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ABSTRACT
In machine learning, the determination of hyperparameters plays
an essential role. The significant impact of these parameters on
the accuracy of algorithms across problem-solving scenarios can-
not be denied. Improper selection of values can significantly in-
crease errors and affects outcomes. Low rank matrix completion,
an optimization problem to recover and complete a partial ma-
trix, is an example of dealing with hyperparameter tuning. Based
on the experimental knowledge, we find that establishing values
for hyperparameters is imperative to achieve an optimal solution
to this problem. This study investigates the hyperparameter deter-
mination of the singular value thresholding (SVT) method and pro-
poses an approach for selecting these parameters to attain superior
solutions.
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1. INTRODUCTION
In the field of machine learning, the hyperparameters tunning plays
a vital and necessary role, significantly affecting the accuracy of
algorithms. Inappropriate selection of these parameters often leads
to a considerable increase in errors, profoundly affecting the quality
of the obtained results.
Matrix completion is a problem that involves optimizing a mini-
mization problem. Similar to many such problems, it requires tun-
ning hyperparameters to reach the optimal solution. Most methods
and algorithms proposed for matrix completion problems, such as
Nuclear Norm Minimization (NNM) [3], Singular Value Thresh-
olding (SVT) [1], Iterative Reweighted Least Square (IRLS) [4],
Fixed-point iterative algorithm [8], TSNMR-based algorithm [5],
Riemannian Gradient Method(RGM) [6] and OTA-MC [7] have
one or more hyperparameters and each of which requires a solution
to accurately determine the hyperparameter values in order to reach
the optimal solution. In this article, we examine a matrix comple-
tion method called Singular Value Thresholding (SVT) [1] and pro-
pose an approach for determining its hyperparameters.

2. BACKGROUND
In general, with the technology advancement and software devel-
opment, the focus on data collection and analysis has significantly
increased as a crucial aspect of machine learning. An important ap-
proach for data analysis is the use of matrices or tensors. However,
a significant challenge during data collection is the loss or incom-
pleteness of the datasets. The matrix completion problem attempts
to fill in missing or incomplete datasets, and several methods have
been proposed to solve this problem. Assuming a low-rank struc-
ture of the target matrix, this problem is solvable and well posed
[2]. By the low rank assumption, this problem is expressed as fol-
lows:

min
X

Rank(X) s.t. PΩ(X) = PΩ(W ) (1)

Here, W ∈ Rm×n is the incomplete matrix, X ∈ Rm×n represents
its completion, Rank(.) is the rank function, Ω is the set of known
entries of W , and PΩ(.) is defined as [1]

PΩ(A) =

{
Aij , (i, j) ∈ Ω

0, (i, j) /∈ Ω
(2)

where Aij is the (i, j)th entry of the matrix A. Since (1) is non-
convex and NP-Hard [2], its convex relaxation problem is as fol-
lows [2]

min
X

∥X∥∗ s.t. PΩ(X) = PΩ(W ), (3)

where ∥.∥∗ signifies the sum of the singular values of the matrix.

3. MAIN IDEA
In this section, we describe the determination of the SVT method
parameters, a method for solving the low rank matrix completion
problem proposed in [1]. The objective function of this method is
given by

min
X,Y

τ ∥X∥∗ +
δ

2
∥X − PΩ(Y )∥2F . (4)

X∗ is the optimal solution attained through the optimization pro-
cess. τ∗, δ∗ and e∗ denote the optimal values of τ, δ and e, which
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(a) Sr = 0.3 (b) Sr = 0.6 (c) Sr = 0.9

Fig. 1: Plots depicting the relationship between δ and e for a 128 × 128 image size across different sample rates (Sr). The horizontal axis
represents δ, while the vertical axis denotes e.

(a) Sr = 0.3 (b) Sr = 0.6 (c) Sr = 0.9

Fig. 2: Plots depicting the relationship between δ and e for a 256 × 256 image size across different sample rates (Sr). The horizontal axis
represents δ, while the vertical axis denotes e.

are crucial for achieving the optimal solution. The relative error,
e, characterizes the algorithm’s performance and is defined as fol-
lows:

e =
∥M −X∥F
∥M −W∥F

× 100,

where M is the original complete matrix and the sample rate Sr is
denoted as

Sr =
|Ω|
mn

,

in which |Ω| is the cardinal number of sample set Ω. As is clear
from (4) we must determine τ and δ to solve the problem (4).
To investigate and assess these parameters, five datasets compris-
ing 10 black and white photos are selected, each with various
dimensions: 128 × 128, 256 × 256, 512 × 512, 200 × 150,
and 180 × 280. Using the SVT method, we experiment with
different Srs (Sr ∈ [0.1, 0.9] with a step size of 0.1). We vary the
parameters τ and δ (τ ∈ [10000, 300000] with a step size of 10000
and δ ∈ [0.1, 1.9], with a step size of 0.1) for each image and
observe the changes in e to determine the optimal values τ∗ and δ∗.

We choose two images from the two datasets as samples to show
the fluctuation in e concerning variations in the parameters δ and
τ . To assess the impact of τ on the error, we set δ = δ∗. Likewise,
to investigate the effect of δ on e, we set τ = τ∗.
The error changes concerning variations in δ and τ are depicted
in Figures 1-2 and 3-4, respectively. Figures 1-2 illustrate a
considerable increase in e when δ is inappropriately chosen.
Similarly, Figures 3-4 reveal a similar issue with the τ value. Con-
sequently, achieving the optimal solution with minimal e depends
on the appropriate selection of parameters within the objective
function. Therefore, these Figures emphasize the crucial role
and magnitude of these parameters in problem-solving scenarios.
Furthermore, Figure 5 visually displays the e changes concerning
the simultaneous alterations of both τ and δ. The areas shaded
in dark blue denote the lowest e values. Our objective here is to
investigate and analyze the settings of two parameters τ and δ.
To accomplish this goal, we use the singular value decomposition
of PΩ(W ) = UΣV T , where, as previously mentioned, W
represents the incomplete matrix and Σ = diag{σi}ri=1, with
σi denoting the ith singular value of the PΩ(W ) matrix, where
σ1 > σ2 > . . . > σr > 0. To determine the values related
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(a) Sr = 0.3 (b) Sr = 0.6 (c) Sr = 0.9

Fig. 3: Plots illustrating the relationship between τ and e for a 128 × 128 image size across various sample rates (Sr). The horizontal axis
denotes τ , while the vertical axis represents e.

(a) Sr = 0.3 (b) Sr = 0.6 (c) Sr = 0.9

Fig. 4: Plots illustrating the relationship between τ and e for a 256 × 256 image size across various sample rates (Sr). The horizontal axis
denotes τ , while the vertical axis represents e.

to the δ and τ parameters, we display the correlation matrix in
Figure 8. This matrix shows the Interdependence of τ and δ,
as well as the dependence of τ value with Sr and the singular
values of the incomplete matrix. Then, the factors influencing τ
parameter encompass the sample rate (Sr) and singular values
(σi, i = 1, . . . , r). Based on the results of the correlation matrix,
this study aims to find a formula for the parameter τ based on the
two mentioned values using the experimental method. Then, we
can find the δ value based on τ value using the grid search method.

Let us have a partial matrix W with Sr = i× 10−1, i = 1, . . . , 9.
To obtain a relation for estimating τ parameter, we initially set τ =
σi. However, this approach did not yield a solution close enough to
the optimal solution. Subsequently, by experimenting with different
coefficients and rational powers of σi, we discovered that the most
effective solution was obtained using the following relationship:

τ = σ1.55
i , s.t. Sr = i× 10−1. (5)

We display the error obtained using (5) with eτ . Figures 6-7 illus-
trate the error variation concerning the change in power in σpower

i

for an image from each dataset when Sr = i× 10−1.

The plotted data demonstrate that the minimum error consistently
appears at power = 1.55 in (5) across all obtained results. In addi-
tion, Figure 6 illustrates average difference between eτ and e∗ by
exploring various Sr values for each of the five datasets. Table 1
shows the average eτ − e∗ for all 50 data with different Sr values.
Remarkably, except for Sr = 0.1, the observed deviation is less
than 0.2 percent, which confirms the competence of the method in
obtaining the optimal solution.

4. CONCLUSION
In this study, we investigated hyperparameter tuning in the singular
value thresholding method to solve the matrix completion problem.
The findings of this study illustrate that the proper choice of τ and
δ parameters in the SVT method, as determined through the graphs
and experiments, has a substantial effect on the final accuracy. Es-
tablishing an empirical relationship between the values of τ and
matrix characteristics, we propose a method for the optimal selec-
tion of this parameter. Through the generated Figures and the ob-
tained results, it was found that using a rational power of matrix sin-
gular values as the τ parameter can lead to an optimal solution for
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(a) A 128× 128 image size (b) A 256× 256 image size (c) A 512× 512 image size

(d) A 200× 150 image size (e) A 180× 280 image size

Fig. 5: 2D plots illustrating the variations in error concerning changes in δ and τ for various images at a constant Sr = 0.5. The parameter δ
ranges from 0.1 to 1.9 with a step size of 0.1, while τ ranges from 10000 to 300000 with a step size of 10000.

(a) Sr = 0.3 (b) Sr = 0.6 (c) Sr = 0.9

Fig. 6: Plots illustrating the relationship between power and e for a 128 × 128 image size with varying Sr values. Here, τ = σpower
i and

Sr = i× 10−1. The horizontal axis represents power, while the vertical axis denotes e.

the matrix completion problem. Inspired by this study, similar ideas
can be employed for different problems based on their characteris-
tics and correlations between values to optimize hyperparameters
in the model.
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(a) Sr = 0.3 (b) Sr = 0.6 (c) Sr = 0.9

Fig. 7: Plots illustrating the relationship between power and e for a 256 × 256 image size with varying Sr values. Here, τ = σpower
i and

Sr = i× 10−1. The horizontal axis represents power, while the vertical axis denotes e.

Fig. 8: The correlation matrix for 50 partial images data with Sr ∈ {0.1, . . . , 0.9}
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Fig. 9: The mean difference in error between the optimal solution and the solution obtained by setting τ = σ1.55
i for each dataset within

various Sr categories ranging from 1 to 9. Rows of Figure correspond to data with different sizes.

Sr 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
eτ − e∗ 0.84 0.17 0.06 0.06 0.09 0.08 0.1 0.09 0.1

Table 1. : Comparison of average eτ − e∗ across 50 distinct data with varying sample rates.
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