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ABSTRACT

There are over 12,000 deaf and hearing-impaired individuals in
Libya, according to 2018 statistics from the Social Solidarity
Fund. Despite this significant population, access to effective
communication tools remains limited. Deep learning has
revolutionized various domains, and its impact on the
recognition and translation of sign languages is no exception.
This paper explores the application of deep learning,
particularly Long Short-Term Memory (LSTM) networks, in
the context of Libyan Sign Language (LSL) recognition and
translation, aiming to bridge communication barriers for the
hearing-impaired community in Libya. The paper presents a
novel dataset and a robust LSL recognition model based on
LSTM architecture and key point extraction using MediaPipe
Holistic. Furthermore, the real-time testing showcases the
practicality of the proposed LSL recognition model, offering
the potential for real-world applications to empower the deaf
community. The proposed LSTM model achieves an
impressive testing accuracy of 84% in recognizing LSL
gestures and translating them into Spoken Arabic. This work is
a critical milestone in enhancing accessibility and empowering
the deaf community in Libya.
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1. INTRODUCTION

Communication is key to understanding, connection, and
empathy. According to the World Health Organization (WHO)
[1], more than 430 million people worldwide, including 432
million adults and 34 million children, require rehabilitation to
address their hearing loss, accounting for over 5% of the global
population. This number is expected to rise to 700 million
people, or approximately one in ten individuals, by 2050. The
impacts of hearing and speech impairments are broad and can
be profound, affecting social interaction, education, and
employment opportunities. Additionally, nearly 80% of people
with disabling hearing loss live in low- and middle-income
countries. These disparities highlight the urgent need for global
efforts to address hearing loss and ensure equal access to
education and employment opportunities for all.

Sign Language communicates through physical movements
rather than spoken words, using visible cues from hands, eyes,
facial expressions, and movements. This method of
communication is used by over 70 million deaf or hard-of-
hearing individuals worldwide [2]. Like spoken languages,
there is no "universal" sign language, and different countries
generally have their unique version of sign language that
reflects their culture and region. Instead of dialects or accents
as in oral language, the differences in sign language are
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expressed through various signs and gestures [3]; hence
communication barriers still exist. Moreover, accessing
professional interpreters can be challenging [4]. Therefore, it
emphasizes the importance of an accurate and efficient sign
language recognition system that facilitates communication not
only between deaf and hearing individuals but also among
those who use varied sign styles.

Sign Language Recognition (SLR) aims to bridge the
communication gap between deaf or hard- of- hearing and the
general population [5]. SLR has gained significant attention
recently, due to its potential to facilitate inclusive
communication and improve the quality of life for individuals
with hearing impairments [6]. Challenges in SLR include the
large variability in sign language across different regions, the
dynamic and continuous nature of sig language, and the limited
availability of annotated sign language datasets. Recent
advancements in SLR have shown promising results, with
improved accuracy and real-time performance [7]. However,
there is still room for further research to enhance the robustness
and adaptability of SLR systems, making them more accessible
and effective for individuals with hearing impairments.

Various approaches have been explored in SLR, including
computer vision-based methods and sensor-based methods.
Deep learning has emerged as a powerful technique for SLR,
leveraging the capabilities of artificial neural networks to
automatically learn hierarchical representations from raw input
data. Deep learning approaches for sign language recognition
typically involve Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). CNNs excel in extracting
spatial features from images or video frames, while RNNs are
effective in modelling sequential information in sign language
gestures. These deep learning models have shown remarkable
performance improvements in SLR, achieving state-of-the-art
results on various benchmark datasets. However, the success of
deep learning approaches heavily relies on the availability of
large and diverse annotated sign language datasets, which are
often limited in size and scope [7].

In Libya, there are over 12,000 deaf and hearing-impaired
individuals, according to 2018 statistics from the Social
Solidarity Fund. Despite this significant population, access to
effective communication tools remains limited. Furthermore,
hearing-impaired people face significant communication
challenges due to the lack of a standardized sign language
system. This impedes their social interaction, limiting
educational opportunities and social inclusion [5]. This
research is motivated by the absence of a standardized system
for Libyan Sign Language (LSL) and the lack of prior work in
this field due to a lack of available data for LSL. Therefore, this
work intends to address the communication barriers
experienced by individuals with hearing impairments in Libya.
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The fundamental goal of this research is to develop a computer
vision-based system that can accurately recognize LSL
gestures through deep learning techniques, improving
communication between SL users and non-users. By leveraging
technology, this research has the potential to enhance the
quality of life for individuals with hearing impairments in
Libya, enabling greater participation in society. This study
introduces a novel dataset from the Hope Centre for the Deaf
and Hard of Hearing and employs deep learning algorithms to
overcome traditional limitations in sign language recognition.
The system aims to improve sign language interpretation,
address the need for low-resource Libyan Sign Language (LSL)
recognition, and enhance communication and social inclusion
for individuals with hearing impairments. This paper proposes
an integrated system for sign language recognition and
translation, focusing on the collection of the LSL gesture
dataset, developing a preprocessing and feature extraction
framework, and designing a deep learning model using
MediaPipe and LSTM networks. It will be trained and validated
on the dataset, integrated with a text-to-audio translation
system, and optimized for real-time performance. These
objectives, when achieved, will allow sign language users to
communicate in real-time with greater ease, thus making
communication more accessible and encouraging greater
engagement in daily activities.

The remainder of this paper is organized as follows: In section
2, related works are described. In section 3, the proposed model
for sign language recognition and the methodology employed
are described, along with the process of data collection and
preparation. In section 4, the experimental results are reported.
In Section 5, further experimental results are discussed. Finally,
conclusions are highlighted in section 6.

2. RELATED WORKS

In recent years, there has been a growing interest in the
development of computer vision systems for sign language
recognition. Several studies have focused on using deep
learning techniques, particularly CNNs, for recognizing static
sign gestures in various sign languages.

In [8], the work addresses the recognition problem of the static
alphabet in Indian sign language using a vision-based
approach. The authors proposed a CNN architecture called
Signet that consists of a total of nine layers, including six
hidden layers, one input layer, one dropout layer, and one
output layer. The dataset of 24 static alphabet letters in Indian
Sign Language used in their study consists of 2,500 images,
which were augmented to 5,157 images. The researchers’ work
focused on extracting only hand features from the images.
Hence, the Viola-Jones face detection and skin color
segmentation algorithms were employed to detect the faces of
the signers. The pixels in the region of the signers' faces were
then replaced with black pixels, and the remaining image was
processed to extract the hand regions. Following this step, the
images were used for training and testing. The developed
model achieved a training accuracy of 99.93% when using all
24 ISL static alphabet images. Additionally, it achieved testing
and validation accuracies of 98.64%.

Another paper used a similar architecture [9], where the system
aimed to automatically detect hand-sign letters and translate
them into spoken Arabic. The system's architecture is based on
CNN, which consists of feature extraction and classification
components. The authors used RGB images of hands to
represent the 31 letters in Arabic sign language, along with data
augmentation techniques to increase the training data. Their
model achieves 90% accuracy in recognizing 31 Arabic hand
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signs. The model is also connected to the Google Text-to-
Speech (GTTS) API for converting hand signs into Arabic
speech.

Another study [10] discusses the development of a video-based
Egyptian Sign Language (ESL) recognition system,
highlighting the challenges posed by variations in ESL across
different regions and the lack of officially documented
resources for ESL vocabulary. The researchers employed
supervised deep learning, exploring two network architectures:
CNNs and CNN-LSTM. To extract features and perform
classification, they used the Inception-v3 model, pre-trained on
the ImageNet dataset. To overcome the lack of reliable datasets,
the authors collected their own by visiting a school for the deaf
and recording videos of a volunteer deaf student performing
nine Egyptian Sign Language gestures. The experiments and
results showed that using CNNs alone achieved 90% accuracy.
However, when the predicted labels from the CNN were passed
to the LSTM, the accuracy dropped to 72%, suggesting that the
CNN-LSTM architecture would be a better fit for continuous
word sign recognition.

Another group of researchers from Saudi Arabia [11] used a
deep learning model called Convolutional Long Short-Term
Memory (ConvLSTM) to recognize dynamic Saudi sign
language based on real-time videos. The model architecture
combines convolutional layers with LSTM, making it an
extension of the LSTM RNN. Their model consists of two
ConvLSTM layers, where convolutional gates replace the fully
connected gates in the LSTM. ConvLSTM also uses the
convolution operation instead of matrix multiplication at each
gate within the LSTM cell, enabling it to capture both spatial
and temporal features effectively. The dataset used in this
research focuses on health and disease signs, containing a total
of 3,454 videos covering 35 different sign gestures. However,
due to limitations of the computer device used for
implementation, the model's training was constrained to 6 out
of the 35 classes. It achieved 70% accuracy in recognizing the
signs.

The study [12] aimed to develop a lightweight approach for
real-time dynamic sign language recognition (DSLR) by
integrating deep learning techniques with the MediaPipe
framework. Researchers utilized two models: a Gated
Recurrent Unit (GRU), known for its efficiency and low
memory usage, and a 1D Convolutional Neural Network
(CNN). A custom video dataset, DSL46, containing 2,910
videos of 46 commonly used American Sign Language (ASL)
signs, was developed. MediaPipe was used to extract key points
for hand and body movements, providing crucial details for
gesture recognition. The dataset underwent preprocessing to
address depth variation and ensure alignment between training
and testing data. Experiments on the DSL46, LSA64, and
LIBRAS-BSL datasets demonstrated high accuracy, with the
CNN model achieving 98.8%, 99.84%, and 88.40%, and the
GRU model achieving 97.08%, 97.96%, and 87.86%,
respectively, for each dataset. These results highlight the
effectiveness of the proposed approach for accurate and
efficient sign language recognition.

The study in [13] also employed the MediaPipe framework to
estimate the pose, hand, and face landmarks and extract
features. OpenCV was used to capture videos for the dataset via
webcam, from which key points were extracted and saved as an
array instead of as video data. The authors also manually
extracted some frames to create another dataset for static signs.
They used a CNN model with three convolutional layers and an
LSTM model with three layers. The models were applied to
both static and dynamic datasets. The experiment showed that
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the LSTM model was more effective at recognizing the
dynamic gestures of sign language, whereas the CNN model
was more efficient with static sign language.

An end-to-end model using MediaPipe and RNN models has
been introduced in [14]. The authors created a custom dataset
called DSL10-Dataset, which consists of 750 videos recorded
in an indoor natural environment. The authors used the same
feature extraction method as in the previous paper, extracting
hand and face key points from the dynamic dataset. The RNN
models (GRU, LSTM, and Bi-LSTM) were trained on the
DSL10-Dataset. Two experiments were conducted: one
without including face key points and one with them. The
results show comparable accuracy in both cases, with GRU
achieving the highest accuracy of 100%, while the other two
models achieved around 99% on low-complexity sequences.

One of the main points gathered from the reviewed literature is
that the availability of datasets and the lack of trusted resources
has been the core challenge in sign language recognition
research, leading researchers to create their own datasets and
employ data augmentation techniques [9], [10], [12], [14]. The
literature highlights that existing recognition models have
primarily focused on Indian, Saudi, Egyptian Arabic, and
American sign languages, among others. Three of the reviewed
papers focused on the recognition of Arabic Sign Language
(ArSL). However, just like the dialects in spoken Arabic, ArSL
also varies regionally. ArSL (Arabic Sign Language) is used
across approximately 22 Arab countries, each with its own
distinct set of gestures. The variations in word gestures can be
attributed to the cultural diversity among these countries.
Nevertheless, despite the lack of consistency in ArSL across all
22 countries, there is commonality in the gestures representing
Arabic letters and numbers [15]. In our research, the primary
objective is to construct a comprehensive dataset for LSL, as
there has been no prior research due to the absence of available
data. This dataset, which is personally collected, will serve as a
foundational resource for training and developing models for
LSL recognition.

3. THE PROPOSED MODEL

Our model bridges the communication gap, empowering deaf
individuals to communicate effectively with Arabic speakers,
fostering inclusivity and accessibility. In this study, we employ
a multi-phase framework. First, after collecting the dataset, it is
augmented and annotated to create a valuable resource for
training and evaluation. The dataset is then pre-processed using
various techniques to enhance and prepare it for further use.
Next, the dataset is split and fed into a real-time model for
recognizing LSL and translating it into spoken Arabic using
MediaPipe, LSTM networks, and GTTS. After training the
model, it is evaluated on a set of unseen data to obtain
classifications. Figure 1 illustrates an abstract view of the
proposed model.

3.1 Dataset Construction and Collection

Recognizing and understanding sign language requires a
substantial amount of labeled data to train accurate and robust
models. The absence of a readily available LSL dataset presents
a significant challenge. Therefore, we initiated the collection
and curation of a dataset specifically for this research. The data
collection involved collaboration with deaf students from the
Hope Centre for Deaf and Hard of Hearing in Benghazi. Five
students, who have a strong command of LSL, performed the
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recordings, ensuring that the gestures and expressions captured
are authentic and representative of the language. The students
received clear instructions to perform the selected signs
naturally and accurately.

The dataset consists of 50 videos recorded with an iPhone 14
Pro Max, providing high-quality footage for further analysis
and processing. The recording parameters were set to 30 frames
per second (fps) and a resolution of 1080 x 1920 pixels,
ensuring smooth and clear capture of the hand, face, and pose
movements. Five students participated in the recordings,
performing ten LSL signs in 1-second videos. The selected
signs, which include words and phrases, are shown in Table 1.

Table 1. The selected Libyan signs.

No. Arabic Gesture | English Meaning
1 VNG Hello
2 fellla oS How are you?
3 oSl Where do you
live?
4 oSile 3Ll Peace be upon you
5 TR Benghazi
6 EREE Tripoli
7 sl Albayda
8 Gk Toubrok
9 Y No
10 axd Yes

3.2 Data Augmentation and Annotation

In our study, we employed two techniques—data augmentation
and annotation—to enhance the quality of the dataset. Data
augmentation techniques were applied to enrich the dataset and
increase its variability. These techniques involved
manipulating the original 50 videos using OpenCV to generate
additional samples. As a result, the augmented dataset
comprised a total of 800 videos after applying 16 different
augmentation techniques, ensuring a more robust and diverse
training set for the recognition and translation model.

The augmentation techniques were applied to the videos to
introduce variations in lighting, contrast, blur, flipping,
rotation, grayscale conversion, and hue adjustments. In some
cases, a combination of these techniques was used, such as
applying flipping followed by rotation. These techniques aimed
to simulate real-world variations in lighting conditions and
capture different perspectives of the LSL gestures. By
augmenting the dataset, we sought to enhance the model's
ability to generalize across various real-life scenarios, ensuring
accurate analysis and recognition of LSL gestures.
Additionally, the annotation process was carried out using a
supervised platform, which offers efficient and intuitive
annotation capabilities. By precisely annotating the face and
hands in the LSL videos, we ensured that the model could learn
the relevant spatial information and make accurate predictions
during real-time recognition.
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Figure 1. The components of the proposed model.

3.3 The Structure of the Proposed Model

Recognizing and translating sign language in real-time presents
unique challenges due to the intricate nature of gestures and the
requirement for precise interpretation. To overcome these
challenges, it is essential to select a model capable of capturing
the temporal dynamics of LSL gestures and effectively
translating them into spoken Arabic. The following section
describes the structure of the proposed classification model.

3.3.1 MediaPipe Framework

MediaPipe is an open-source framework that enables real-time
perception of human pose, face landmarks, and hand tracking
on mobile devices. It offers separate, fast, and accurate
solutions for these tasks, but combining them into a unified
solution is challenging. MediaPipe Holistic is a novel, state-of-
the-art solution that addresses this challenge. It consists of a
new pipeline with optimized components for pose, face, and
hand tracking, which can run in real-time with minimal
memory transfer.

MediaPipe Holistic provides a unified topology with over 540
key points in three dimensions, including pose, hand, and facial
landmarks [16]. Figure 2 illustrates the 21 landmark key points
detected on a hand. The framework serves as the foundation of
the proposed approach, providing a robust and efficient
platform for real-time perceptual computing tasks. By
leveraging MediaPipe's hand-tracking capabilities, we can
accurately capture the movements and positions of the hands,
which are crucial for LSL recognition.
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Figure 2. Hand landmarks - Mediapipe 21 key points [16].

3.3.2 Dataset Preprocessing

The dataset pre-processing stage is crucial for enhancing the
quality, diversity, and usability of the collected dataset used for
recognizing LSL. Moreover, it encompasses several pivotal
steps to ensure that the videos are ready for training and testing
the LSTM-based LSL recognition model. In this study, the
preprocessing stages include label encoding using one-hot
encoding and data preparation for the LSTM model.

3.3.2.1 Label Encoding Using One-Hot Encoding
Recognizing and interpreting LSL gestures require the model
to understand and classify each sign accurately. To facilitate
this, we employed label encoding using one-hot encoding. Each
LSL sign was assigned a unique label, which was then
transformed into a one-hot encoded vector. The following are
the LSL signs and their corresponding labels:

"Hello" - Label: 1, "How are you?" - Label: 2, "Where do you
live?" - Label: 3 "Peace be upon you" - Label: 4, "Benghazi" -
Label: 5, "Tripoli" - Label: 6, "Albayda" - Label: 7, "Toubrok"
- Label: 8, "No" - Label: 9, "Yes" - Label: 10.

Using one-hot encoding, these labels were converted into
binary vectors with the categorical function from keras, where
each vector had a length equal to the total number of unique
labels (in this case, 10). For example, the one-hot encoded
vector for "Hello" (Label: 1) would be [1, 0, 0, 0, 0, 0, 0, 0, O,
0], where the "1" indicates the presence of the corresponding
sign label.

3.3.2.2 Data Preparation for the LSTM Model

To effectively train the LSTM-based LSL recognition model,
the preprocessed key point data extracted with MediaPipe must
be organized into sequences and prepared for model input. In
this work, the data preparation process consists of two steps:
sequence formation and padding.

1) Sequence Formation: The key points extracted from
each video frame were organized into sequences of NumPy
arrays. Each sequence represented a continuous flow of key
points over time, effectively encoding the motion and shape of
the hands during the LSL gestures. These sequences enabled
the LSTM model to capture temporal dynamics.

2) Padding: Sequences of LSL key points varied in
length due to differences in gesture duration. To ensure
uniformity and facilitate batch processing during model
training, padding was applied to the sequences. This involved
appending zeros to shorter sequences, extending them to match
the length of the longest sequence in the dataset. Standardizing
sequence length ensured efficient processing by the LSTM
model.

By applying these preprocessing steps, the dataset was
transformed into a suitable format for training the LSTM
model. The sequences of one-hot encoded labels and padded
key points served as input, allowing the model to learn the
temporal patterns and spatial relationships essential for
accurately recognizing and translating LSL gestures.
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3.3.3 LSTM Networks

LSTM networks, a specialized type of Recurrent Neural
Network (RNN), are designed to address the challenges of
traditional RNNs, such as the vanishing gradient problem, by
incorporating memory cells and gates that regulate the flow of
information. This enables LSTMs to capture long-term
dependencies in sequential data, making them highly effective
for tasks such as Sign Language Recognition (SLR). LSTM
networks excel at modeling the temporal dynamics of gestures,
retaining and recalling relevant information about hand
movements over time for accurate real-time recognition. Their
architecture, which includes input, forget, and output gates,
allows for the efficient storage and manipulation of
information, making them particularly suitable for
understanding the nuanced temporal variations inherent in sign
language gestures [17].

The proposed model is constructed as a sequential neural
network, emphasizing the temporal dependencies prevalent in
sign language gestures. The architecture consists of multiple
layers, with a summary of the sequential model shown in Table
2, each contributing to the extraction of relevant features and
information.

Table 2. A summary of the sequential model.

Layer Output Parameters Activation Regulariza
Type Shape -tion
LSTM (None, 30, 64) 442112 ReLU L2(0.01)
LSTM (None, 30, 128) 98816

LSTM (None, 64) 49408

Dense (None, 64) 4160 ReLU L2(0.01)
Dense (None, 32) 2080

Dense (None, 10) 330

3.3.3.1 The Architecture of Proposed LSTM

Three consecutive LSTM layers are embedded within the
architecture. These layers facilitate the encoding of sequential
dependencies present in sign language gestures. The first
LSTM layer consists of 64 units, followed by the second layer
with 128 units, and the final layer with 64 units. These layers
enable the model to extract and comprehend intricate temporal
patterns within the input sequence. The number of layers and
units selected in our model reflects the classification
complexity and the size of the data. Three fully connected
dense layers are employed to further process the information
learned from the LSTM layers. The first dense layer consists of
64 units, followed by a layer with 32 units, and finally, a layer
with 10 units. These layers are responsible for higher-level
feature extraction and eventual classification. The LSTM layers
and the first two dense layers leverage the Rectified Linear Unit
(ReLU) activation function. Noteworthy is its computational
efficiency, where this simple yet effective function helps neural
networks learn complex patterns by introducing non-linearity
while avoiding vanishing gradient issues [19]. Nonetheless, in
the final dense layer, the SoftMax function is employed to
generate a probability distribution across the 10 output classes,
aligning with the requirements of multi-class classification
tasks.

3.4 Real-Time Voice Feedback Processing

The translated output of the recognized sign language gestures
will be converted into spoken Arabic using GTTS (Google
Text-to-Speech). GTTS is a powerful text-to-speech synthesis
system developed by Google, known for generating high-
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quality speech output in multiple languages, including Arabic
[20]. Integrating GTTS into our approach will enable the
conversion of recognized gestures into spoken words,
facilitating effective communication between sign language
users and Arabic speakers.

3.5 Model Evaluation

Model evaluation is the process of assessing the model's
performance and effectiveness by using metrics and techniques
to measure its ability to make accurate predictions or produce
desired outcomes on new, unseen data [21]. In our work,
classification measures such as Mean Squared Error (MSE),
Mean Absolute Error (MAE), R-squared (R2), accuracy,
precision, recall, and F1-score were used to assess the model's
accuracy in the analysis of sign gesture predictions. The final
four metrics are calculated using the outcomes of the confusion
matrix. The confusion matrix displays the frequency of correct
and incorrect predictions. The outcomes of a confusion matrix
are four key values: True Positive, correct prediction of positive
instances (TP), False Positive, incorrect prediction of positive
instances (FP), True Negative, correct prediction of negative
instances (TN), and False Negative, incorrect prediction of
negative instances (FN). Mathematically, accuracy, precision,
recall, and F1-score are calculated from equations 1, 2, 3, and
4 respectively [21][22].

TP+TN

= 1
Accuracy = o TN+ FP 4 FN M
TP
3 i TN —— 2
Percision TP T FP 2)
TP
- 3
Recall TPEFN 3)
Fl—S —2x (Percision X Recall) @)
core = Percision + Recall

4. EXPERIMENTS AND RESULTS

In this section, we detail the experimental study. We examine
the effects of key factors, such as data augmentation, data
segmentation, and comparison studies, to validate and enhance
the performance of our proposed model. The outcomes
collectively offer valuable insights into the effectiveness and
robustness of our approach.

4.1 Experimental Environment Setup

This study presented a comprehensive experimental method
and analysis of the proposed LSL recognition model. The
experiments were conducted using Python, Keras library,
TensorFlow as a back-end, OpenCV, Matplotlib, Sci-kit Learn,
and gTTS. It's important to note that all these experiments were
conducted with a batch size of 32 and 40 epochs. Moreover, the
ADAM (Adaptive Moment Estimation) optimizer is used as the
optimization algorithm for training the proposed model. It
dynamically adjusts the learning rates for different parameters,
leading to faster convergence and improved training
performance [23]. The learning rate of 0.001 is used as a
starting point, which is the optimal value when we want to
monitor the model learning process and also helps prevent the
model from fitting the noise in the data too quickly, therefore,
preventing overfitting to some extent [12]. The categorical
cross-entropy loss function is commonly used in tasks
involving multi-class classification. It quantifies how well the
predicted probabilities match the actual class labels,
encouraging the model to make accurate predictions [23]. For
the first experiment, a consistent 20% testing and 80% training
data split was maintained. On the other hand, the dataset was
divided into 3 sets: 60% for training, 20% for validation, and
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20% for testing for the last experiment. Each set contained
samples from the 10 classes. The hyperparameters used for the
models are outlined in Table 3.

Table 3. Hyperparameters for classification.

Hyperparameters Value
Optimizer ADAM
Learning Rate 0.001
Loss Categorical Cross entropy
Metrics Categorical Accuracy
L2 Regularization 0.002
Epochs 40
Batch Size 32
Validation Split 20%

We conducted a series of experiments to investigate the impact
of data augmentation on the proposed model's performance
using both the basic dataset and augmented data, as well as to
explore the effect of different data segmentation ratios on
testing, training, and validation. Lastly, we conducted a
comparative study between the GRU and LSTM architectures.

4.2 Effect of Data Augmentation on
Proposed Model

In this experiment, we examined the influence of data
augmentation on the performance of the proposed model. We
compared the model's performance using the basic dataset and
augmented data to assess the impact of increased data
variability on recognition accuracy.

First, we evaluated the performance of our proposed model
using the initial dataset, which comprised 50 videos. The
evaluation of model performance is presented in Figure 3,
which shows the training accuracy and loss of the proposed
model. The model achieved an overall accuracy of 40% on the
training data at epoch 34 and a testing accuracy of 30%. Figure
4 shows the confusion matrix of the model using the basic
dataset.

Training Loss Over Epochs Training Accuracy Over Epochs

Taining Loss | g4p Training Accuracy

] H o 5 2 25 = = a0 1] I R R T T
Epoch Epach

Figure 3. Training and loss accuracy of the proposed
model using the basic dataset over epochs
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Figure 4. The confusion matrix of the model using the
basic dataset

After that, we assessed the model's performance using the
augmented dataset comprising 800 videos. Figure 5 shows
training accuracy and loss analysis. We examined how data
augmentation enhances the model's recognition accuracy and
overall classification performance. The model was trained for
40 epochs, during which it attained a maximum training
accuracy of 87.97% at epoch 38 and a testing accuracy of
80.6%. Table 4 presents the classification evaluation metrics of
the proposed model using both the basic dataset and the
augmented dataset. The confusion matrix of the model using
the augmented dataset is illustrated in Figure 6.

Training Loss Over Epochs Training Accuracy Over Epochs

— Taining Loss Training Accuracy

o 5 v 15 20 2 @ ®m oW [ s w15 20 2 0w B M
Epoch Epuch

Figure 5. Training and loss accuracy of the proposed
model using the augmented dataset over epochs
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Table 4. The proposed model performance with and
without augmentation

>
S| 2
= £ 5

= @
o | w| =2 S| =5 B8
Proposed »n| = s z s g S 2
Model = s = 3 o) 1 0 )
@ = -4 b = =
J a = £ o—
-4 = =
3 ]
2 L
o
1 x o o o o o
without 2| 8 0 S ¥ | 2| °
R = o = 59 = =)
augmentation | O i = — A — R F
. v o °
with g 4 > S =X X A &=
. 2 <+ — — Ne) o
augmentation | — < 0 o ) s -
S [ele] [ere]

4.3 Effect of Data Segmentation

In this experiment, we investigated the impact of different data
segmentations on the performance of our model. By varying
the proportions of testing, training, and validation data, we
assessed how the allocation of data influences the recognition
accuracy and generalization of the model. We evaluated the
model's performance four times with different segmentations
(50%-50%, 30%-70%, 40%-60%, and 20%-60%-20%) using
the augmented dataset. In Figure 7, the training accuracy and
loss of each segmentation were presented. The model was
trained for 40 epochs. Table 5 presents the classification
evaluation matrices for each segmentation.
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Figure7. (a) Training loss and accuracy with 50% training
data over epochs. (b) Training loss and accuracy with 70%
training data over epochs. (c¢) Training loss and accuracy
with 60% training data over epochs. (d) Training and
validation loss and accuracy over epochs

Table 5. The model classification evaluation matrices for
each segmentation
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Testing multiple splits of data in deep learning reduces
overfitting by improving the performance of such models on
unseen data while avoiding issues related to data imbalance. All
these aspects enhance the real-world applicability of the model
since it ensures consistency of performance without bias in any
distribution.
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4.4 Comparative Study

We conducted a comparative study by implementing the Gated
Recurrent Unit (GRU) architecture from a previous research
paper on our dataset. More details about GRU are described in
[14]. The aim was to evaluate the performance of the GRU
model on our dataset in contrast to our proposed model. In the
experiment with the GRU model, we adopted a 20% testing,
20% wvalidation, and 60% training data split, as this
configuration consistently yielded the best results. Figure 8
provides insights into training accuracy and loss. Throughout
the 40 training epochs, our GRU model reached its peak
training accuracy of 89.53% during epoch 39 and achieved a
testing accuracy of 91.25%. The confusion matrix analysis is
shown in Figure 9.
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Figure 8. Training loss and accuracy of the GRU model
using our dataset over epochs
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Figure 9. The confusion matrix of the GRU model using
our dataset

We conducted a comparative analysis between the proposed
LSTM model and the GRU architecture to assess their
respective performances in LSL recognition. Tables (6 and 7)
show a comparison between the models in terms of model
performance and classification metrics.

Table 6. A comparison of the model performance between
the proposed model and GRU model

Evaluation metric | Proposed model (LSTM) | GRU

MSE 0.8187 0.4562
MAE 0.3187 0.1688
R? 0.9008 0.9447
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Table 7. A comparison of the model classification matrices
between the proposed model and GRU model

Proposed model (LSTM) GRU
Class .; = § .§ = ;
] 2 2 g g 2
Pl E | E] 2|
Howareyou 94% 100% 97% 89% 100% | 94%
Salam 94% 100% 97% 89% 100% | 94%
Tripoli 100% 100% | 100% | 100% 94% | 97%
Hello 100% 56% 72% 79% 94% | 86%
No 70% 100% 82% 79% 69% | 73%
Yes 100% 69% 81% 100% 69% | 81%
Benghazi 92% 69% 79% 94% 100% | 97%
Al-Bayda 70% 100% 82% 0.94% | 100% | 97%
Wheredoyoulive 79% 94% 86% 100% 94% | 97%
Tobruk 69% 56% 62% 94% 94% | 94%
Accuracy 84% 91%
Macro Avg 87% 84% 84% 92% 91% | 91%
Weighted Avg 87% 84% 84% 92% 91% | 91%

4.5 Real-Time Model Testing

The real-time testing of the proposed LSL recognition model
was executed using a combination of OpenCV and MediaPipe
Holistic. This experiment demonstrates the integration of these
tools to process live frames from a webcam, capturing crucial
key points, pre-processing them, and subsequently feeding
them into the model for sign prediction. Figures (10, 11, 12,
and 13) are screenshots from our real-time model testing. This
real-time testing framework provides a glimpse into the
usability and effectiveness of our sign language recognition
system, bridging the communication gap for the hearing-
impaired community.

B! OpenC Fesd - o0 x

Figure 10. The detection of “Hello” gesture in LSL in
Real-Time model testing.

Figure 11. The detection of “Benghazi” gesture in LSL in
Real-Time model testing.
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Figure 12. The detection of “Tripoli” gesture in LSL in
Real-Time model testing

Figure 13. The detection of “Wheredoyoulive” gesture in
LSL in Real-Time model testing

S. DISCUSSION

The experiments identified optimal hyperparameters through
extensive testing, where the number of epochs played a critical
role. Although increasing the number of epochs improved
accuracy, it also led to significant overfitting. The selected
parameters struck a balance between accuracy and
generalization. This section presents a detailed interpretation of
the results, emphasizing key findings and their implications for
the study.

The first experiment aimed to assess the impact of data
augmentation on the performance of our proposed model for
recognizing LSL gestures. An analysis of the basic dataset
revealed a gradual decrease in training loss and a corresponding
increase in training accuracy, as shown in Figure 3. These
trends indicated that the model was learning to minimize errors
as it iterated through the training data and became more
proficient at classifying LSL gestures. However, fluctuations in
both metrics suggested potential challenges in capturing certain
nuances and raised concerns about overfitting due to the limited
dataset size.

The study highlights the contrasting performance of a model
trained on a basic dataset versus an augmented dataset. As
shown in Table 4, for the basic dataset, the training loss and
accuracy graphs showed limitations in learning, with an MSE
of 6.8000, MAE of 2.0000, and a low R-squared value of
0.1758, reflecting poor predictive performance. The
classification metrics also indicated low precision, recall, and
F1-scores, leading to an overall accuracy of just 30%.

In contrast, training on the augmented dataset demonstrated
significant improvements. As presented in Figure 5, the
training loss consistently decreased, and accuracy steadily
improved, reaching higher values. The evaluation report in
Table 4 showed substantial gains, with MSE reduced to 1.2000,
MAE to 0.4500, and an R-squared value of 0.8545, indicating
a strong correlation between predictions and actual values.
Classification metrics also improved markedly, achieving an
overall accuracy of 80.6%, showcasing the model's enhanced
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ability to recognize LSL gestures effectively. In a nutshell, the
first experiment demonstrated the substantial positive impact of
data augmentation on our model's performance. The augmented
dataset significantly reduced errors, boosted accuracy, and
improved generalization across all sign classes.

The second experiment demonstrated that data segmentation
significantly impacts the performance of the LSL recognition
model. With a 50% training and 50% testing split, the model
achieved a moderate accuracy of 56.75%, with an MSE of
2.1350, indicating room for improvement. Increasing the
training data to 70% improved accuracy to 76.6% and reduced
the MSE to 1.2625, highlighting the benefits of a larger training
dataset. When 60% of the data was used for training and 40%
for testing, the model achieved an accuracy of 83.75% with a
significantly reduced MSE of 0.8031. The best results were
obtained with a 60/20/20 split for training, validation, and
testing, yielding an accuracy of 84.37% and an MSE of 0.8187.
These findings emphasize that increasing training data and
including a validation set enhance the model's robustness and
generalization for LSL gesture recognition.

In the context of the model learning process with different data
segmentation, illustrated in Figure 7, it was demonstrated that
as the training data percentage increased from 50% to 60%,
70%, and to the balanced 60% training, 20% validation
approach, both loss and accuracy graphs showed a consistent
improvement. The balanced segmentation approach resulted in
the most favorable learning curves, with minimal loss, peak
accuracy, and effective learning, avoiding significant
overfitting. These demonstrate the model's sensitivity to data
distribution, emphasizing that higher proportions of training
data contribute to improved prediction accuracy and
correlation. However, excessively large training sets can lead
to overfitting, while smaller testing sets might limit
generalization.

The last experiment aimed to compare GRU and LSTM
architectures on an augmented dataset to evaluate their
effectiveness in sign language recognition. This comparison
sheds light on the model's sensitivity to different architectural
choices and their impact on sign language recognition. The
training loss and accuracy curves illustrated in Figure 8
revealed that The GRU's training loss curve demonstrated a
consistent decline, indicating stable convergence with few
fluctuations. Similarly, the training accuracy curve showed a
gradual upward trend, suggesting steady learning. While both
models eventually achieved comparable accuracy, the
smoother curves of the LSTM model in Figure 7(c) implied a
more stable learning process compared to the GRU model in
Figure 8, which might have experienced slightly more
variability. Table 6 presents a comparison of model
performance metrics. GRU demonstrated superior performance
with lower MSE (0.4562) and MAE (0.1688) compared to
LSTM (MSE of 0.8187 and MAE of 0.3187), alongside a
higher R-squared value (0.9447 vs. 0.9008), indicating better
predictive accuracy. Table 7 further examines classification
metrics. Both models displayed strong precision, recall, and
F1-scores for several LSL signs. However, notable differences
emerged. The GRU model achieved slightly higher precision
and recall for some signs, such as "Benghazi" and "Al-Bayda".
Despite this, the LSTM model excelled in terms of precision
and recall for signs like "Howareyou," "Salam," and "Tripoli."
Opverall accuracy favoured the GRU model with 91% compared
to 84% for the LSTM model. These findings suggest that
GRU's architecture is more effective for this task, though
LSTM demonstrated smoother and more stable learning curves,
reflecting consistent training dynamics.
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In short, the comparative study highlighted the strengths and
weaknesses of LSTM and GRU architectures in LSL gesture
recognition. While the GRU model showed promise in terms of
predictive accuracy, the LSTM model exhibited strengths in
recognizing certain LSL signs. The decision between these
models should consider the unique requirements and
characteristics of the sign language dataset and the specific
gestures of interest. Further research may explore hybrid
models or other neural network architectures to harness the
combined strengths of both LSTM and GRU for improved LSL
recognition.

In the real-time testing, our model effectively detected and
translated sign gestures into spoken Arabic using gTTS. While
it succeeded in most cases, challenges arose due to the
complexity of sign language. This highlights the need for
ongoing improvements, including the collection of a diverse
dataset and model refinement, to enhance accuracy and
usability.

6. CONCLUSION

Throughout this study, we conducted a comprehensive
exploration of LSL recognition, aiming to bridge the
communication gap for the deaf and hard-of-hearing
community in Libya. Our investigation provided valuable
insights into sign language recognition, particularly LSL, while
addressing key research objectives. This work represents a
significant step forward, contributing both to academic
understanding and to practical advancements that enhance the
lives of the deaf and hard-of-hearing in Libya.

Our culturally sensitive dataset and LSTM model, equipped
with real-time translation capabilities, have the potential to
revolutionize accessibility and communication, fostering
inclusivity and empowerment. This study focused on three key
aspects: creating a culturally sensitive LSL dataset, developing
an LSTM-based model for LSL recognition, and conducting
real-time model testing. Our most significant contribution is the
creation of a bespoke dataset, meticulously curated to capture
the unique cultural and linguistic nuances of LSL. This diverse
collection of gestures reflects the richness of LSL, forming the
cornerstone of our research.

We conducted a series of experiments using Python as our
primary programming language, examining the impact of data
augmentation on our proposed LSTM model’s performance.
The results clearly demonstrated that data augmentation
significantly improved the model’s accuracy and robustness.
This technique notably reduced prediction errors, leading to
greater precision and enhancing the effectiveness of LSL
communication. Furthermore, we explored the impact of
varying data segmentation ratios, shedding light on the model's
sensitivity to data distribution. Moreover, our proposed LSTM
model for LSL recognition yielded remarkable results,
achieving an accuracy rate of 84%. A comparative study with
the GRU model highlighted the superiority of the GRU model
in terms of accuracy, yet our model demonstrated strengths in
recognizing particular LSL signs. Additionally, our model’s
ability to effectively convert LSL signs into spoken Arabic
using Google Text-to-Speech (gTTS) technology in real-time
marks a significant achievement in our research efforts.
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