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ABSTRACT
Recommender systems (RSs) have become indispensable in vari-
ous domains to mitigate information overload by providing person-
alized suggestions. While traditional RSs primarily focus on accu-
racy (e.g., rating prediction), modern applications demand consid-
eration of business-centric objectives such as profit, user engage-
ment, and long-term revenue. Utility-based recommender systems
aim to optimize these objectives by integrating utility measures
into recommendation models. Moreover, high-utility pattern min-
ing (HUPM) techniques have emerged as powerful tools to iden-
tify patterns that maximize user engagement or profit in large-
scale clickstream data. This survey presents a comprehensive re-
view of utility-based and high-utility pattern mining approaches
in RSs. We categorize existing methods, discuss underlying the-
oretical foundations, analyze their strengths and limitations, and
outline open challenges and future research directions. The survey
covers utility function design, algorithmic advances in HUPM, hy-
brid frameworks combining collaborative and content-based fea-
tures with utility optimization, scalability considerations in big
data contexts, and evaluation metrics beyond accuracy. Finally,
we highlight emerging trends such as deep learning integration,
fairness-aware utility modeling, and real-time recommendation un-
der utility constraints. This survey aims to serve as a reference for
researchers and practitioners seeking to develop next-generation
RSs that balance accuracy, business value, and user satisfaction.

General Terms
Recommender Systems, High-Utility Pattern Mining

Keywords
Recommender Systems, Utility-Based Recommendation, High-
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1. INTRODUCTION
The proliferation of digital content on e-commerce platforms, so-
cial networks, streaming services, and news portals has led to
an overwhelming volume of information. Recommender systems
(RSs) address this challenge by filtering and presenting person-
alized item suggestions based on user preferences and behavior
[1, 2, 3, 4]. Traditional RSs focus primarily on accuracy metrics
such as RMSE for rating prediction or precision/recall for top-N
recommendations. However, business objectives like profit max-
imization, user engagement, and long-term revenue often remain
unaddressed [5]. Utility-based recommender systems (UBRSs) in-
corporate explicit utility measures—such as profit margin, service
cost, or expected user engagement—into the recommendation pro-
cess to optimize both user satisfaction and business objectives [5].
High-utility pattern mining (HUPM) extends frequent pattern min-
ing by assigning utility values (e.g., profit, weights, or engagement
scores) to items or itemsets, enabling the discovery of patterns that
maximize the overall utility in transactional or sequential data [11].
HUPM techniques have been applied to clickstream data to uncover
high-engagement or high-revenue patterns for session-based rec-
ommendations [11].
This survey provides a comprehensive review of utility-based rec-
ommendation and HUPM techniques in the RS domain. We cate-
gorize and analyze existing methodologies, discuss practical chal-
lenges, and highlight open research directions. Specifically, we ad-
dress:

—Utility Function Design: Taxonomies of utility measures,
single- and multi-objective utility formulations, and domain-
specific utility definitions.

—High-Utility Pattern Mining: Algorithmic developments in
transactional and sequential HUPM, MapReduce-based scalable
frameworks, and applications to clickstream data.
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—Hybrid RS Frameworks: Approaches that combine content-
based, collaborative, and utility-based components; rule-based
and probabilistic generalization methods; and methods for ad-
dressing cold-start and data sparsity.

—Scalability and Big Data: Distributed and parallel implementa-
tions, real-time utility estimation, and incremental learning.

—Evaluation Metrics and Protocols: Beyond accuracy—utility
gain, diversity, novelty, fairness, and business-oriented KPIs.

—Applications and Case Studies: E-commerce, online news,
streaming services, and other domains where utility-driven RSs
have shown impact.

—Challenges and Future Directions: Ethical considerations,
fairness-aware utility modeling, deep learning integration, user
privacy, and interpretability.

The rest of this paper is organized as follows. Section 2 provides
background on RS paradigms and utility modeling. Section 3 dis-
cusses HUPM techniques and their integration into RSs. Section 4
presents hybrid approaches and system architectures. Section 5 re-
views scalability strategies in big data contexts. Section 6 covers
evaluation metrics for utility-based RSs. Section 7 surveys applica-
tion domains and case studies. Section 8 outlines open challenges
and future research directions. Finally, Section 9 concludes the sur-
vey.

2. BACKGROUND ON RECOMMENDER
SYSTEMS AND UTILITY MODELING

This section introduces foundational concepts in RSs, utility theory,
and the motivation for utility-based approaches.

2.1 Recommender System Paradigms
RSs are generally classified into three categories:

(1) Content-Based Filtering (CBF): Recommends items similar
to those a user has liked based on item features (e.g., tex-
tual metadata, attributes) [2]. Typical algorithms include vector
space models, TF–IDF, and machine learning classifiers.

(2) Collaborative Filtering (CF): Leverages historical interac-
tions (ratings, clicks) across users to predict preferences for a
target user [3]. CF methods include neighborhood-based (user-
or item-based) and model-based techniques (matrix factoriza-
tion).

(3) Hybrid Methods: Combine CBF and CF or incorporate addi-
tional signals (e.g., utility, social, contextual) to enhance rec-
ommendation quality [4].

While these paradigms focus on predicting user preferences, they
typically optimize for accuracy metrics such as RMSE for ratings
or precision/recall for top-N recommendations. This narrow focus
can conflict with business goals that require balancing multiple ob-
jectives [5].

2.1.1 Table: RS Paradigms and Characteristics.

2.2 Utility Theory in Recommender Systems
Utility quantifies the satisfaction or benefit derived from an out-
come. In RSs, utility functions capture both user-centric satisfac-
tion and business objectives.

Table 1. : Comparison of RS Paradigms

Paradigm Data Source Pros Cons

Content-Based Item features
(e.g., meta-
data)

No cold-start
for items,
interpretable

Limited
serendipity,
feature engi-
neering

Collaborative User-item
interactions

High accuracy,
no feature ex-
traction

Cold-start
for new
users/items,
sparsity

Hybrid Both item fea-
tures and inter-
actions

Mitigates
weaknesses of
CBF/CF

Increased com-
plexity, param-
eter tuning

2.2.1 Utility Function Definition. Formally, let U(u, i) denote
the utility of recommending item i to user u. Utility may incor-
porate:

—Item-Driven Utilities B(i): Business value per item, such as
profit margin, commission, or inventory considerations [6, 7].

—User-Driven Utilities R(u, i): User-centric measures like pre-
dicted rating, engagement probability, or dwell time [6, 7].

—Contextual Utilities: Situational factors (e.g., time, location, de-
vice) that influence utility [8].

Table 2. : Taxonomy of Utility Measures in RSs

Type Description Examples

Monetary Util-
ities

Measures fi-
nancial value
generated by
item consump-
tion

Profit margin,
commission,
revenue

Engagement
Utilities

Measures user
engagement
and satisfac-
tion

Clicks, dwell
time, conver-
sion rate

Hybrid Utili-
ties

Composite
metrics
combining
monetary and
engagement

Weighted sum
of profit and
dwell time

Contextual
Utilities

Adjusted util-
ity based on
situational fac-
tors

Time-decay,
location bias,
device prefer-
ence

2.2.2 Table: Taxonomy of Utility Measures.

2.2.3 Motivation for Utility-Based Approaches. Traditional
accuracy-driven RSs can produce recommendations that are
suboptimal for business objectives. For instance, a highly relevant
item with low profit margin may be preferred by accuracy-focused
methods but may not maximize revenue. Utility-based RSs inte-
grate utility functions into model training or post-processing [11].
Applications demanding utility-based recommendations include:

—E-commerce: Recommending products that maximize expected
profit or cross-selling potential [9].

—Online News: Suggesting articles that optimize click-through
rate (CTR) or advertising revenue [8].

—Streaming Media: Recommending content to increase watch
time or subscription retention [10].
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3. HIGH-UTILITY PATTERN MINING
TECHNIQUES

HUPM extends traditional frequent pattern mining by consider-
ing utility values (e.g., profit or engagement) associated with items
or itemsets. This section reviews both transactional and sequential
HUPM approaches, discusses algorithmic innovations, and high-
lights applications in RSs.

3.1 Problem Definition
Given a transactional database D, where each transaction Tk =
{(i1 : qk,1), (i2 : qk,2), . . .} includes items ij with internal utility
(e.g., quantity or weight) qk,j , and each item ij has an external
utility p(ij) (e.g., unit profit), the utility of an item ij in Tk is:

u(ij , Tk) = p(ij)× qk,j .

The utility of an itemset X ⊆ Tk is:

u(X,Tk) =
∑
ij∈X

u(ij , Tk).

The transactional utility of Tk is tu(Tk) =
∑

ij∈Tk
u(ij , Tk). The

utility of X in D is:

U(X) =
∑

Tk∈D,X⊆Tk

u(X,Tk).

An itemset X is a high-utility itemset (HUI) if U(X) ≥ δ, where δ
is a user-defined minimum utility threshold [11].

3.2 Transactional HUPM Algorithms
Initial HUPM algorithms adapted Apriori-based frameworks but
suffered from excessive candidate generation and multiple database
scans. Key advancements include:

—Two-Phase Apriori-Based Methods: Candidate generation
with transaction-weighted utility (TWU) pruning [12].

—Utility-List Based Methods: HUI-Miner and FHM construct
utility-lists for direct mining in a single database scan [12, 13].

—UP-Growth Family: UP-Tree pattern-growth reduces database
scans using a compressed tree structure; UP-Growth+ further
improves threshold raising [12].

—EFIM: Employs EUCP and RL pruning for near-linear scalabil-
ity [14].

—Parallel Frameworks: BigHUSP uses MapReduce, while
PHUI-Miner leverages MPI for distributed HUI mining [15, 16].

Table 3. : Transactional HUPM Algorithms

Algo. Key Idea Data Structure Complexity

Two-Phase Apriori
[11]

Kand. gen. w/ TWU-
pruning

TWU bound Multiple scans

HUI-Miner [12] Utility-list const., di-
rect mining

Utility-lists Single scan

UP-Growth [12] UP-Tree pattern
growth

UP-Tree Compressed search

UP-Growth+ [12] Improved threshold
raising

UP-Tree Lower overestima-
tion

FHM [13] Fast utility mining w/
utility-lists

Utility-lists Optimized merging

EFIM [14] EUCP + RL pruning Utility-lists Near-linear scale
BigHUSP [15] MapReduce-parallel

mining
Dist. utility-lists Scales to big data

PHUI-Miner [16] MPI-based high-
utility mining

Utility-lists For HPC clusters

3.2.1 Table: Transactional HUPM Algorithm Comparison.

3.3 Sequential and Clickstream HUPM
Sequential HUPM extends transactional HUPM to ordered data
(e.g., purchase sequences, clickstreams). A sequence database S
contains sequences sk = ⟨(ik,1, qk,1), (ik,2, qk,2), . . .⟩, where item
utilities and sequence order are significant. The utility of a sequence
pattern P in S is defined similarly to transactional HUPM, with or-
dering constraints [17].
Significant sequential HUPM algorithms include:

—HUS-Span: Adapts PrefixSpan to high-utility sequential pattern
mining [17].

—HUSP-ALL: Employs utility-lists for sequential data [18].

Table 4. : Sequential HUPM Algorithms

Algo. Key Idea Data Struc-
ture

Complexity

HUS-Span
[17]

PrefixSpan
adaptation w/
utility con-
straints

Utility-linked
projected
databases

Depth-first
search

HUSP-ALL
[18]

Utility-list
based sequen-
tial mining

Sequential
utility-lists

Single-scan
sequential
processing

3.3.1 Table: Sequential HUPM Algorithms.

3.4 Integration of HUPM into Recommender Systems
Integrating HUPM into RSs typically involves three steps:

(1) Utility Modeling: Define item or session utilities (e.g., profit,
dwell time) suitable for the application domain.

(2) Pattern Mining: Execute transactional or sequential HUPM
algorithms to extract high-utility itemsets or sequential pat-
terns (rules).

(3) Recommendation Engine: Translate discovered patterns into
recommendation rules, possibly incorporating probabilistic
generalization (e.g., topic modeling) to address cold-start and
sparsity.

3.4.1 Example: URecSys. URecSys [20] mines high-utility
article-level and topic-level sequential patterns from clickstream
logs. It then ranks candidate articles by expected utility (e.g., ad
revenue, dwell time) and delivers personalized news feeds.

4. HYBRID RECOMMENDER SYSTEM
ARCHITECTURES

Hybrid RS frameworks combine multiple recommendation
paradigms—content-based, CF, rule-based, and utility-based—to
leverage their complementary strengths [4]. Key categories include:

(1) Weighted CF + Utility Models: Incorporate cost or utility ma-
trices into CF [21].

(2) Rule-Based Recommendation with Utility Optimization:
Extract rules from HUPM and optimize utility constraints [20].

(3) Feature-Augmented Matrix Factorization: Augment MF
with utility or business features [22].

(4) Deep Learning-Based Hybrid Approaches: Use neural ar-
chitectures to integrate utility signals [23].

(5) Context-Aware Hybrid Recommenders: Leverage contex-
tual features and HUPM for recommendations [24].
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Table 5. : Comparison of Hybrid RS Architectures

Approach Components Utility Inte-
gration

Pros/Cons

Weighted CF +
Utility [21]

User-item CF,
utility matrix

Utility weights
in CF loss
function

Pros: Improves
business KPIs;
Cons: Requires
accurate utility
labels

Rule-Based +
Utility [20]

HUPM rules,
ranking model

Utility-driven
rule selection
and ranking

Pros: Explain-
able; Cons:
Rule sparsity
issues

MF + Utility
Features [22]

Matrix fac-
torization,
business fea-
tures

Utilities as side
information in
latent factors

Pros: Captures
latent utility
signals; Cons:
Complex
model tuning

Deep Learning
Hybrid [23]

Neural CF,
utility embed-
ding

Utility em-
beddings
integrated in
neural net

Pros: Flexible
representation;
Cons: High
training cost

Context-Aware
Hybrid [24]

Context fea-
tures, HUPM
patterns

Contextual
utilities in rec-
ommendation
model

Pros: Captures
situational
effects; Cons:
Context spar-
sity

4.0.1 Table: Hybrid RS Architecture Comparison.

5. SCALABILITY AND BIG DATA
CONSIDERATIONS

Large-scale RSs must handle massive user bases, voluminous
item catalogs, and high-velocity interaction logs. Utility-based and
HUPM techniques exacerbate scalability challenges due to addi-
tional computations. This section reviews distributed and parallel
strategies, real-time utility estimation, and incremental learning.

5.1 Distributed and Parallel HUPM
5.1.1 MapReduce-Based Frameworks. BigHUSP implements
HUSP-ALL over MapReduce, processing clickstream sessions in
parallel [15].

5.1.2 GPU-Accelerated Mining. GPU-accelerated HUPM algo-
rithms leverage utility-list parallelism to accelerate mining tasks
[25].

Table 6. : Distributed/Parallel HUPM Frameworks

Framework Platform Technique Scalability

BigHUSP [15] Hadoop
MapReduce

Distributed
utility-list-
based mining

Scales to very
large clusters

PHUI-Miner
[16]

MPI (HPC
clusters)

Parallel utility-
list merging

Efficient on
medium-scale
HPC

GPU-HUPM
[25]

CUDA GPU Parallel utility-
list operations

Speedup of
10–20× over
CPU

5.1.3 Table: Distributed and Parallel HUPM Solutions.

5.2 Incremental and Real-Time Utility Estimation
In dynamic environments, new user interactions and items arrive
continuously, necessitating incremental updates of utility models
and HUPM results.

5.2.1 Incremental Frameworks

—IncUP-Growth [26]: Extends UP-Growth for incremental up-
dates by maintaining an updated UP-Tree as new transactions
arrive.

—Sliding Window Approaches: Maintain HUPM results over a
sliding window of recent transactions to adapt to evolving user
behavior.

—Real-Time Utility Computation: Approximate utility estimates
using sampling or sketch-based methods to avoid full re-mining
[27].

Table 7. : Incremental High-Utility Pattern Mining Methods

Method Base Algo-
rithm

Update Mech-
anism

Complexity

IncUP-Growth
[26]

UP-Growth Incrementally
update UP-
Tree

Partially in-
cremental,
O(∆T )

Sliding Win-
dow HUPM

HUI-Miner,
FHM

Recompute on
window shift

Window-size
dependent

Approximate
HUPM [27]

EFIM Sample-based
utility approxi-
mation

Sublinear un-
der sampling

5.2.2 Table: Incremental HUPM Methods.

5.3 Efficient Utility Computation in RS Pipelines
Integrating utility estimation into large-scale RS pipelines requires
careful resource management.

5.3.1 Techniques

—Precomputation and Caching: Utility values (e.g., profit mar-
gins, predicted engagement) are precomputed offline and cached
to avoid on-the-fly computation during recommendation [24].

—Approximate Utility Estimation: Techniques using sampling
or sketches to approximate high-utility patterns when exact com-
putation is infeasible [27].

—Online vs. Offline Trade-offs: Balance between batch HUPM
(high accuracy) and incremental/approximate approaches (low
latency).

6. EVALUATION METRICS FOR UTILITY-BASED
RECOMMENDER SYSTEMS

While accuracy metrics (e.g., precision, recall, RMSE) remain im-
portant, utility-based RSs require specialized evaluation measures
that reflect business objectives and user satisfaction. This section
surveys prevalent metrics and evaluation protocols.

6.1 Utility-Oriented Metrics

—Expected Profit (EP): Sum of item profit values for recom-
mended items that the user actually interacts with. Let Ru be
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the recommendation list for user u, and Iu be the set of items
consumed. Then:

EP =
∑
u

∑
i∈Ru∩Iu

profit(i).

—Normalized Utility Gain (NUG): Utility of recommended items
normalized by the maximum possible utility in a given list length
[20]. If Umax is the maximum utility attainable, then:

NUG =

∑
u

∑
i∈Ru∩Iu U(u, i)∑

u
Umax

.

6.2 Traditional Recommendation Metrics
Accuracy and ranking metrics remain essential:

—Precision@K and Recall@K: Fraction of relevant items in the
top-K recommendations.

—Mean Average Precision (MAP)@K [3]: Average precision at
ranks where relevant items occur.

—Normalized Discounted Cumulative Gain (NDCG)@K: Cap-
tures ranking quality with position-based discounting.

6.3 Diversity and Novelty
Utility-based RSs should avoid overly homogeneous recommenda-
tions that may increase profit but degrade user satisfaction. Metrics
include:

—Intra-List Diversity (ILD) [3]: One minus the average pairwise
similarity between items in a recommendation list.

—Novelty: Measures how unexpected the recommendations are,
often computed as the inverse popularity of recommended items.

6.4 Fairness and Ethical Metrics
In utility-driven RSs, optimizing for profit can introduce biases or
unfairness. Metrics for fairness include:

—Exposure Bias [35]: Measures distributional equity of item ex-
posure among suppliers or categories.

—Aggregate Diversity: The proportion of unique items recom-
mended across the entire user base.

—Provider Fairness: Ensures that smaller or less popular
providers receive a fair share of exposure [34].

6.4.1 Table: Evaluation Metric Comparison.

7. APPLICATIONS AND CASE STUDIES
Utility-based and HUPM-driven RSs have been applied across var-
ious domains. We present representative case studies illustrating
their effectiveness.

7.1 E-commerce Product Recommendation
7.1.1 Profit-Aware Recommendation. Tang et al. propose a two-
stage CF model where the first stage generates candidate items
based on user preferences, and the second stage re-ranks candidates
to maximize expected profit [9]. Their approach improves overall
revenue by 15% compared to accuracy-only methods.

7.1.2 Cross-Selling via High-Utility Itemsets. Liu et al. employ
sequential HUPM on transactional purchase logs to discover high-
utility itemsets for cross-selling strategies [19]. By recommend-
ing items that frequently co-occur with high profit margins, click-
through rates increased by 12%.

Table 8. : Evaluation Metrics for Utility-Based RSs

Metric Description Formula /
Note

Expected
Profit

Sum of profits
from user in-
teractions

EP =∑
u

∑
i∈Ru∩Iu

profit(i)

Normalized
Utility Gain

Utility relative
to optimal

NUG =∑
u

∑
i∈Ru∩Iu

U(u,i)∑
u

Umax

Precision@K Fraction of rel-
evant items in
top-K

|{i∈Ru:i∈Iu}|
K

Recall@K Fraction of rel-
evant items re-
trieved

|{i∈Ru:i∈Iu}|
|Iu |

NDCG@K Discounted
gain of ranking
positions

DCG =∑K

i=1

2rel(i)−1
log2(i+1)

ILD Intra-list diver-
sity across all
pairs

1 −
1

K(K−1)

∑
i̸=j

sim(i, j)

Exposure Bias Equity of item
exposures

Variance or
Gini-based
measurement
over exposures

Table 9. : E-commerce Case Studies

Study Method Dataset
Outcome

Tang et al. [9] Two-stage
CF + Profit
re-ranking

Retail trans-
actions (1M
records)

+15% revenue
gain
Liu et al. [19] Sequential

HUPM for
cross-selling

Online retail
logs (500K
sessions)

+12% CTR for
cross-sell
Pham et al.
[18]

Contextual
HUPM with
time window

E-commerce
browsing logs
(2M events)

+10% profit
uplift

7.1.3 Table: E-commerce Case Study Summary.

7.2 Online News Recommendation
7.2.1 URecSys: Rule-Based Utility-Driven News RS. Kumar and
Thakur present URecSys, which extracts high-utility sequential
patterns from clickstream data to recommend news articles that
maximize engagement and ad revenue [20]. In a real-world deploy-
ment on a major news portal, URecSys improved CTR by 9% and
overall ad revenue by 7%.

7.2.2 Engagement-Optimized News Feed. Yi et al. integrate
dwell time into a CF framework, weighting user–item interactions
by predicted engagement to optimize personalization [10]. This
method increased average session length by 12%.

7.2.3 Table: Online News Case Studies.

7.3 Streaming Media Recommendation
7.3.1 Deep Reinforcement Utility Optimization. Zhang et al. de-
velop a deep reinforcement learning (DRL) framework that learns
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Table 10. : Online News Case Studies

Study Method Dataset Outcome

Kumar &
Thakur [20]

URecSys
(HUPM +
Rule-based)

News click-
streams (1.2M
sessions)

+9% CTR,
+7% ad rev-
enue

Yi et al. [10] Dwell time-
weighted CF

News logs
(800K reads)

+12% session
length

Liang et al.
[24]

Contextual
HUPM news
RS

Multi-source
news logs
(2.5M events)

+8% engage-
ment utility

policies to recommend content by maximizing long-term watch
time and ad revenue [23]. Their method outperformed baseline CF
by 14% in watch time and 10% in ad revenue on a real streaming
platform dataset.

7.3.2 Sequential HUPM for Watch Sequence Mining. Liu et al.
apply HUS-Span to 10 million watch sessions to mine high-utility
watch sequences for content recommendation [?]. They improved
overall watch time by 11% and subscription retention by 5%.

Table 11. : Streaming Media Case Studies

Study Method Dataset Outcome

Zhang et al.
[23]

DRL for utility
optimization

Streaming logs
(5M sessions)

+14% watch
time, +10% ad
revenue

Liu et al. [?] HUS-Span on
watch sessions

Video platform
(10M sessions)

+11% watch
time, +5%
retention

Pham et al.
[18]

Time-aware
HUPM for rec-
ommendation

Streaming
service logs
(3.5M events)

+9% engage-
ment utility

7.3.3 Table: Streaming Media Case Studies.

7.4 Location-Based and Context-Aware
Recommendation

7.4.1 Restaurant Recommendations with Utility Constraints. Xu
et al. propose a context-aware RS for restaurant recommendation,
incorporating user preferences, profit margins, and seasonal trends
[37]. They achieved a 13% increase in reservation conversions.

7.4.2 Travel Package Recommendation. Wang et al. integrate
user preferences, profit margins, and seasonal constraints to rec-
ommend travel packages that maximize platform revenue and user
satisfaction [33]. The system improved booking rates by 12%.

Table 12. : Contextual and Location-Based Case Studies

Study Method Dataset Outcome

Xu et al. [37] Contextual
HUPM for
restaurants

Dining logs
(400K visits)

+13% reserva-
tion conversion

Wang et al.
[33]

Hybrid utility-
driven travel
RS

Travel book-
ings (250K)

+12% booking
rate

Pham et al.
[18]

Contextual
multi-utility
HUPM

Mixed domain
logs (800K
events)

+10% com-
bined utility
uplift

7.4.3 Table: Location-Based/Contextual Case Studies.

8. CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

Despite extensive progress, utility-based and HUPM-driven RSs
face several open challenges. We highlight key areas for future ex-
ploration.

8.1 Fairness, Accountability, and Transparency
Optimizing utility (e.g., profit) can exacerbate biases, disadvantag-
ing niche content or less popular suppliers. Future work should:

—Develop Fairness-Aware Utility Models: Incorporate fairness
constraints to balance utility and equitable exposure [34, 36].

—Accountability Mechanisms: Ensure transparent decision-
making paths for stakeholders, including explainable utility in-
fluences.

—Bias Detection and Mitigation: Develop metrics and methods
to identify and correct systematic biases introduced by utility op-
timization.

8.2 Privacy-Preserving Utility Modeling
Utility-based RSs often require sensitive business data (e.g., profit
margins) and user engagement logs, raising privacy concerns. Re-
search directions include:

—Federated Utility Learning: Learn utility models in a decen-
tralized manner without sharing raw data [29].

—Differentially Private HUPM: Apply DP mechanisms to
HUPM algorithms to preserve privacy [30].

—Secure Multi-Party Computation (SMPC): Enable collabora-
tive utility computation across stakeholders without data leakage
[28].

8.3 Dynamic and Contextual Utility Adaptation
User preferences and business objectives evolve over time. Re-
search opportunities:

—Temporal Utility Modeling: Develop time-aware utility func-
tions that adapt to seasonality, trends, and user lifecycle changes
[27].

—Contextual Multi-Objective Optimization: Integrate multiple
utility objectives (e.g., short-term profit vs. long-term engage-
ment) in dynamic contexts [27].

8.4 Deep Learning Integration
Deep neural networks offer expressive power for modeling com-
plex utility functions and user–item interactions. Promising direc-
tions include:

—Neural Utility Modeling: Use deep architectures (e.g.,
attention-based, graph neural networks) to learn latent utility rep-
resentations jointly with preference embeddings [38].

—End-to-End Utility-Optimized Architectures: Develop unified
frameworks that directly optimize for utility objectives during
training [33].

8.5 Explainability and Interpretability
Users and stakeholders require understanding of why certain items
are recommended, particularly when business incentives influence
suggestions:

12
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—Rule-Based Explanations: Leverage high-utility rules from
HUPM to generate human-interpretable explanations (e.g.,
“Users who read articles A and B often engage with high-
revenue article C”) [38].

—Post-Hoc Interpretation Methods: Apply model-agnostic ex-
plainers (e.g., SHAP, LIME) to utility-based models to highlight
key factors [39].

8.6 Multi-Stakeholder Recommendation
Traditional RSs focus on user–item utility, but modern scenarios
involve multiple stakeholders (e.g., vendors, advertisers, platform
owners). Future research should:

—Develop Multi-Stakeholder Utility Models: Balance utilities of
different parties (e.g., user satisfaction, vendor profit, platform
engagement) [34, 36].

—Game-Theoretic Approaches: Model interactions among
stakeholders as strategic games to achieve equilibrium solutions
[36].

8.7 Cross-Domain and Transfer Learning
Utility-based patterns in one domain (e.g., e-commerce) may in-
form recommendations in related domains (e.g., social commerce).
Research directions:

—Cross-Domain HUPM: Extend HUPM to mine high-utility pat-
terns across multiple related datasets (e.g., user purchase and
browsing logs) [31].

—Transfer Learning of Utility Functions: Adapt utility models
learned in one domain to another using heterogeneous relations
[32].

9. CONCLUSION
This survey presented a comprehensive overview of utility-based
recommender systems and high-utility pattern mining techniques.
We began by discussing foundational RS paradigms and utility the-
ory, highlighting the need to balance user satisfaction and business
objectives. We reviewed transactional and sequential HUPM algo-
rithms, emphasizing their application in clickstream analysis and
rule-based recommendation. Hybrid RS architectures that integrate
content-based, collaborative, and utility-driven components were
categorized and analyzed. Scalability considerations, including dis-
tributed HUPM, GPU acceleration, and incremental learning, were
surveyed. We then examined evaluation metrics tailored to utility-
based RSs, including profit gain, diversity, and fairness metrics.
Representative applications in e-commerce, online news, streaming
media, and context-aware recommendation illustrated the practical
impact of utility-driven approaches. Finally, we outlined open chal-
lenges and future research directions, including fairness-aware util-
ity modeling, privacy preservation, dynamic utility adaptation, deep
learning integration, explainability, multi-stakeholder optimization,
and cross-domain transfer.
As the volume and variety of digital content continue to grow,
developing next-generation RSs that optimize for multiple objec-
tives—accuracy, profit, engagement, fairness—remains a critical
research frontier. Utility-based and high-utility pattern mining tech-
niques offer compelling tools to meet this challenge. We hope this
survey serves as a foundational reference and inspires further ad-
vances in building RSs that deliver value to users and businesses
alike.
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