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ABSTRACT 

The prediction of the signal strength of cellular networks has 

become a critical area of research with the deployment of 4G, 

LTE, and 5G technologies. Telecom operators can optimize the 

coverage areas, reduce call drops, and enhance user experience 

through accurate prediction of received signal strength. 

Complex environmental factors are ignored in traditional signal 

propagation models. Recently, various machine learning 

techniques have been applied to predict the signal strength of 

cellular networks, as their data-driven insights can adapt to 

dynamic network conditions. This paper explores several 

machine learning algorithms to build an optimal model that 

more accurately predicts the signal strength of cellular 

networks. The dataset used in the research was collected from 

Kaggle online dataset repository. It was divided into two 

partitions: a training set consisting of 80% of the data and a test 

set containing the remaining 20%. Then, different regression 

algorithms: K-Nearest Neighbors (KNN), Decision Tree (DT), 

Support Vector Machine (SVM), Random Forest (RF), and 

Extreme Gradient Boosting (XGB) were applied to the dataset. 

Finally, the RF and XGB models achieved the optimal 

performance i.e., the lowest MAE and RMSE values and the 

highest R2 value. The knowledge extracted from these models 

can be used as a decision-making tool for telecom operators and 

organizations to accurately predict the signal strength of 

cellular networks in specific areas in the future. 
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1. INTRODUCTION 
Traditional methods for network planning rely on empirical 

models, such as the Okumura-Hata model, the COST-231 

model, and the ITU-R model [1-4]. Due to various environment 

factors, these models can be used for general signal strength 

predictions but they fail to capture real-time variations [5]. In 

reality, signal strength changes dynamically based on several 

factors, such as the distance from the nearest tower, obstacles 

(e.g., buildings, trees), weather conditions, and interference 

from other signals. Predicting signal strength can be useful in 

several real-life scenarios: tower placement and signal 

distribution for telecom companies, identification of weak 

network areas and improvement of network connectivity for 

customers, and enhancement of handover mechanisms in 

mobile networks for network engineers. 

To ensure uninterrupted communication in modern wireless 

communication, the signal strength of cellular networks is 

considered a decisive factor, as it affects voice call quality, data 

transmission rates, and overall user experience [6]. Poor signal 

strength leads to dropped calls, slow internet speeds, and 

network congestion, negatively impacting both customers and 

service providers. The study by Tomic et al. [7] stated that the 

evolution of mobile networks towards 5G technology demands 

accurate signal strength prediction for several sectors, such as 

network optimization, capacity planning, and improving 

Quality of Service (QoS).  

For large-scale cellular data analysis and network performance 

improvement, machine learning has emerged as a valuable tool. 

Nowadays, machine learning based models are implemented to 

uncover complex patterns from large-scale datasets and 

improve the accuracy of signal strength predictions. However, 

the non-linear nature of signal propagation is often not 

accounted for in traditional deterministic models, whereas 

machine learning based models can serve as a reliable 

alternative for predicting precise signal strength [8, 9]. 

The objectives of this research are as follows: to analyze the 

key factors those affect the signal strength of cellular networks; 

to implement several regression algorithms used in machine 

learning to predict signal strength; to compare different models 

based on their performance and accuracy; to use geo-spatial 

analysis to visualize and interpret the prediction results. The 

efficiency of cellular networks can be improved for network 

planning by achieving these objectives. Telecom operators and 

policymakers can utilize the findings of this study to design a 

decision-making model [17-19] that enhances the reliability 

and performance of cellular networks. In this paper, we have 

evaluated selected performance metrics: MAE, RMSE, and R2 

to validate the predicted signal strength obtained using various 

machine learning algorithms. 
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This paper is structured as follows: Section-2 describes 

previous related work on signal strength prediction using 

traditional models and machine learning techniques. Section-3 

presents the dataset collection process, preprocessing steps and 

the application of machine learning algorithms. Section-4 

discusses the findings of the developed models using various 

evaluation metrics for comparison. Finally, Section-5 

concludes the research and outlines possible future work to 

improve signal strength prediction in cellular networks. 

2. RELATED WORKS 
In the early stages, signal strength in different terrains was 

predicted using empirical models. These models were 

developed based on empirical formulas derived from real-life 

observations. The most commonly used empirical models for 

traditional signal strength prediction were the Okumura-Hata 

model, the COST-231 Hata model, and the ITU-R model. The 

Okumura-Hata model was initially developed based on the 

measurements in Japan and was later extended for different 

frequency ranges [1]. It was mainly used to predict signal 

strength in areas near cities. Although it performed well in 

macro-cellular environments, it was not adaptable to real-time 

variations in signal conditions. The COST-231 Hata model, an 

extended version of Okumura-Hata model, covered frequencies 

ranging from 1500 MHz to 2000 MHz [2]. While it performed 

in satisfactorily for modern mobile communication, it provided 

limited accuracy in dense urban environments.  

The ITU-R model was developed for radio propagation in both 

indoor and outdoor settings and was mainly used for radio 

network planning [3-4]. However, it faced generalization issues 

when applied to dynamic network conditions. These models 

were found to be reliable only under fixed assumptions and 

could not capture real-time environmental variations [10]. The 

accuracy of their prediction was reduced as they didn’t consider 

interference, network congestion or device-specific variations. 

They also did not comply with new communication standards, 

such as 4G and 5G. Call quality, data transmission rates, and 

network coverage are mainly influenced by the signal strength 

of cellular networks. Typically, the signal strength is measured 

using metrics, such as Received Signal Strength Indicator 

(RSSI), Reference Signal Received Power (RSRP), and Signal 

to Noise Ratio (SNR) [11]. These metrics are useful for 

evaluating network quality, user experience and infrastructure 

performance.  

However, the use of machine learning techniques has increased 

as they can learn from large datasets and provide better 

prediction results in terms of accuracy and adaptability. Several 

comparative studies have been conducted those evaluated the 

advantages of machine learning techniques for calculating 

signal strength. The investigation by Ali et al. [12] was 

conducted on real-world signal data using XGB, RF and DT 

algorithms. The most effective model was developed using the 

XGB algorithm which achieved the highest accuracy of around 

92%. Afolabi et al. [13] implemented RF, SVM, and ANN 

algorithms to predict the signal strength of cellular networks. It 

was found that RF algorithm provided the best results in urban 

areas in terms of accuracy and computational efficiency. 

The advantage of using RF in signal strength prediction is 

supported by many research studies. The study by Fauzi et al. 

[14] evaluated different machine learning models for Reference 

Signal Received Power (RSRP) prediction and found that the 

RF based ensemble tree model generated more accurate result. 

They recommended this approach for complex scenarios, such 

as multi-frequency and multi-environment settings. A hybrid 

model was proposed by Wang et al. [15] that combined Deep 

Learning techniques (LSTMs) with geo-spatial analysis. Their 

model outperformed conventional machine learning models in 

predicting signal variations over time. In the study by Chen et 

al. [16], Graph Neural Networks (GNNs) were introduced to 

estimate the network coverage. Their result demonstrated better 

performance than conventional machine learning models when 

applied to large-scale cellular network datasets.  

These studies highlighted the use of ensemble learning 

algorithms (XGB, RF) and deep learning algorithms (LSTMs, 

GNNs) which achieved better results in the prediction of signal 

strength. However, some gaps have been identified in previous 

research studies, such as a lack of real-time adaptability, limited 

consideration of environment factors, the need for hybrid 

approaches in signal strength prediction, and challenges in 5G 

network prediction techniques. 

3. PREDICTING SIGNAL STRENGTH 

IN CELLULAR NETWORKS 
In this research work, a data-driven approach was followed to 

predict the signal strength of cellular networks using machine 

learning techniques. The dataset used for the development of 

different models was collected from the Kaggle online dataset 

repository [20]. The coding part was implemented on the 

Google Colab platform using Python. The output of the 

research can be analyzed for future use in decision-making 

purposes [17-19]. The workflow of the developed optimal 

model is described below. 

 

Figure 1: Steps for Predicting Signal Strength in Cellular 

Networks 

3.1 Description of the Dataset 
There were 16829 instances with 11 features and 1 label, i.e., 

target variable in the selected dataset [20]. A short description 

of the dataset features is given below. 
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Table 1: Description of the Dataset 

3.2 Dataset Preprocessing and Features 

Engineering 
The collected dataset [20] was preprocessed for different tasks, 

such as handling missing values, converting categorical 

features into numerical ones [21], features selection, and 

normalization [22]. Two features: Timestamp and Signal 

Quality were dropped from the dataset. Because, all instances 

were recorded at exact 10-minute intervals, and signal quality 

values were all zero due to a system error. Some categorical 

features, such as Network Type and Locality were converted 

into numerical features using a label encoder. Then, feature 

normalization was applied wherever necessary. 

3.3 Split the Dataset 
The preprocessed dataset was divided into two partitions: a 

train set consisting of 80% of the data and a test set containing 

the remaining 20%. Then, different regression algorithms were 

implemented to develop a machine learning model with the best 

performance. 

3.4 Applied Machine Learning Algorithms 
To develop an optimal model that predicts the signal strength 

of cellular networks based on the available features, five 

machine learning algorithms were selected for the regression 

purpose. Before applying these machine learning algorithms, 

hyperparameters were tuned to optimize the learning process, 

and reduce training time [23]. In this case, the 

HalvingGridSearchCV technique was implemented for its 

better performance over the GridSearchCV technique [24]. 

3.4.1 K-Nearest Neighbors (KNN) 
It is a simple, instance based algorithm that is used for both 

classification and regression purposes. It determines the status 

of new data points based on the majority status of its 

surrounding k nearest neighbors status in the selected feature 

space [25]. 

3.4.2 Decision Tree (DT) 
It is a supervised learning algorithm used for both classification 

and regression tasks. It recursively splits the data based on 

feature values and creates a tree based structure for decision 

making. In addition, it aims to partition the data into subsets 

with homogeneous target values [26]. 

3.4.3 Random Forest (RF) 
It is an ensemble learning method that builds multiple decision 

trees during model training. Then, it generates a discrete output 

in the form of classes for classification or a continuous value 

for regression purposes. Predictive accuracy and overfitting can 

be improved using this approach [27]. 

3.4.4 Support Vector Machine (SVM) 
It is a supervised learning algorithm that is used for 

classification and regression purposes. To separate the data 

points of different classes in the feature space, it finds the 

hyperplane and maximizes the margin between them [28]. 

3.4.5 Extreme Gradient Boosting (XGB)  
It is an optimized version of the gradient boosting framework 

that is designed with speed and performance in mind. It allows 

the optimization of arbitrary differentiable loss functions and 

builds additive models in a forward, stage-wise manner [29]. 

4. RESULT ANALYSIS 
In this paper, the dataset [20] used contains 16,829 instances 

with 11 features of cellular networks. It was analyzed to predict 

the signal strength of cellular networks using various regression 

algorithms: KNN, DT, SVM, RF, and XGB. These algorithms 

are mostly used in the development of machine learning 

models. 

4.1 Performance Evaluation Metrics 
The performance of the machine learning models was 

evaluated using three types of metrics to determine the optimal 

model for predicting the signal strength of cellular networks. 

4.1.1 Mean Absolute Error (MAE) 
It calculates the average absolute difference between the actual 

and predicted values. A lower MAE indicates that the predicted 

values are close to the actual values [30]. 

MAE =
1

n
 ∑ |yi − ŷi|

n

i=1

 

Here, n = total number of signal instances, 

yi = actual value of the signal strength, and 

ŷi = predicted value of the signal strength 

4.1.2 Root Mean Squared Error (RMSE) 
It calculates the standard deviation of the estimated errors. A 

lower RMSE indicates betters results. A significantly higher 

RMSE compared to MAE suggests the possibility of large 

errors in some predictions [30]. 

RMSE = √∑
(yi − ŷi)

2

n

n

i=1

  

Here, n = total number of signal instances, 

yi = actual value of the signal strength, and 

ŷi = predicted value of the signal strength 

4.1.3 R-Squared (R2) 
It is indicates the capacity of the model to explain variance in 

the collected data. A higher R2 value, i.e., close to 1, indicates 

the model can describe most of the variability in the target 

attribute [30]. 

R2 = 1 −
∑ (yi − ŷi)

2n
i=1

∑ (yi −  y̅i)
2n

i=1

 

Here, n = total number of signal instances, 

Feature Data Example Data type 

Timestamp 2023-05-05 12:50:40.000000 etc. Categorical 

Locality Fraser Road, Gandhi Maidan etc. Categorical 

Latitude 25.599108619690096 etc. Numerical 

Longitude 85.1373547012626 etc. Numerical 

Signal Quality 0, 50, 80 in  percentage Numerical 

Data Throughput 1.8638900372842315 etc. in Mbps Numerical 

Latency 129.1229140198042 etc. in Numerical 

Network Type 4G, LTE etc. Categorical 

BB60C 
Measurement 

-95.81079071350962 etc. in dBm Numerical 

srsRAN 

Measurement 
-105.45235850993319 etc. in dBm Numerical 

BladeRFxA9 
Measurement 

-99.92089156956251 etc. in dBm Numerical 

Target Variable: 

Signal Strength 
-84.2741131853019 etc. in dBm Numerical 
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yi = actual value of the signal strength, 

ŷi = predicted value of the signal strength, and 

y̅i = mean value of the signal strength 

4.2 Performance Comparison 
The performance of the developed machine learning models is 

presented in Table 2 using selected evaluation metrics for the 

signal strength prediction of cellular networks. 

Table 2: Result Statistics of Different ML Models 

ML 

Model 

Train 

MAE 

Test 

MAE 

Train 

RMSE 

Test 

RMSE 

Train 

R2 

Test 

R2 

KNN 2.2158 2.4421 2.8089 3.0967 0.7314 0.6607 

DT 1.3477 1.3705 1.8505 1.8533 0.8834 0.8785 

RF 1.0326 1.1876 1.5932 1.7240 0.9136 0.8948 

SVM 1.2272 1.2297 1.7609 1.7505 0.8944 0.8916 

XGB 1.1482 1.1970 1.6906 1.7322 0.9027 0.8938 

Firstly, the train MAE, RMSE, and R2 values of the KNN 

model are: 2.2158, 2.8089, and 0.7314 and the test values of 

these metrics are: 2.4421, 3.0967, and 0.6607. The differences 

observed among these metrics for both the train and test sets 

are: 0.2263, 0.2878, and 0.0707 for the KNN model.  

Secondly, the train MAE, RMSE, and R2 values of the DT 

model are: 1.3477, 1.8505, and 0.8834 and the test values of 

these metrics are: 1.3705, 1.8533 and 0.8785. The differences 

observed among these metrics for both the train and test sets 

are: 0.0228, 0.0028, and 0.0049 for the DT model.  

Thirdly, the train MAE, RMSE, and R2 values of the RF model 

are: 1.0326, 1.5932, and 0.9136 and the test values of these 

metrics are: 1.1876, 1.7240, and 0.8948. The differences 

observed among these metrics for both the train and test sets 

are: 0.155, 0.1308, and 0.0188 for the RF model.  

Additionally, the train MAE, RMSE, and R2 values of the SVM 

model are: 1.2272, 1.7609, and 0.8944 and the test values of 

these metrics are: 1.2297, 1.7505, and 0.8916. The differences 

observed among these metrics for both the train and test sets 

are: 0.0025, 0.0104, and 0.0028 for the SVM model.  

Lastly, the train MAE, RMSE, and R2 values of the XGB model 

are: 1.1482, 1.6906, and 0.9027 and the test values of these 

metrics are: 1.1970, 1.7322 and 0.8938. The differences 

observed among these metrics for both the train and test sets 

are: 0.0488, 0.0416 and 0.0089 for the XGB model.  

Generally, a smaller gap between the train and test metrics 

indicates that there was no overfitting. Overfitting and 

underfitting issues are resolved using hyperparameter tuning 

techniques [23]. As the difference found between both the train 

and test set metrics is negligible, all the developed models were 

trained perfectly. Moreover, MAE, RMSE and R2 values are 

considered for the performance analysis of different regression 

models. The best performing models will have the lowest MAE 

and RMSE values, and the highest R2 value.  

According to the analysis of the result statistics and the concept 

of an optimal model, the RF and XGB models achieved the 

highest performance, while the SVM and DT models showed 

the second highest performance, with results close to the top-

performing models. As the KNN algorithm is dependent on the 

distance metric, i.e., Euclidean distance formula, it is highly 

sensitive to irrelevant or noisy features [31]. Therefore, the 

KNN model provided the least accurate performance compared 

to the other developed models and there were significant 

fluctuations in the KNN model in all graphs. 

Figures 2, 3, and, 4 visually represent the performance of 

different regression algorithms applied to the dataset [20], 

based on the statistics in Table 2.  

The knowledge extracted by analyzing the best performing 

models can be used later for efficient decision-making [17- 19]. 

This can assist the researchers and telecom operators in 

predicting the signal strength of cellular networks more 

precisely. 

 

 

 

Figure 2: MAE Comparison Across Different ML Models 
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Figure 3: RMSE Comparison Across Different ML Models 

 

Figure 4: R2 Comparison Across Different ML Models 

5. CONCLUSION AND FUTURE WORK 
This paper presents an optimized machine learning regression 

model for predicting cellular network signal strength. It used a 

dataset collected from the Kaggle online dataset repository. 

After data preprocessing and feature engineering steps, the 

dataset was divided into two partitions: a train set and a test set. 

Several regression algorithms: KNN, DT, SVM, RF, and XGB 

were applied to the dataset to train the desired machine learning 

models with hyperparameter tuning for optimal performance. 

The performance of the developed models was evaluated using 

selected regression metrics: MAE, RMSE, and R2. The optimal 

performance i.e., the lowest MAE and RMSE values and the 

highest R2 value were achieved by the RF and XGB models. 

Then, second highest performance was achieved by the DT and 

SVM models, while the KNN model generated the lowest 

performance. 

This research explored various regression algorithms and 

analyzed the performance of different machine learning 

models. The performance of the optimal model can be further 

improved by expanding the dataset scope, integrating time-

series data for temporal analysis, enhancing model 

performance with deep learning and federated learning 

techniques, adapting models for 5G and above networks, and 

deploying the optimal model as a web application or mobile 

application for future use as a reliable decision-making tool. 

The large-scale dataset can enhance the generalization of the 

model as there will be more instances related to cellular 

network signal strength. Additionally, the dataset should be 

updated regularly for the target areas. The integration of time-

series data helps in analyzing seasonal and weather related 

variations in signal strength. Several deep learning techniques: 

ANN, CNN, and RNN can be explored for improved accuracy. 

Federated learning is another technique to train the models 

while preserving the user privacy. This dataset only included 

data of 3G, 4G, and LTE network but the addition of 5G or 

more advanced network related data could improve the 

performance of the models.  
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