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ABSTRACT 

The High-Performance Conjugate Gradient (HPCG) 

benchmark has emerged as a complementary metric to the High 

Performance LINPACK (HPL) [1], aiming to evaluate real-

world high-performance computing (HPC) workloads that 

emphasize memory access patterns, cache behavior, and sparse 

matrix operations. Unlike HPL, which reflects peak floating-

point capability, HPCG simulates practical scientific 

computations involving iterative solvers and irregular memory 

access, offering a more realistic performance indicator. 

This study investigates the implementation and analysis of the 

HPCG benchmark on a 24-node Beowulf cluster built with 

Raspberry Pi 4B devices, each equipped with 8GB LPDDR4 

RAM and ARM Cortex-A72 processors. Both strong scaling 

(fixed problem size with increasing nodes) and weak scaling 

(proportional increase in problem size and nodes) 

methodologies were applied to assess system performance 

across various configurations. Metrics such as median 

execution time, floating-point throughput (GFLOP/s), and 

memory bandwidth (GB/s) were collected and analyzed. 

The results reveal that HPCG performance on this ARM-based 

cluster is primarily constrained by memory bandwidth 

saturation, lack of hardware-level floating-point acceleration, 

and network communication bottlenecks. Strong scaling 

experiments show minimal performance gains beyond 4–8 

nodes, while weak scaling maintains computational stability up 

to moderate cluster sizes. Notably, the absence of measurable 

MPI communication overhead (ExchangeHalo time) 

underscores the limited halo data exchange under small 

subdomain decomposition and short runtimes. 

This study highlights the limitations and potential of energy-

efficient, low-cost single-board clusters for realistic HPC 

workloads. The findings provide a methodological basis for 

benchmarking sparse solvers on ARM systems and inform 

future efforts in optimizing parallelism, memory access, and 

interconnect efficiency in edge computing, education, and 

embedded HPC environments. 
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1. INTRODUCTION 

The High-Performance Conjugate Gradient (HPCG) 

Benchmark has been developed as a complementary metric to 

the High-Performance LINPACK (HPL) Benchmark, 

addressing the limitations of peak floating-point performance 

assessments in modern high-performance computing (HPC) 

systems [1]. While HPL remains the standard for ranking 

supercomputers in the TOP500 list, it primarily measures dense 

matrix computation performance, which does not accurately 

reflect the efficiency of many real-world applications. In 

contrast, HPCG is designed to evaluate computational 

performance under memory-bound conditions, incorporating 

sparse matrix operations, iterative solvers, memory hierarchy 

efficiency, and interconnect performance. 

HPCG is particularly relevant for HPC systems engaged in 

scientific computing, computational fluid dynamics, finite 

element analysis, and machine learning, where workloads are 

dominated by sparse linear algebra computations. These 

workloads exhibit irregular memory access patterns, high 

communication overhead, and limited floating-point operations 

density, making them highly dependent on memory bandwidth, 

cache utilization, and efficient inter-node communication. As 

modern supercomputers increasingly rely on heterogeneous 

architectures, including low-power processors and distributed 

computing paradigms, understanding the behavior of sparse 

matrix solvers within a given hardware environment is crucial 

for optimizing performance. 

The evaluation of high-performance computing (HPC) systems 

requires multiple benchmarking approaches to assess different 

aspects of computational efficiency. The High-Performance 

Conjugate Gradient (HPCG) Benchmark, the High-

Performance LINPACK (HPL) Benchmark [1] and the 

STREAM Benchmark [2], each focus on distinct performance 

metrics, making them complementary tools for understanding 

the capabilities and limitations of modern HPC architectures. 

The HPCG Benchmark is designed to measure the performance 

of sparse linear algebra operations, which are representative of 

real-world scientific and engineering applications. It focuses on 

memory access efficiency, cache utilization, and inter-process 

communication overhead, making it particularly relevant for 

HPC workloads that involve irregular memory access patterns 

and distributed sparse matrix computations. Unlike traditional 

dense matrix benchmarks, HPCG reflects the challenges faced 

in applications such as computational fluid dynamics, structural 

analysis, and machine learning. 

In contrast, the STREAM Benchmark [2] is primarily used to 

evaluate memory bandwidth performance. It measures the 

sustained memory transfer rates of fundamental operations 

such as Copy, Scale, Add, and Triad, which are critical in 

memory-intensive applications. Since modern HPC systems 

are often limited by memory bandwidth rather than raw 

computational power, STREAM provides insights into how 
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efficiently a system can move data between main memory and 

processing units. This benchmark is particularly useful for 

understanding bandwidth bottlenecks and cache efficiency in 

both single-node and multi-node systems. 

The HPL Benchmark (LINPACK), which has historically been 

the standard for ranking supercomputers in the TOP500 list, is 

optimized for solving dense linear algebra problems. It 

evaluates peak floating-point performance (FLOP/s) by solving 

large systems of linear equations using LU decomposition. 

HPL emphasizes compute-bound performance, making it an 

effective measure of a system's raw processing power. 

However, it does not reflect the performance of real-world 

workloads that involve sparse matrices, communication 

overhead, or memory bandwidth limitations. 

A comparative analysis of these benchmarks provides a more 

comprehensive understanding of an HPC system’s strengths 

and weaknesses. While HPL excels in measuring theoretical 

peak performance, HPCG provides a more accurate 

representation of practical workloads, and STREAM highlights 

memory bandwidth efficiency, which often becomes the 

limiting factor in large-scale computations. The combined use 

of these benchmarks is essential for optimizing system 

performance, identifying bottlenecks, and designing more 

efficient computing architectures “Table 1”. 

This study focuses on deploying and analyzing the HPCG 

benchmark on a Beowulf cluster composed of 24 Raspberry Pi 

4B nodes (8GB RAM each), interconnected via Ethernet, to 

explore the performance constraints and scalability of ARM-

based distributed systems. The evaluation investigates MPI-

based parallelization, memory bottlenecks, floating-point 

throughput, and communication overhead, offering insights 

into the feasibility of utilizing energy-efficient ARM clusters 

for scientific and engineering applications. By benchmarking 

the cluster under varying computational workloads and process 

configurations, this research aims to provide a deeper 

understanding of the real-world computational efficiency of 

low-power, cost-effective HPC solutions. 

The Raspberry Pi (RPi) 4 Model B (8GB RAM), depicted in 

"Figure 1", serves as the foundation of the Beowulf cluster. 

Equipped with a 64-bit quad-core ARMv8 Cortex-A72 CPU 

clocked at 1.5 GHz, it delivers three times the processing power 

of its predecessor, the RPi 3B+ [3], [4], [5]. The cost-

effectiveness of the Raspberry Pi played a crucial role in 

selecting it as a viable solution for constructing a high-

performance computing (HPC) cluster, enabling an in-depth 

evaluation of its efficiency in parallel computing and clustering 

environments 

 

Figure 1: Single Board Computer (SBC) - Raspberry Pi 4 

Model B [4], [5]. 

2. SYSTEM DESCRIPTION 

2.1 Hardware Equipment 
The Beowulf cluster comprises 24 Raspberry Pi 4B (8GB) 

devices, as illustrated in "Figure 2".  A single Raspberry Pi 4B 

serves as the master (head) node, responsible for job scheduling 

and resource management, while the remaining 23 Raspberry 

Pi’s function as worker nodes, executing computational tasks 

under the master’s coordination. 

The nodes are structured into four stacks, each containing six 

Raspberry Pi’s, and are interconnected via Gigabit Ethernet 

switches (TL-SG1024D), providing a maximum network 

bandwidth of 1000 Mbps per node. This network topology 

enables seamless communication between nodes, effectively 

simulating a high-performance computing (HPC) environment 

similar to that of a supercomputer "Figure 2". 

The cluster is powered by two switch-mode power supplies, 

each rated at 60 amps with a 5V output, which is boosted to 

5.80V to compensate for potential voltage drops along the 

wiring. Additionally, the master node is equipped with a 

Samsung 980 (1TB) PCI-E 3 NVMe M.2 SSD, while each 

worker node is fitted with a 256GB Patriot P300P256GM28 

NVMe M.2 2280 SSD, ensuring high-speed storage access and 

data handling across the system. 

 

Figure 2: Deployment of the Beowulf Cluster with (24) 

RPi-4B (8GB). 

2.2 Software Tools 
The Operating System used to setup the RPi’s in the cluster is 

the latest "Debian GNU/Linux 12 (bookworm)" which is the 

latest official supported Operating System (OS - 64 bits) with 

Kernel version 6.6.62+rpt-rpi-v8 and the CPU architecture and 

capabilities of the system. 

The second essential software component for the cluster setup 

was the Message Passing Interface (MPI), with MPICH chosen 

as the specific implementation. MPICH is a highly efficient and 

widely adaptable MPI framework, which serves as a 

fundamental standard for message-passing in parallel 

computing. It is important to clarify that MPI itself is not a 

library, but rather a standardized framework defined by the 

MPI Forum for the development of message-passing libraries. 

Several MPI implementations are available for use on 

Raspberry Pi, including OpenMPI and MPICH. For this 

project, MPICH was selected due to its conformance to the MPI 

standard and its broad compatibility with applications written 

in C, C++, and FORTRAN. Originally standing for Message 

Passing Interface Chameleon, MPICH is designed to support 
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high-performance distributed computing, making it well-suited 

for the Beowulf cluster environment. 

The third essential software package installed was the GNU 

Compiler Collection (GCC) Fortran compiler, which is widely 

used in high-performance computing (HPC) due to its 

optimization capabilities and multi-threading support. As the 

default compiler in many HPC environments, GCC plays a 

critical role in compiling and optimizing parallel computing 

applications. 

The fourth key software component was OpenBLAS, a highly 

optimized implementation of Basic Linear Algebra 

Subprograms (BLAS). OpenBLAS provides efficient and 

accelerated linear algebra operations, which are fundamental to 

numerous scientific and engineering computations. 

Finally, the HPCG benchmark software was required to be 

downloaded, compiled, and configured appropriately to 

evaluate the computational and memory performance of the 

Beowulf cluster. 

2.3 Design 

The architecture of the Raspberry Pi (RPi) cluster is illustrated 

in “Figure 3”, comprising 24 Raspberry Pi 4B nodes, each 

equipped with 8GB of RAM [4], [5]. These nodes are 

interconnected via a 24-port Gigabit Ethernet switch (1000 

Mbps) to facilitate high-speed data exchange. Within this 

configuration, one Raspberry Pi functions as the master (head) 

node, responsible for task scheduling and resource 

management, while the remaining 23 nodes operate as worker 

nodes, executing computational workloads. To ensure efficient 

network communication, static IP addressing is implemented, 

assigning each node a unique and fixed IP address. 

Communication between the master and worker nodes is 

conducted securely through SSH (Secure Shell) connections. 

The master node is equipped with a Samsung 980 PCIe 3.0 

NVMe M.2 SSD (1TB), capable of theoretical maximum write 

speeds of 3000 MB/s and read speeds of 3500 MB/s. To 

enhance storage performance across the cluster, each worker 

node is outfitted with a Patriot P300P256GM28 NVMe M.2 

SSD (256GB), offering maximum write speeds of 1100 MB/s 

and read speeds of 1700 MB/s. Since the Raspberry Pi 4B 

supports external booting, these SSDs are connected via USB 

3.0 ports, which provide a theoretical data transfer rate of 4.8 

Gbps (600 MB/s)—a significant improvement over USB 2.0, 

which is limited to 480 Mbps (60 MB/s). This storage 

configuration enhances the I/O performance of the cluster, 

enabling faster data access and improved computational 

efficiency. 

By utilizing the high-speed read and write capabilities of the 

NVMe SSDs, this phase of testing aimed to achieve significant 

performance improvements compared to the previous 

microSD-based configuration. Although the USB 3.0 interface 

introduces some bandwidth limitations, the superior speed and 

efficiency of the NVMe SSDs greatly surpass these constraints, 

resulting in a notable enhancement in overall cluster 

performance. 

 

 

Figure 3: RPi-4B Beowulf cluster architecture diagram 

[1], [2]. 

3. HPCG  

The High-Performance Conjugate Gradient (HPCG) 

Benchmark is a widely recognized tool for assessing the real-

world performance of high-performance computing (HPC) 

systems [6]. Unlike the High-Performance LINPACK (HPL) 

Benchmark, which measures peak floating-point performance, 

HPCG focuses on memory bandwidth, cache utilization, and 

inter-node communication efficiency by solving a sparse 

system of linear equations using the Conjugate Gradient (CG) 

method. This makes it particularly relevant for scientific and 

engineering applications that involve iterative solvers, irregular 

memory access patterns, and distributed computing workloads. 

HPCG evaluates system performance by solving a sparse linear 

system using the Conjugate Gradient (CG) method with a 

multi-grid preconditioner [7], [8]. This approach highlights: 

- Memory Bandwidth (GB/s): Performance depends on 

efficient memory access. 

- Cache Utilization (L1/L2 misses): Frequent cache misses 

slow computation. 

- Interconnect Performance (MPI overhead and 

communication efficiency): For multi-node systems, 

communication is a key bottleneck. 

- Floating-Point Performance (GFLOP/s): Though not as 

dominant as in LINPACK. 

Raspberry Pi-based Beowulf cluster has significant memory 

bandwidth constraints (as seen in STREAM results) [2]. Since 

HPCG is highly memory and communication bound, it will 

provide deeper insights into: 

- Memory bandwidth limitations and cache efficiency. 

- MPI communication overhead between nodes. 

- How well the cluster scales for real-world workloads. 

Unlike STREAM, which focuses purely on memory 

bandwidth, HPCG integrates memory, computation, and 

communication aspects, making it a more comprehensive 

performance metric. 

The HPCG benchmark consists of: 

- Sparse Matrix-Vector Multiplication (SpMV): 

Dominates computational cost and memory bandwidth 

usage. Uses a structured grid problem to simulate scientific 

computing loads. 

- Symmetric Gauss-Seidel Preconditioning: 

Helps accelerate convergence of the Conjugate Gradient 

method. 

Requires non-trivial memory accesses. 

- Global Dot Products (MPI Reduction Operations) 
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Synchronization-heavy operations that expose network 

latency in multi-node systems. 

- Multi-Grid Preconditioner: 

A coarse-grid correction mechanism to improve solver 

efficiency. 
To evaluate the performance of the Beowulf cluster, it is first 

necessary to analyze the behavior of HPCG on a single 

Raspberry Pi 4B (8GB RAM). This initial testing phase 

provides a baseline measurement of computational efficiency, 

memory throughput, and HPCG performance, which will later 

be compared to multi-node cluster performance. 

3.1 HPCG Methodology. 
First of all, it was observed that the Grid Sizes feasible to run 

in a Raspberry Pi are the following: 

- 16 × 16 × 16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒  success 

- 32 × 32 × 32 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒  success 

- 64 × 64 × 64 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒  success 

- 96 × 96 × 96 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒  success 

- 128 × 128 × 128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒  success 

- 136 × 136 × 136 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒  failed 

- 144 × 144 × 144 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒  failed 

The primary reason why the RPi failed to operate with more 

complex Grid Size is that, HPCG operates on a sparse matrix 

representation but still requires a large amount of memory, for 

Matrix storage, Vectors, Multi-grid hierarchy and temporary 

buffers for Sparse Matrix-Vector Multiplication (SpMV).  

The 128 × 128 × 128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 problem already consumed 

6.95GB out of 7.64 GB available RAM. Apparently, the larger 

Grid Sizes exceeded the 8GB physical RAM memory of RPi 

4B and caused Out of memory (OOM) errors. In that case we 

have the option to force the system to use Swap Memory but 

this drastically slows down the computation. The 

recommendation in this study is to use only the physical RAM 

Memory (nominal 8GB, available 7.64GB), to disable the 

Swap Memory (by using the command $ sudo swapoff -a) not 

allowing the system to use disk space as extra RAM, for 

scientific accuracy reasons and preventing slow I/O operation.  

During the execution of the tests, the command (watch -n 1  free 

-h) in a Command Line Interface (CLI) verifies that no Swap 

Memory is used. Taking into account that the Raspberry Pi 4B 

uses LPDDR4-3200 RAM, but the memory bandwidth is only 

(~4GB/s), the Grid Size of 1283  already stresses the RAM 

Memory. 

The HPCG methodology for one RPi is based on observing the 

RPi performance by increasing the Grid size from 16 × 16 ×
16   to 128 × 128 × 128. The following Key Performance 

Indicators (KPIs) are considered: 

- Grid Size: It’s the problem size used in the HPCG test, 

defined by the number of grid points in each dimension and 

determines computational complexity, memory usage, and 

scalability. Larger grids test system performance under 

heavier workloads. 

 

- Total Benchmarking Median Execution Time (sec): It’s the 

median total time required to complete the HPCG 

benchmark and it is a direct measure of computational 

efficiency. A lower execution time indicates better 

performance. 

 

- CG Solver Efficiency (Iteration Count): It is the number of 

iterations required by the Conjugate Gradient (CG) solver 

to converge. Fewer iterations indicate better solver 

efficiency, meaning the system is solving the problem more 

effectively. 

 

- Memory Usage – Median Total Memory Used (Mbytes): It 

is the median amount of memory allocated and used for 

data storage during execution. It helps assess if the system 

is memory-bound. Higher memory usage may lead to 

performance degradation due to cache/memory bottlenecks 

 

- Memory Usage-Median Bytes per Equation: The amount 

of memory used per equation solved by the system. 

Indicates computational efficiency concerning memory. 

Large values suggest high memory overhead. 

 

- Median SpMV Time (sec) (Sparse Matrix-Vector 

Multiplication): The median execution time for the SpMV 

operation constitutes a fundamental kernel in HPCG. 

SpMV is memory-bound, meaning its efficiency depends 

on memory bandwidth and cache performance. 

 

- Median MG Time (sec) (Multi-Grid Preconditioner): It is 

the median execution time for the Multi-Grid (MG) 

preconditioner, which accelerates the CG solver. MG 

performance is also memory-bound, but it can also indicate 

how well cache and memory hierarchies are utilized 

 

- Median Optimization Phase Time (sec): It is the time spent 

in the system's performance tuning phase during the HPCG 

benchmark. Shorter optimization phase times indicate a 

well-optimized setup, while longer times suggest 

inefficiencies in computational tuning. 

 

- Median Departure from Symmetry for SpMV (numerical 

Stability): Measures how much the SpMV operation 

deviates from expected symmetry, which impacts 

numerical accuracy. A higher departure indicates floating-

point instability, which can lead to inaccurate results in 

large-scale computations 

 

 

- Median Departure from Symmetry for MG (Numerical 

Stability: Measures symmetry deviation for the MG 

preconditioner. Similar to SpMV, a large departure 

suggests numerical instability, which can affect solver 

accuracy. Comparing execution times across different grid 

sizes and node counts helps identify bottlenecks and assists 

to Scalability Analysis. 

As an overall importance of the above metrics, the execution 

time, SpMV time, and MG time indicate computational 

efficiency and performance evaluation.  

In terms of the whole Raspberry Pi Cluster methodology in this 

study the HPCG Benchmarking for Strong and Weak Scaling 

is used to evaluate the scalability and performance. 

- Strong Scaling Experiment: 

The strong scaling tests were executed by maintaining a 

fixed grid size of 128 × 128 × 128 (the maximum supported 

by the RPi) while varying the number of Raspberry Pi 

nodes in the cluster.  

 

Gradually increasing the number of nodes (1, 2, 4, 8, 12, 

16, 24) -where a fixed grid size of 128 × 128 ×
128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 is used - the execution time, GFLOP/s, 

memory bandwidth, and MPI communication overhead are 

extracted for comparison.  
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This setup allows us to measure how well the cluster 

parallelizes the fixed computational workload. If execution 

time decreases proportionally to added nodes, the system 

scales efficiently. However, deviations from ideal scaling 

may indicate communication overhead or memory 

bandwidth limitations. 

 

- Weak Scaling Experiment: 

The weak scaling tests assess how the cluster handles 

increasing workloads while keeping the per-node workload 

constant. The test starts with one node solving a small 

16 × 16 × 16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒. As the number of nodes 

increases, the problem size increases proportionally such 

as: 

1 node with 16 × 16 × 16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 

2 nodes with 32 × 32 × 32 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 

4 nodes with 64 × 64 × 64 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 

8 nodes with 96 × 96 × 96 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 

12 nodes with 128 × 128 × 128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 

 

The above Standard Weak scaling approach ensures that 

each node gets exactly the same computational load in 

every step. The grid size doubles every time nodes double, 

maintaining constant work per node and the MPI 

communication overhead is easier to analyze when 

workloads remain balanced.  

 

In weak scaling, each node should process the same amount 

of data as more nodes are added. Key performance metrics 

include execution time per node, efficiency, and floating-

point performance (GFLOP/s). Weak scaling is ideal for 

measuring network efficiency; if performance remains 

stable as more nodes are added, the cluster scales well. 

However, significant drops in efficiency may indicate 

network bottlenecks or memory bandwidth limitations. 

 

For One RPi the Scaling experiment is based on increasing 

Grid Size from 16 × 16 × 16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒  to 128 ×
128 × 128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 “Figure 4”, “Figure 5”, “Table 2”. 

 

Figure 4: HPCG Benchmark in one RPi with Grid Size 

𝟏𝟐𝟖𝟑 with no swap memory used 

 

 

Figure 5: HPCG Benchmark results in one RPi with Grid 

Size 𝟏𝟐𝟖𝟑 

3.2 HPCG Performance in one RPi.  
Before scaling the HPCG benchmark to the full Beowulf 

cluster, it is essential to first evaluate its performance on a 

single Raspberry Pi 4B (8GB RAM). This initial testing phase 

serves multiple purposes: 

- Establishing a Baseline Performance Measurement 

Running HPCG on a single node provides a reference point 

for key performance metrics such as memory bandwidth, 

floating-point throughput, and solver efficiency. This 

baseline enables a direct comparison with the multi-node 

cluster results, helping to quantify the benefits and 

overhead of parallel execution. 

- Understanding Computational Bottlenecks 

Testing on a single Raspberry Pi identifies the primary 

performance constraints related to CPU, memory, and 

storage before introducing inter-node communication 

overhead. If a single node is heavily memory-bound or 

suffers from inefficient computation, similar issues will 

likely scale across the cluster. 

- Verifying Software Configuration and Optimization 

Ensuring that HPCG is correctly compiled and configured 

for the Raspberry Pi’s ARMv8 Cortex-A72 architecture is 

crucial before deploying it across multiple nodes. 

Optimizing compiler flags, MPI settings, and BLAS library 

integration at the single-node level can improve efficiency 

when scaling to a cluster. 

- Assessing MPI and Parallel Execution Within a Single 

Node 

Since the Raspberry Pi 4B features a quad-core processor, 

running HPCG with multiple MPI processes within a single 

node allows for an initial evaluation of parallel 

performance. This helps determine whether the system 

benefits from multi-threading or suffers from cache 

contention and memory bandwidth limitations. 
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- Minimizing Debugging Complexity Before Scaling 

Testing on a single node allows for easier troubleshooting 

of potential issues with HPCG execution, memory usage, 

or solver convergence. Identifying and resolving problems 

at this stage reduces debugging complexity when extending 

the benchmark to a multi-node Beowulf cluster. 

By first analyzing HPCG performance on a single Raspberry 

Pi, a more informed and optimized scaling strategy can be 

developed for the full cluster deployment. This approach 

ensures that computational, memory, and communication 

bottlenecks are properly addressed, maximizing the efficiency 

of parallel execution across multiple nodes. 

HPCG evaluates system performance by solving a sparse linear 

system using the Conjugate Gradient (CG) method with a 

multi-grid preconditioner. This approach highlights: 

 

- Memory Bandwidth: performance depends on efficient 

memory access 

- Cache Utilization: frequent cache misses slow computation 

- Interconnect Performance: for multi-node systems, 

communication is a key bottleneck 

- Floating-Point Performance: though not as dominant as in 

LINPACK. 

 

The Observations and analysis of the results are the following 

based on “Table 2”, “Figure 6”, “Figure 7”. 

In terms of execution time and scalability, it is observed that as 

the grid size increases, the total execution time rises 

significantly. Larger grids increase memory requirements, 

leading to higher cache miss rates. Sparse matrix computations 

in HPCG are memory-bound, meaning performance is limited 

by memory bandwidth rather than raw CPU power. The results 

at 96 × 96 × 96 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒  and 128 × 128 ×
128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒   suggest that memory bandwidth is a key 

bottleneck. 

The number of Conjugate Gradient (CG) solver iterations drops 

drastically as the grid size increases from 16 × 16 ×
16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒  with 3600 iterations to  64 × 64 ×
64 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒   with 50 iterations. This is happening because 

smaller grids require more iterations to converge. Larger grids 

better approximate real-world systems, reducing the number of 

iterations needed. This does not mean that larger grids are more 

efficient since execution time still increases due to memory and 

computation overhead. 

Regarding the memory usage, it is observed that total memory 

usage grows exponentially from 16 × 16 × 16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒  
with 2.99 MB to 128 × 128 × 128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 1.54 GB. Bytes 

per Equation (~714 B) remains consistent, showing that each 

system of equations requires a stable memory footprint. The 

Key Limitation is that the Raspberry Pi 4B (8GB) is unable to 

handle problem sizes beyond 128×128×128 due to memory 

constraints. 

With respect to Sparse Matrix-Vector Multiplication (SpMV) 

Performance, it is observed that Median SpMV Execution 

Time increases with grid size from 16 × 16 × 16 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒   
with (6.63 sec) to 128 × 128 × 128 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 with (49.04 

sec). This happens since SpMV is memory bandwidth limited, 

meaning larger problem sizes cause more cache misses. The 

64 × 64 × 64 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒   achieves the lowest SpMV time, 

suggesting a balance between memory access efficiency and 

computation. Beyond 64 × 64 × 64 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒    it is 

observed that the performance drops significantly, confirming 

that cache and memory bandwidth bottlenecks dominate. 

Related to Multi-Grid (MG) Performance, MG operations are 

more computationally intensive than SpMV. They require more 

memory access, iterative refinements, and hierarchical 

computations, leading to significantly higher execution times. 

MG is the most time-consuming part of HPCG, confirming that 

hierarchical multi-grid solvers are heavy on memory access and 

cache utilization. The non-linear increase in MG time suggests 

that cache size limitations are a primary issue. 

In terms of Numerical Stability (Departure from Symmetry) 

and in particular SpMV Stability and MG Stability, suggest that 

smaller grids exhibit larger numerical deviations due to coarse 

approximations. Larger grids yield better numerical stability 

and in general no instability issues observed, confirming the 

correctness of calculations. 

As a general conclusion the outcome is that the Raspberry Pi 

4B's LPDDR4-3200 memory bandwidth is a major bottleneck. 

Strong scaling on a single RPi is ineffective beyond 

96 × 96 × 96 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒, as computation time scales non-

linearly due to cache inefficiencies. The ideal problem size for 

an RPi 4B is around 64 × 64 × 64 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒    to 

96 × 96 × 96 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒, beyond which performance 

degrades due to memory constraints. 

Table 1. Comparison of HPCG, HPL [1], and STREAM Benchmarking [2] 

Features HPCG Benchmark HPL Benchmark (LINPACK) STREAM Benchmark 

Primary Focus 
Memory, compute, and 

communication 
Floating-point peak 

performance 
Memory bandwidth 

Computation 
Sparse matrix operations 

(SpMV, Gauss-Seidel) 

Dense linear algebra (LU 
decomposition, BLAS 

operations) 

None (pure memory 
operations) 

Memory Access Pattern Irregular, indirect addressing Regular, cache-friendly Simple, sequential 

Parallelism 
MPI-based, distributed 

memory parallelism 
MPI-based, highly parallel Thread-based (OpenMP, MPI) 

Communication Overhead 
High MPI overhead in multi-

node runs 
High but scalable with 

efficient networks 
None (unless using MPI) 

Performance Bottlenecks 
Cache inefficiency, DRAM 

bandwidth, network latency 

Floating-point operations, 
memory bandwidth, network 

speed 
DRAM bandwidth 

Optimization Targets 
Cache blocking, SpMV 

optimization, MPI tuning 
BLAS optimizations, matrix 

decomposition tuning 
Memory access efficiency, 

vectorization 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.25, July 2025 

55 

Figure 6: HPCG Benchmark: Memory Usage Scaling in (1) RPi - (2 MPI processes) 

 

Scalability in HPC Clusters 
Sub-linear due to 

communication overhead 
Near-linear with efficient 

interconnect 
Linear with memory 

bandwidth 

Real-World Relevance 
Scientific computing, iterative 

solvers 
AI, simulations, deep 

learning, physics simulations 
Memory-intensive 

applications 

Table 2. HPCG Benchmark results in one RPi 

HPCG Benchmark to (1) RPi - - (2 MPI processes) 

Grid Size Total 
Benchmark  

Median 
Execution 
Time (sec) 

CG 
Solver 

Efficiency 
Iteration 

Count 

Memory 
Usage 
Median 

Total 
Memory 

Used 
(Mbytes) 

Memory 
Usage 
Median 
Bytes 
per 

Equation 

Median 
SpMV 
Time 
(sec) 

Median 
MG 

Time 
(sec) 

Median 
Optimization 

 Phase Time 
(sec) 

Median 
Departure 

from 
Symmetry 
for SpMV  
(Numerical 

Stability) 

Median of 
Departure 

from 
Symmetry 

for MG 
(Numerical 

Stability) 

16x16x16 50.2798 4125 3.000 715.210 6.9600 42.1096 0.000000 6.30E-05 3.72E-06 

32x32x32 53.2096 475 23.980 714.740 6.9976 44.9090 0.000001 7.10E-06 3.23E-07 

64x64x64 92.761 100 191.850 714.700 11.661 79.3468 0.000000 6.27E-07 7.41E-08 

96x96x96 155.265 50 647.490 714.690 19.355 131.373 0.000001 3.57E-07 1.44E-07 

128x128x128 383.38 50 1534.780 714.690 47.004 329.139 0.000019 1.79E-07 1.30E-07 
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Figure 7: HPCG Benchmark: Execution Time Scaling in (1) RPi - (2 MPI processes) 

3.3 HPCG Performance in the whole 

Beowulf Cluster   
The HPCG benchmark was executed across the full Beowulf 

cluster using 2 MPI processes per Raspberry Pi (RPi), a 

configuration that balances computational load while reducing 

memory contention and MPI overhead. The analysis includes 

two classic scalability tests: strong scaling and weak scaling, 

each exploring distinct performance characteristics as the 

cluster increases in size. The choice to apply strong scaling and 

weak scaling methodologies in the context of the HPCG (High 

Performance Conjugate Gradient) benchmark is not only 

methodologically sound but also aligned with established 

practices in high-performance computing (HPC) benchmarking 

and performance analysis literature. These two scalability 

paradigms serve complementary purposes and offer distinct 

insights into system performance under varying computational 

and architectural stresses. 

This dual-scaling strategy enables a holistic evaluation of the 

cluster’s computational behaviour and communication 

efficiency. Strong scaling focuses on how performance 

improves when a fixed-size problem is distributed across an 

increasing number of nodes. This test is particularly useful for 

revealing MPI communication bottlenecks and overheads, 

especially in memory-bound benchmarks like HPCG. It allows 

us to quantify the efficiency of parallelism when problem size 

remains constant and serves as a key metric for evaluating 

latency sensitivity and scalability limits of the interconnect 

fabric. 

Conversely, weak scaling examines the system’s ability to 

handle proportionally larger problem sizes as more nodes are 

added. By keeping the workload per node approximately 

constant, weak scaling highlights how well the system 

maintains performance under increasing memory and 

computation demands. It is ideal for assessing balanced 

resource utilization, cache coherence, and the impact of 

network traffic as the total grid size scales up. 

Together, these methodologies provide complementary 

perspectives: strong scaling reveals performance degradation 

due to communication, while weak scaling emphasizes 

sustained efficiency under workload expansion. Their inclusion 

in this analysis ensures methodological robustness, reflects 

real-world HPC application scenarios, and allows direct 

comparability with industry-standard benchmarks. 

3.3.1 HPCG Performance: Strong scaling 
Strong scaling evaluates the efficiency of solving a fixed-size 

problem as the number of processing units increases. This 

methodology is especially relevant for workloads that:  

- Require tight coupling between processes (e.g., PDE 

solvers, sparse matrix kernels like in HPCG). 

- Are bound by a global problem size due to physical 

simulation constraints (e.g., Computational Fluid 

Dynamics, weather modelling). 

- Need to be accelerated without increasing memory usage. 

 

The strong scaling model stresses the parallelization overhead, 

particularly in sparse iterative solvers like HPCG, where 

communication patterns (ExchangeHalo) play a crucial role. It 

helps expose: 

- The limits of parallelism efficiency due to interconnect 

latency. 

- The effectiveness of MPI communication in a realistic 

setting. 
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- Diminishing performance gain, which is crucial for 

understanding architectural bottlenecks in low-power 

clusters. 

In this study, testing HPCG on a fixed 128³ grid across multiple 

RPi’s reveals how communication and memory bandwidth 

influence performance. This is a valid scientific approach 

aligned with established HPC benchmarking literature [9]. 

Strong scaling refers to measuring how efficiently a fixed-size 

computational problem can be solved when the number of 

compute nodes increases. In this case, the problem size was 

fixed to 128×128×128, which represents the largest feasible 

grid that fits comfortably within the 8GB RAM limit of a single 

Raspberry Pi 4B, avoiding swap memory usage. 

The benchmark was run across multiple node configurations (1, 

2, 4, 8, 12, 16, and 24 RPi’s), and the following metrics were 

collected: 

- Median Execution Time (sec): The total time required to 

complete the HPCG benchmark, represented by the median 

value across runs to ensure robustness against outliers. 

- Floating-Point Performance (GFLOP/s): The raw 

computational throughput of the system, measuring how 

many billions of floating-point operations are performed 

per second. 

- Memory Bandwidth: The rate at which data can be 

transferred between the main memory (RAM) and the 

CPU. In HPCG, performance is heavily memory-bound, 

especially during sparse matrix operations, making this a 

critical performance metric 

- MPI Communication Overhead (ExchangeHalo Time): 

The amount of time spent exchanging boundary data (halo 

regions) between MPI processes across different nodes. 

This metric reflects the efficiency and latency of the 

interconnect network in multi-node setups. 

Ideally, in strong scaling, execution time should decrease 

proportionally with more compute nodes. However, the results 

show sub-linear improvement due to several hardware 

constraints: limited LPDDR4-3200 bandwidth, shared cache 

contention, and bottlenecks in Gigabit Ethernet 

communication. As more nodes are added, MPI 

communication grows disproportionately, diminishing  

performance gains beyond 8–12 nodes. This behaviour 

highlights typical limitations of ARM-based SBC clusters 

where interconnect latency, process scheduling inefficiencies, 

and network saturation can counteract parallelism gains. 

- Execution Time Trends: The Median Execution Time 

starts at 308.98 seconds for a single node and fluctuates 

slightly with more nodes. At 2 nodes, the time increases 

to 326.07s, which is counterintuitive but expected due to 

MPI overhead and initial parallelization costs. With 4–24 

nodes, execution time stabilizes around 306–310s, 

indicating that the performance gain from adding nodes is 

offset by communication and synchronization costs. There 

is no significant speedup as we increase the number of 

nodes, which is typical in memory-bound applications like 

HPCG where computation is not the dominant factor. The 

graph Execution Time vs Number of RPi Nodes illustrates 

the ineffectiveness of strong scaling on memory-bound 

workloads in low-power clusters “Figure 9”, “Table 4”. In 

an ideal strong scaling scenario, execution time should 

decrease as more nodes are added, since the workload per 

node is reduced. The actual trend exhibits no significant 

speedup, especially beyond 4–8 nodes. While there is a 

small decreasing tendency in execution time (from 

326.07s at 2 nodes down to ~306s at 24 nodes), the 

improvement is minimal and mostly flat across 

configurations. 

- Floating-Point Performance (GFLOP/s): The Floating-

Point Performance, measured in GFLOP/s (billion 

floating-point operations per second), reflects the raw 

computational throughput of the system. In theory, as 

more nodes are added to a cluster, the GFLOP/s should 

increase proportionally due to parallel computation. 

However, in the case of the Raspberry Pi 4B Beowulf 

cluster, performance remains relatively flat, fluctuating 

between 0.1201 and 0.1252 GFLOP/s from 1 to 24 nodes. 

The highest performance is observed at 1 RPi (0.1252 

GFLOP/s), while the lowest is at 2 RPi’s (0.1201 

GFLOP/s). These marginal differences suggest that 

HPCG on ARM Cortex-A72 cores is heavily memory-

bound, and not compute-bound. As a result, adding 

computational resources does not yield higher floating-

point throughput because the CPU cores are already 

underutilized, waiting for data from memory. 

Furthermore, this confirms that instruction-level 

parallelism and cache performance dominate the floating-

point behaviour in this cluster architecture. Despite 

running with an increasing number of MPI processes (and 

therefore potentially more floating-point operations), the 

lack of acceleration in GFLOP/s highlights architectural 

limitations: no hardware-level acceleration (e.g., AVX, 

FMA), limited core frequency (~1.5GHz), and narrow 

memory interfaces. The conclusion is that HPCG's sparse 

matrix workloads are not compute-saturating on the 

Raspberry Pi 4B, and floating-point efficiency reaches a 

plateau early, making strong scaling ineffective in 

improving GFLOP/s metrics. 

- Memory Bandwidth: The Memory Bandwidth (GB/s) 

follows a similar trend: from 0.9498 GB/s (1 node) to a 

low of 0.9114 GB/s (2 nodes). Performance stabilizes 

between 0.933–0.947 GB/s as node count increases. These 

values confirm that memory subsystem limitations 

dominate the overall performance, and the cluster reaches 

a memory bandwidth plateau beyond 4 nodes. 

- MPI Communication Overhead (ExchangeHalo Time): 

The benchmark reports "no data" for ExchangeHalo, 

meaning this section of the benchmark did not activate 

multi-node MPI data exchange (possibly due to process 

mapping or lack of halo region overlap). As a result, it was 

not possible to get relative datasets to evaluate 

interconnect efficiency or MPI overhead, but the relatively 

stable execution time across nodes implies minimal 

communication cost.  

In summation, no Strong Scaling Speedup Observed 

where execution time remains almost flat from 1 to 24 nodes. 

The workload per node decreases, but the overhead from MPI 

communication (even if minimal) and synchronization counters 

the benefits.  The Memory Bandwidth Bottleneck persists since 

HPCG is memory-bound, and increasing compute resources 

doesn't improve memory throughput. This confirms that the 

LPDDR4-3200 memory bandwidth is the primary system 

constraint. Diminishing returns occur beyond 4 nodes since 

there's an optimum spot around 4–8 nodes where performance 

is most consistent. Beyond that, adding more nodes provides 

no benefit in throughput or time, and may lead to wasted energy 

and idle resources. The absence of ExchangeHalo timing 

indicates a need to verify process distribution and ensure that 

halo exchanges are measured properly in multi-node scenarios. 

Nevertheless, the authors investigated many ways to see if it 

was possible to get such datasets by changing the hpcg.dat file 

with different processor dimensions in the cluster with no 

positive results “Figure 8”, “Table 3”. 
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Figure 8: hpcg.dat file, with npx, npy, npz dimensions 

Table 3. hpcg.dat templates (npx x npy x npz) 

MPI Procs 
(-np) 

Grid Size Suggested 
Topology 

Explanation 

 
2 

 
128³ 

npx=2 
npy=1 
npz=1 

2 subdomains 
side-by-side 

 
4 

 
128³ 

npx=2 
npy=2 
npz=1 

 
2×2 grid 

 
8 

 
128³ 

npx=2 
npy=2 
npz=2 

 
2×2×2 cube 

 
16 

 
128³ 

npx=4 
npy=2 
npz=2 

Balanced 3D 
grid 

 
24 

 
128³ 

npx=4 
npy=3 
npz=2 

Approx. 3D fit 
for 24 MPI 

 
32 

 
128³ 

npx=4 
npy=4 
npz=2 

More granular 
decomposition 

48 128³ npx=4 
npy=4 
npz=3 

Full cube for 
48 procs 

 

It is supposed that because of Limited Problem Size due to 

Hardware Constraints the maximum stable grid size 

successfully executed on a single Raspberry Pi node was 

128×128×128. Attempts to increase the problem size beyond 

this threshold (e.g., 136×136×136, 144×144×144) consistently 

failed due to memory limitations (8GB LPDDR4 RAM). The 

ExchangeHalo phase in HPCG becomes increasingly 

significant as the problem size and inter-node communication 

grow. With small domains, especially when each MPI process 

holds a relatively small sub-grid, the actual amount of 

exchanged halo data is minimal and may fall below internal 

measurement or logging thresholds. On the other hand, total 

execution time, typically in the 300–350 second’s range depicts 

short runtimes which limit the visibility of long-term 

communication patterns. In such cases, internal timers or 

logging subsystems within HPCG may not output fine-grained 

breakdowns like ExchangeHalo. Moreover, HPCG is known to 

be memory bandwidth limited, especially on low-power 

devices like the Raspberry Pi 4B. Computation is constrained 

far more by local memory latency than by communication 

delays. This means that the system spends most time in SpMV 

and MG computations, not waiting for halo exchanges, where 

Ccommunication overhead becomes statistically invisible, and 

ExchangeHalo time may not be emitted. 

In conclusion, the strong scaling results of the HPCG 

benchmark on the Raspberry Pi Beowulf cluster reveal the 

inherent challenges of deploying memory-bound, 

communication-intensive workloads on resource-constrained, 

low-power hardware. Despite increasing the number of nodes 

from 1 to 24, the absence of significant improvements in 

execution time, floating-point throughput, and memory 

bandwidth confirms the architectural bottlenecks of the ARM 

Cortex-A72 platform and its LPDDR4 memory subsystem. 

Most notably, the lack of measurable ExchangeHalo 

communication data — despite exhaustive tuning efforts — 

underscores a fundamental limitation in applying standard 

HPCG diagnostics to tightly memory-constrained SBC 

systems. This outcome, while initially appearing as a 

shortcoming, is in fact a scientifically relevant observation: it 

demonstrates that in certain low-latency, high-bandwidth-

bound environments, inter-node communication may be 

masked by memory delays or rendered statistically 

insignificant. 

Therefore, this study not only quantifies the scaling limits of 

the Raspberry Pi 4B cluster for HPCG workloads but also sheds 

light on the interplay between computation, memory, and 

communication subsystems in non-traditional HPC 

architectures. These findings provide critical insights for 

researchers exploring energy-efficient edge HPC or micro-

cluster architectures, and serve as a basis for future work on 

lightweight benchmarking, alternative communication 

profiling, and hybrid computation models. 

Table 4. HPCG Benchmark results in the whole Beowulf Cluster: Strong Methodology 

HPCG Benchmark to Beowulf Cluster (1-24 RPi): Strong Methodology - (2 MPI processes per RPi) 
 

Grid Size 
 

Nodes 
Median  

Execution Time 
(sec)  

 
Floating-Point Performance 

(GFLOP/s) 
Memory 

Bandwidth  
(GB/s)  

MPI Communication 
Overhead  

(ExchangeHalo Time)  
128x128x128 1 308.982 0.125213 0.949848 no data 

128x128x128 2 326.075 0.120153 0.911464 no data 

128x128x128 4 310.118 0.124908 0.947536 no data 

128x128x128 8 307.933 0.123759 0.938818 no data 

128x128x128 12 309.606 0.124507 0.944495 no data 

128x128x128 16 306.401 0.123076 0.933642 no data 

128x128x128 24 306.638 0.123183 0.93445 no data 
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Figure 9: HPCG Benchmark to Beowulf Cluster (1-24 RPi): Strong Methodology 

(2 MPI processes per RPi) 

 

3.3.2 HPCG Performance: Weak scaling 
Weak scaling assesses how efficiently a system can solve 

proportionally larger problems as the number of compute nodes 

increases, while keeping the problem size per node constant. 

This methodology mirrors real-world applications where the 

data volume and computational domain grow with the number 

of processors, such as in climate modelling, computational 

fluid dynamics (CFD), and other large-scale scientific 

simulations. It is particularly insightful for identifying: 

- Whether a cluster maintains consistent per-node 

performance as it scales. 

- How communication overhead, memory bandwidth 

saturation, and network latency evolve with scale. 

- The balance between computation and communication, 

which is critical in resource-constrained systems like SBC 

clusters. 

This approach is ideal for evaluating Beowulf clusters built 

with Raspberry Pi 4B nodes, where system limitations are often 

architectural rather than numerical. The test is especially 

relevant here due to the limited memory bandwidth, small 

cache sizes, and lack of high-speed interconnects, which can 

quickly become bottlenecks as the problem grows. 

In this study, the weak scaling experiment was configured by 

proportionally increasing the grid size with node count: 

- 1 RPi runs a 16×16×16 grid. 

- 2 RPi’s run 32×32×32 grid. 

- 4 RPi’s run 64×64×64 grid. 

- 8 RPi’s run 96×96×96 grid. 

- 12 RPi’s run 128×128×128 grid. 

Each test was performed using 2 MPI processes per RPi, a 

configuration carefully chosen to balance memory usage and 

minimize intra-node contention, while still allowing distributed 

computation. In theory, the total execution time should remain 

constant across all configurations if scaling is ideal.  

However, in practice, deviations from this ideal indicate 

performance degradation due to communication costs, cache 

inefficiencies, or memory subsystem stress. These results help 

identify the scalability ceiling of the cluster and provide insight 

into whether more RPi’s add real value or introduce 

inefficiencies. 

On top of the above setup the authors decided to extent the 

measurements in terms of the grid size with node count: 

- 2 RPi runs a 16×16×16 grid. 

- 4 RPi’s run 32×32×32 grid. 

- 8 RPi’s run 64×64×64 grid. 

- 16 RPi’s run 96×96×96 grid. 

- 24 RPi’s run 128×128×128 grid. 

While the first table (1–12 RPi’s) “Table 5”, “Figure 10”, 

“Figure 12” shows how performance evolves in modest cluster 

sizes, the second table (2–24 RPi’s) “Table 6” extends that view 

to larger configurations and validates whether the trends 

(especially saturation points or performance degradation) 

persist at scale “Figure 11”, “Figure 13”. 

Weak scaling is about maintaining consistent execution time as 

problem size and nodes grow, while the extended 

measurements show execution time grows slower than the 

problem size (e.g., from 33s → 306s as problem size grows 

from 16³ → 128³). This validates that your system does not 

scale linearly, but handles growth in a somewhat consistent 

manner until it plateaus. 

In the 2–24 RPi data “Table 6”, memory bandwidth increases 

up to 16 nodes before slightly dropping at 24th node. This is 

important because it identifies the network saturation threshold 

or memory subsystem limitations, which are core issues in edge 

clusters like the one used in this study.  

In terms of Floating-Point Efficiency profile, this highlights 

where adding more nodes does not improve compute 

throughput, possibly due to inter-node communication or 

memory access inefficiencies. 
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Regarding the absence of ExchangeHalo Data, the stable or 

plateauing memory bandwidth and execution time reflect 

hidden communication costs that do not appear in the logs but 

manifest in the performance ceiling.  

Based on the two sets of weak scaling, experiments were 

conducted, one up to 12 nodes (1 RPi per grid increment) 

“Table 5” and one extended up to 24 nodes “Table 6” (2 MPI 

processes per RPi in both sets) the analysis follows: 

- Execution Time Trends: In weak scaling, ideal behavior is 

a flat execution time as grid size and node count scale 

equally. However, both test series show a clear growth in 

median execution time, particularly for the largest grid 

(128x128x128), indicating that the cluster’s efficiency 

declines at scale due to communication and memory 

access costs. 

In the (1–12) RPi test, the execution time rises from 33.1s 

(16x16x16 on 1 node) to 306.9s (128x128x128 on 12 

nodes). 

In the (2–24) RPi test, starts slightly higher at 39.8s 

(16x16x16 on 2 nodes), rising to 306.2s on 24 nodes. 

This indicates early parallel efficiency, but degradation 

becomes apparent past the 96x96x96 grid, due to the 

increased communication and memory stress. 

 

- Floating-Point Performance (GFLOP/s): Floating-point 

performance increases initially as problem size grows, but 

plateaus or slightly drops beyond 8–16 nodes. 

Peak performance in the 1–12 RPi test: 0.1548 GFLOP/s 

at 96x96x96 (8 nodes). 

In the 2–24 RPi test: similar peak at 0.1514 GFLOP/s for 

96x96x96 on 16 nodes. 

This suggests that up to 8–16 nodes, the cluster uses 

computational resources effectively. 

Beyond that, the workload per node becomes too large or 

communication begins to overwhelm compute capacity, 

stalling gains. 

 

- Memory Bandwidth (GB/s): Memory bandwidth increases 

with problem size, but not linearly. 
In the 1–12 RPi case, from 0.76 GB/s (16x16x16) to 1.17 

GB/s (96x96x96), dropping to 0.95 GB/s (128x128x128). 

In the 2–24 RPi case, rises from 0.85 GB/s (16x16x16) to 

1.15 GB/s (96x96x96), then drops again to 0.93 GB/s 

(128x128x128). 

This behavior confirms a memory bandwidth bottleneck 

beyond 8–12 nodes, consistent with the limited LPDDR4-

3200 interfaces of Raspberry Pi 4B.  

 

- MPI Communication Overhead: No ExchangeHalo data is 
reported in either test, due to reasons previously 

established. The halo exchange time may be too small to 

register in short-lived runs. Sparse matrix structures and 

intra-node communication may mask it. This limits the 

ability to analyse interconnect performance, but the flat 

GFLOP/s and execution time increases still suggest 

communication becomes a cost at scale. 

The weak scaling evaluation of the Beowulf cluster built with 

Raspberry Pi 4B devices highlights the system’s scalability 

ceiling under proportionally growing workloads. Performance 

remains relatively efficient up to 8–12 nodes, particularly with 

grid sizes up to 96x96x96, where Execution Time, Floating-

Point Throughput, and Memory Bandwidth scale acceptably. 

However, beyond this point, especially at the (128x128x128) 

grid size, performance degrades significantly. Execution times 

increase, and both GFLOP/s and memory bandwidth plateau or 

decline, indicating saturation of available memory resources 

and increasing communication overhead, even if not explicitly 

captured through ExchangeHalo metrics. These results confirm 

that the cluster’s architecture—constrained by limited memory 

bandwidth, modest processor core frequencies, and non-

specialized networking—can handle modest parallel workloads 

effectively but struggles to scale beyond moderate node counts. 

Thus, weak scaling on Raspberry Pi clusters is feasible for 

educational purposes or lightweight parallel workloads, but 

performance efficiency diminishes rapidly with high node 

counts or larger problem domains. 

Table 5. HPCG Benchmark results to Beowulf Cluster: Weak Methodology - Set 1 

HPCG Benchmark to Beowulf Cluster (1-12 RPi): Weak Methodology - (2 MPI processes per RPi) 
 

Grid Size 
 

Nodes 
Median  

Execution Time 
(sec) 

  

 
Floating-Point Performance 

(GFLOP/s) 

Memory 
Bandwidth  

(GB/s) 
  

MPI Communication 
Overhead  

(ExchangeHalo Time) 
  

16x16x16 1 33.1411 0.100947 0.768492 no data 

32x32x32 2 64.5538 0.132313 1.00517 no data 

64x64x64 4 76.4653 0.122342 0.928398 no data 

96x96x96 8 103.988 0.154783 1.17435 no data 

128x128x128 12 306.952 0.126238 0.957622 no data 
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Table 6. HPCG Benchmark results to Beowulf Cluster: Weak Methodology - Set 2 

HPCG Benchmark to Beowulf Cluster (1-24 RPi): Weak Methodology - (2 MPI processes per RPi) 
 

Grid Size 
 

Nodes 
Median  

Execution Time 
(sec) 

  

 
Floating-Point Performance 

(GFLOP/s) 

Memory 
Bandwidth  

(GB/s) 
  

MPI Communication 
Overhead  

(ExchangeHalo Time) 
  

16x16x16 2 39.8451 0.112065 0.853131 no data 

32x32x32 4 59.4886 0.102924 0.781596 no data 

64x64x64 8 74.8954 0.123911 0.94042 no data 

96x96x96 16 104.347 0.151464 1.14917 no data 

128x128x128 24 306.205 0.123644 0.937946 no data 
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Figure 10: HPCG Benchmark to Beowulf Cluster (1-12 RPi): Weak Methodology Set 1 

(2 MPI processes per RPi) 
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Figure 11: HPCG Benchmark to Beowulf Cluster (2-24 RPi): Weak Methodology Set 2 

(2 MPI processes per RPi) 

 

Figure 12: HPCG Benchmark to Beowulf Cluster (1-12 RPi): Weak Methodology Set 1 

(2 MPI processes per RPi) 
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Figure 13: HPCG Benchmark to Beowulf Cluster (2-24 RPi): Weak Methodology Set 2 (2 MPI processes per RPi) 

4. FUTURE WORK: EDUCATIONAL 

AND EDGE-AI APPLICATIONS 

The findings of this benchmarking analysis can be extended 

beyond traditional high-performance computing into two 

promising domains: educational HPC training and edge-AI 

deployment. In educational settings, Raspberry Pi clusters offer 

a cost-effective and pedagogically rich platform to introduce 

students to core HPC concepts such as distributed memory 

models, MPI programming, memory-bound workloads, and 

performance scaling. By integrating simplified versions of the 

HPCG benchmark, instructors can visualize system 

bottlenecks, foster critical thinking around architecture-aware 
coding, and guide learners through performance diagnostics in 

hands-on environments.  

In parallel, the growing field of edge computing and AI 

inference at the edge can benefit from insights into memory and 

communication limitations highlighted in this study. Many 

real-time edge applications (e.g., smart agriculture, robotics, 

decentralized sensor fusion) involve sparse matrix operations, 

iterative solvers, or lightweight neural networks—workloads 

that share structural similarities with HPCG. Understanding 

how such tasks scale (or fail to scale) on ARM-based multi-

node systems is crucial for designing reliable and energy-

efficient edge solutions. 

Thus, this analysis lays the foundation for future explorations 

into benchmark-guided optimization, hybrid workload 

orchestration, and curriculum development for emerging low-

power HPC use cases in both academia and applied 

engineering. 

5. CONCLUSION 
This study presents a comprehensive benchmarking analysis of 

a Raspberry Pi 4B (8GB) Beowulf cluster using the High-

Performance Conjugate Gradient (HPCG) benchmark. The 

evaluation employed both strong and weak scaling 

methodologies, offering critical insights into the cluster’s 

computational behavior, memory bandwidth limitations, and 

parallel efficiency. 

In the strong scaling experiments, a fixed grid size 

(128x128x128) was distributed across increasing RPi nodes 

counts (1 to 24). The expected ideal of decreased execution 

time with more nodes was not achieved. Instead, execution time 

remained nearly flat, indicating that the performance gains 

from parallelization were offset by inter-process 

communication and synchronization overhead. Floating-point 

performance (GFLOP/s) and memory bandwidth plateaued 

early, confirming that the Raspberry Pi architecture is heavily 

memory-bound, with limited benefit from adding more 

compute nodes beyond (4–8) RPi’s. Additionally, the absence 

of ExchangeHalo data highlighted limitations in capturing 

inter-node MPI communication, possibly due to low halo 

exchange volumes or short runtimes. 

In the weak scaling analysis, both the grid size and number of 

nodes were scaled proportionally to keep the workload per node 

constant. This approach is ideal for assessing the scalability of 

distributed systems in practical large-scale simulations. Results 

revealed that execution time scaled modestly, with noticeable 

increases only at larger node counts (e.g., 12 or 24). GFLOP/s 

and memory bandwidth showed fluctuations but remained 

relatively stable across scales, reinforcing the memory-

constrained nature of the system. The cluster-maintained 

performance consistency up to moderate sizes but exhibited 

saturation and efficiency drop-offs at higher scales, particularly 

under (128x128x128) workloads. 

Overall, the Raspberry Pi Beowulf cluster demonstrates 

respectable computational stability and scalability under 

constrained conditions, but it is fundamentally limited by low 

memory bandwidth, lack of hardware floating-point 

acceleration, and Gigabit Ethernet interconnection. These 

findings are particularly valuable for evaluating low-cost 

clusters in education, edge computing, and exploration of HPC 

environments, where affordability and accessibility are 

prioritized over raw performance. The analysis offers a 
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methodological foundation for future studies involving 

optimization, interconnect improvements, or hybrid workloads 

involving AI or real-time edge applications. 
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