involving

optimization, interconnect improvements, or hybrid workloads

involving AI or real-time edge applications.

6. ACKNOWLEDGMENTS
My sincere gratitude to Assistant Professor Ioannis S.

Barbounakis for his precious guidelines, knowledge and

contribution for the completion of this study.

7. REFERENCES
[1] Dimitrios Papakyriakou, Ioannis S. Barbounakis. High

Performance Linpack (HPL) Benchmark on Raspberry Pi

4B (8GB) Beowulf Cluster. International Journal of

Computer Applications. 185, 25 (Jul 2023), 11-19.

DOI=10.5120/ijca2023923005

[2] Dimitrios Papakyriakou, Ioannis S. Barbounakis.

Performance Analysis of Raspberry Pi 4B (8GB) Beowulf

Cluster: STREAM Benchmarking. International Journal

of Computer Applications. 186, 78 (Apr 2025), 41-55.

DOI=10.5120/ijca2025924687

[3] Raspberry Pi 3+ Model B. [Online]. Available:

https://www.raspberrypi.com/products/raspberry-pi-3-

model-b-plus/

[4] Raspberry Pi 4 Model B. [Online]. Available:

raspberrypi.com/products/raspberry-pi-4-model-b/.

[5] Raspberry Pi 4 Model B specifications. [Online].

Available:

https://magpi.raspberrypi.com/articles/raspberry-pi-4-

specs-benchmarks

[6] HPCG Benchmark. [Online]. Available:

https://www.hpcg-benchmark.org/

[7] Jack Dongarra, Michael A Heroux, Piotr Luszczek "High-

performance conjugate-gradient benchmark: A new

metric for ranking high-performance computing

systems," The International Journal of High-Performance

Computing Applications, SAGE, Volume: 30 issue: 1, 3-

10, August 17, 2015

[8] Jack Dongarra, Michael A. Heroux "Toward a New

Metric for Ranking High Performance Computing

Systems," Sandia National Laboratories Technical

Report, SAND2013-4744, June, 2013

[9] Dongarra, J., Heroux, M. A., & Luszczek, P. (2016). High-

Performance Conjugate Gradient (HPCG) Benchmark.

University of Tennessee and Sandia National

Laboratories. Retrieved from https://www.hpcg-

benchmark.org

IJCATM : www.ijcaonline.org

https://www.hpcg-benchmark.org/
https://www.hpcg-benchmark.org/

