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ABSTRACT

In this paper, the functional variable method is utilized to derive
analytical solutions for the (2 + 1)-dimensional time-fractional
Zoomeron equation and the space-time fractional modified reg-
ularized long-wave equation, based on the Jumarie’s modified
Riemann-Liouville derivative. The given equations are transformed
into nonlinear ordinary differential equations of integer order,
which are then solved using the proposed functional variable
method, a novel analytical approach. Consequently, several exact
solutions are successfully obtained. The results demonstrate that
the proposed method is both efficient and easy to implement.
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1. INTRODUCTION

Fractional differential equations (FDEs) have drawn considerable
interest in recent years, as they are increasingly employed to model
complex nonlinear phenomena in fields such as physics, biol-
ogy, mathematics, economics, engineering, and other scientific ar-
eas. Many real-world systems are formulated using FDEs, mak-
ing the study of their exact solutions essential for scientific re-
search.Fractional partial differential equations are a generalized
form of nonlinear partial differential equations. They play a cru-
cial role in understanding and analyzing nonlinear phenomena in
applied sciences.

In recent decades, numerous researchers have successfully in-
vestigated the exact solutions and analytical approximations of
nonlinear Fractional differential equations (FDEs). Many semi-
analytical and analytical methods, such as modified extended tanh
function method [1], modified Kudryashov method [2] and g-
homotopy analysis transform method [10], the modified (G’/G)-
expansion method [4], the improved Bernoulli sub-equation func-
tion method (3], the Kudryashov method [6], the sine-Gordon ex-
pansion method [23] [7, [13],the first integral method [9, [10], the
extended trial equation method [22], the (G’/G, 1/G)-expansion
method [34], the improved F-expansion method [35], the modi-
fied simple equation method [15.[16], the improved Bernoulli sub-
equation function method [[17]], the Darboux transformation method
[L8} 119, 120], fractional subequation method [21]], modified trial

equation method [22]], etc. have been employed for obtaining new
exact solutions of the nonlinear partial diffferential equations in-
cluding integer and fractional orders.

A powerful and effective method for finding exact solutions of non-
linear partial differential equations, known as the functional vari-
able method, was proposed by Zerarka et al. in [23| 24]]. More re-
cently, Babajanov [25] 26| 2'7]] applied this method to obtain soliton
solutions for various differential equations. In [28], Jumarie intro-
duced a modified Riemann?Liouville derivative. Using this type of
fractional derivative along with some useful formulas, fractional
differential equations can be transformed into integer-order differ-
ential equations through variable transformation.

This study aims to highlight the effectiveness of the functional
variable method and the modified Riemann?Liouville derivative in
solving nonlinear time-fractional differential equations to obtain
exact solitary wave solutions, periodic wave solutions, and com-
bined formal solutions.

The rest of this paper is structured as follows. In section 2, we
proposed the basic idea of the method for finding exact travelling
wave solutions of nonlinear time-fractional differential equations.
In section 3, we established the exact travelling wave solution for
the (2+1)-dimensional time fractional Zoomeron equation and the
space-time fractional modified regularized long-wave equation. Fi-
nally, Sections 4 and 5 present the graphical representations of the
equations and the conclusions, respectively.

2. JUMARIE’S MODIFIED RIEMANN-LIOUVILLE
DERIVATIVE AND THE FUNCTIONAL
VARIABLE METHOD

Jumarie’s modified Riemann-Liouville derivative of order « is de-
fined as [29]:
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where f : R — R,z — f(z) denote a continuous (but not nec-
essarily differentiable) function. We list some important properties
for Jumarie’s fractional derivative as
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Drawing inspiration from the works of Lu [30] and Zerarka et al.
[31], we present the functional variable method for obtaining ex-
act solutions of nonlinear time-fractional differential equations, as
described below.

Let us consider the time-fractional differential equation with inde-
pendent variables ¢, x, vy, z, ... and a dependent variable u
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where the subscript denotes partial derivative. Using the variable
transformation
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where a; and w are constants to be determined later; the fractional

differential equation (1) is reduced to an ordinary differential equa-
tion (ODE)

u(t,z,y,2,...) =U((), E=arx+ay+azz+..*

QU,U¢,U¢c,Uc¢c,...) =0 2)

Then we make a transformation in which the unknown function U
is considered as a functional variable in the form

U= F(U) 3)

and some successive derivatives of U are
1 /
Uee = 5 (F*(U))

F2(U) 4

1
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and so on, where ' = d/dU
Substituting (4) into (2), we reduce the ODE (2) in terms of U, F'
and its derivatives as

Usge = %(F%U))”
(F
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Equation (5) is particularly important because it admits analytical
solutions for a large class of nonlinear wave-type equations. After
integration, eq. (5) provides the expression for F, and this together
with eq. (3) give relevant solutions to the original problem. In or-
der to illustrate how the method works, we examine some examples
treated by other approaches. This is discussed in the following sec-
tion.
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3. APPLICATIONS

3.1 The (2+1)-dimensional time fractional Zoomeron
equation

In this subsection, we employ the Functional Variable
Method(FVM) to obtain general exact solutions of the time
fractional Zoomeron equation, which has been proposed as follows

o3 (M) - (%2) 4297 (u?), =0, t>0,0<a<l
u u Tx

(6)
where v = wu(x,y,t) is the amplitude of the relevant wave
mode. Equation [f] plays a significant role in describing the evo-
lution of a single scalar field and serves as a useful model for
showcasing novel phenomena associated with boomerons and
trappons [32]]. This equation was initially introduced by Calogero
and Degasperis [33]]. In the past, many researchers have studied
both the integer and fractional forms of the Zoomeron equation
[34L 13501361137, 138, 139].

Let us consider the travelling wave solutions of Eq. (6), and we
perform the transformation:

wt®

t)y=U = by — ————
u(z,y,t) =U((), ¢=az+by T +a)
where a, b and w are constants.
Substituting transformation (7) with (1) into Eq.(6). Then Eq. (6)

can be reduced to an ODE in the following form:

@)

" "

abw? <[[]]> —a®b <[[JJ> —2aw(U?)" =0 (8)

Integrating Eq. (8) twice with respect to ¢, we get

ab(w? — a®)U" = 2awU? — kU =0 )
where, primes denote differentiation with respect to ¢ and k is a
non zero constant of integration, while the second constant of inte-
gration is vanishing.
Substituting eq.[dinto eq.[9] we get

ab(w? —a

2
Integrating the Eq. [I0] with respect to U with zero constants of in-

tegration, we have
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From eq. @ and[TT] we deduce that
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where (j is a constant of integration. After 1ntegrat1ng@ we have
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the following exact solutions, for ﬁ > 0:
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where (o is a constant of integration. After integrating[23] we have
tSa]following exact solutions, for % > 0:
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For m < 0, we obtain periodic solutions as follows: b cw 1+ a) 1+ o)
(24)
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a r > < 0, we obtain periodic solutions as follows:
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3.2 The space-time fractional modified regularized 26)
long-wave equation
We next consider the space-time fractional modified regularized — — « «
long-wave equation (mRLW) [40] up.a(,t) = j:\/ 6(0-;)-1- a) sec [\/ (w+a) (F(1w+ ) n wr(1t+ ;-
cw @ e
27

D+ aD2u + bulD%u — DDy =0, 0<a <1 (17)

where a, b, c are arbitrary constants. The regularized long wave 4. GRAPHICAL REPRESENTATION
model is a fundamental and significant model in nonlinear science,

first introduced by Peregrine [41]]. This model proves to be valuable
in explaining various nonlinear phenomena across different scien-
tific and engineering fields, including pressure waves in liquids, gas
bubbles, ion-acoustic and hydrodynamic waves in plasma, phonon
packets in nonlinear crystals, and longitudinal dispersive waves in
elastic rods, among others.

Let us introduce the following transformations:

@ @

x
t)y=U = 18
Here w is a non-zero constant. Substituting [[§]into [T7} we get the
following ODE: 5
(w+a)U +bUU - cwlU" =0 (19) ‘ k
Further, integratingwith respect to ¢, we get ENEEERPAERETANN Toowh
b, p '
(w+a)U + §U —cwlU =0 (20) 2
Substituting eq.[dinto eq. 20} we get 5
E(FZ(U))’ = (w4 a)U + 9U3 e2)) Fig.1: 3D and 2D plot of uy 1 (z, t) given in Eq.[T3|with
2 3 a=Lb=1lw=2a=05k=-8y=0,G=0.

Integrating the Eq. 21] with respect to U with zero constants of in-
tegration, we have
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From eq. [ and 22] we deduce that
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Fig.2: 3D and 2D plot of u; »(z,
witha =1,b=1,w =2, = 0.5,k

t) given in Eq.
= _87y :07CO =0.
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Fig.3: 3D and 2D plot of u; 3(z,t) given in Eq. [15|with
a=1b=1,w=2,a0a=05,k=—-8y=0,( =0.
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Fig.4: 3D and 2D plot of u; 4(z, t) given in Eq. with
a=1b=1lw=2a=05k=-8y=0,(=0.

Fig.5: 3D and 2D plot of us 3 (z,t) given in Eq. 24 with
a=b=c=1,w=2,aa=0.5,(y =0.
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Fig.6: 3D and 2D plot of us »(z, t) given in Eq. With
a=b=c=1Lw=2,a0a=0.5,(, =0.
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Fig.7: 3D and 2D plot of us 3(z, t) given in Eq.with
a=b=c=1,w=2,a=0.5,(y =0.
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Fig.8: 3D and 2D plot of us 4(z, t) given in Eq.with
a=b=c=1l,w=2,a0a=0.5,(, =0.

We have provided graphs of solitary waves for equations [6| and
created by selecting suitable values for the relevant parameters,
to better understand the mechanisms behind the original physical
phenomena. Graphical representations are a powerful tool for com-
munication, effectively illustrating the solutions to these problems.
These graphs are displayed in Fig.1 to Fig.8. Solitary and periodic
wave solutions are significant types of solutions for nonlinear par-
tial differential equations, as many such equations exhibit various
solitary wave solutions. Solitons, a specific class of solutions to
nonlinear partial differential equations with weak linearity, are fre-
quently used to model physical systems. The existence of periodic
traveling waves generally depends on the parameter values in the
mathematical equations, with these parameters affecting both am-
plitude and velocity. A soliton is a self-sustaining wave packet that
retains its shape while traveling at a constant velocity.

S. CONCLUSION

In this paper, the functional variable method and the modified Rie-
mann?Liouville derivative are introduced for solving the (2 + 1)-
dimensional time-fractional Zoomeron equation and the space-time
fractional modified regularized long-wave equation. It is antici-
pated that the solutions obtained in this study will be valuable for
further exploration of complex nonlinear physical phenomena. This
method provides a promising approach for solving a wide range of
fractional partial differential equations and serves as a reliable tech-
nique for handling nonlinear fractional differential equations.
Additionally, this method is straightforward, concise, and espe-
cially well-suited for computer implementation. The algebraic
complexities and extensive calculations were effectively managed
using the symbolic computation software Mathematica. As a re-
sult, this approach can be extended to tackle nonlinear problems in
soliton theory and other related areas.
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