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ABSTRACT 

Floods are among the most devastating natural disasters 

globally, resulting in significant loss of life, displacement, and 

economic disruption. Traditional flood forecasting models 

struggle with the complexities of dynamic environmental data 

and spatial-temporal dependencies. This paper presents a deep 

learning-based framework that integrates satellite imagery and 

Internet of Things (IoT) sensor data for improved flood 

forecasting accuracy. By leveraging Convolutional Neural 

Networks (CNNs) for image-based pattern recognition and 

Recurrent Neural Networks (RNNs), particularly Long Short-

Term Memory (LSTM) networks, for temporal sequence 

prediction, the proposed model achieves high performance in 

forecasting flood events. Fusion techniques combining satellite 

and sensor data are applied to enhance situational awareness. 

Experimental evaluations using datasets from real flood-prone 

regions demonstrate the effectiveness of the approach in terms 

of accuracy, timeliness, and reliability. 
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1. INTRODUCTION 
Floods are among the most devastating and frequent natural 

disasters worldwide, posing severe threats to human life, 

infrastructure, agriculture, and local economies. The frequency 

and intensity of floods have increased in recent decades due to 

climate change, urbanization, and deforestation, especially in 

vulnerable regions like sub-Saharan Africa and Southeast Asia. 

According to the UN Office for Disaster Risk Reduction 

(UNDRR), floods account for nearly 43% of all climate-related 

disasters, underscoring the critical need for timely and accurate 

flood forecasting systems. 

Traditional flood forecasting relies on hydrological and 

hydraulic models that simulate water flow and catchment 

behavior based on physical parameters. While these models 

offer theoretical soundness, they often require extensive 

calibration, are sensitive to initial conditions, and depend on 

high-quality, location-specific data—making them impractical 

for real-time deployment in data-scarce regions. In contrast, the 

proliferation of remote sensing satellites and Internet of Things 

(IoT) sensors has opened new avenues for data-driven flood 

prediction approaches. 

Satellite imagery, particularly from synthetic aperture radar 

(SAR) and multispectral sensors, provides high-resolution 

spatial data for identifying water bodies, flood extents, and land 

use patterns under various weather conditions. Meanwhile, IoT 

sensors offer granular, real-time measurements of rainfall, river 

levels, soil moisture, and other environmental indicators that 

precede flooding events. However, current forecasting systems 

often use these data sources in isolation, missing the 

opportunity to capture the complex interactions between spatial 

and temporal flood predictors. 

Recent advances in deep learning provide a compelling 

opportunity to unify these heterogeneous data modalities. 

Convolutional Neural Networks (CNNs) excel at extracting 

spatial patterns from satellite images, while Recurrent Neural 

Networks (RNNs)—especially Long Short-Term Memory 

(LSTM) networks—are well-suited for modeling temporal 

dependencies in sensor data. However, there is still a lack of 

robust frameworks that fuse these complementary data sources 

in a unified, end-to-end learning architecture optimized for 

real-time flood forecasting. 

1.1 Problem Statement 
Despite the availability of high-resolution satellite and sensor 

data, current models face several limitations: 

•They either use spatial or temporal data independently, 

limiting their predictive scope. 

•Existing multimodal approaches often rely on simplistic 

fusion strategies, failing to learn meaningful interactions 

between input modalities. 

•There is insufficient empirical evaluation of how different data 

fusion strategies impact forecast lead time, accuracy, and 

reliability. 

1.2 Objective and Contributions 
This study proposes a novel deep learning-based flood 

forecasting system that fuses satellite imagery and IoT sensor 

data using a dual-branch architecture and attention-based 

fusion mechanisms. The core objective is to evaluate whether 

a multimodal system can improve the accuracy and reliability 

of flood prediction, particularly in data-constrained 

environments. 

The key contributions of this paper are: 

1.A unified CNN-LSTM architecture that learns spatial 

features from satellite imagery and temporal features from IoT 

sensor data. 

2.Three data fusion strategies—early fusion, late fusion, and 

attention-based fusion—are implemented and systematically 

compared. 

3.A curated multimodal dataset combining multi-year 

SAR/multispectral imagery and real-time sensor data from 

flood-prone regions. 

4.Empirical evaluation across multiple forecast horizons (6h–

48h) to assess lead-time effectiveness, data modality 

importance, and prediction robustness. 

5.A reproducible framework that can be deployed in real-time 

early warning systems for resource-limited settings. 

By integrating heterogeneous data sources into a coherent 

learning system, this research aims to push the boundaries of 

operational flood forecasting and contribute to disaster risk 

reduction in climate-vulnerable regions. 

2. RELATED WORK 
Flood forecasting has been a longstanding area of interest 

within hydrology, remote sensing, and disaster risk 

management. Traditional models have evolved over time from 
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physics-based simulations to data-driven approaches enabled 

by machine learning and deep learning. 

2.1 Traditional Hydrological and 

Statistical Models 
Historically, flood forecasting relied on hydrological and 

hydraulic models such as HEC-RAS, MIKE FLOOD, and 

SWAT, which simulate rainfall-runoff processes and river 

dynamics. While these models offer physical interpretability, 

they are sensitive to input parameter accuracy and require 

substantial calibration, which is often unavailable for data-

sparse regions [1][2]. 

Statistical models, including autoregressive (AR), moving 

average (MA), and ARIMA methods, have been used for time-

series prediction of water levels and precipitation. However, 

these models are limited in capturing nonlinear and 

nonstationary patterns inherent in natural flood processes 

[3][4][5]. 

2.2 Machine Learning and Remote Sensing 
The integration of remote sensing data with machine learning 

algorithms marked a significant leap in flood mapping and 

forecasting. Works such as[11] [12] applied Support Vector 

Machines (SVM) and Decision Trees to satellite-derived 

indices like NDWI and LST for flood classification. However, 

such models depend heavily on feature engineering and lack 

scalability to dynamic environments. 

Convolutional Neural Networks (CNNs) have recently shown 

promise in extracting flood-relevant spatial features from 

satellite imagery, particularly Synthetic Aperture Radar (SAR) 

data, which can penetrate clouds [13]. Meanwhile, Recurrent 

Neural Networks (RNNs), especially Long Short-Term 

Memory (LSTM) networks, have been used to model temporal 

sequences of hydrological sensor data [14]. Yet, these methods 

are often siloed and do not exploit the complementary strengths 

of spatial and temporal data modalities. 

2.3 Multimodal Fusion Approaches 
Recent research has explored data fusion frameworks 

combining satellite imagery and ground-based measurements. 

For example, [6][7] proposed a fusion model combining 

precipitation radar data with in-situ sensors using a simple 

weighted ensemble. However, such early fusion methods do 

not leverage deep feature representations. 

Attention-based deep learning approaches that dynamically 

weight different inputs have been proposed in areas like 

medical imaging and autonomous driving but are still 

underexplored in flood forecasting contexts. Moreover, real-

time flood forecasting using IoT-enabled sensors remains a 

logistical and computational challenge due to noisy, 

heterogeneous, and temporally misaligned data.[8][9][10] 

2.4 Research Gaps and Questions 
Despite the progress, there remain key gaps in existing 

literature: 

• Most flood forecasting models rely on either satellite 

imagery or sensor data, but rarely both in a deeply integrated 

manner. 

• Few studies have proposed end-to-end deep learning 

pipelines that simultaneously learn spatial and temporal 

features from heterogeneous data. 

• The use of attention-based fusion mechanisms for 

flood forecasting has not been systematically studied. 

• There is limited empirical analysis on forecast lead-

time performance, spatial accuracy, and data input sensitivity 

in multimodal settings. 

2.5 Research Questions 
This paper aims to address these gaps through the following 

research questions: 

RQ1: Can a deep learning framework that fuses satellite 

imagery and IoT sensor data improve flood forecasting 

accuracy compared to single-modality models? 

RQ2: How does the integration of spatial features (from CNN) 

and temporal dependencies (from LSTM) contribute to early 

flood detection? 

RQ3: What fusion strategy (early fusion, late fusion, or 

attention-based fusion) yields the best performance in a 

multimodal deep learning architecture for flood prediction? 

RQ4: How do different data inputs (rainfall, river level, soil 

moisture, etc.) influence model performance and predictive 

reliability? 

RQ5: What is the trade-off between prediction lead time and 

model accuracy in real-time flood forecasting? 

3. METHODOLOGY 
To address the identified research questions, we design a deep 

learning-based flood forecasting system that fuses satellite 

imagery and IoT sensor data using an end-to-end multimodal 

architecture. The methodology consists of multiple stages: data 

acquisition, pre-processing, feature extraction, multimodal 

fusion, and prediction. Each stage is tailored to explore the 

empirical and theoretical implications of spatial-temporal data 

fusion in flood prediction fig 1. The integration of remote 

sensing data with machine learning algorithms 

3.1 Overall Architecture (RQ1, RQ2) 
Our model is structured into a dual-branch architecture: 

•A Convolutional Neural Network (CNN) to extract spatial 

features from satellite imagery 

•A Long Short-Term Memory (LSTM) network to model 

temporal dependencies in environmental sensor data 

The outputs of the CNN and LSTM branches are fused at either 

the feature or decision level, followed by a fully connected 

layer for binary classification (flood / no flood). 

This design allows us to test RQ1 and RQ2 by comparing the 

hybrid model's performance against single-modality baselines 

and observing how each data type contributes to forecasting. 

3.2 Data Acquisition and Pre-processing 

(RQ4) 
We use two primary data streams: 

• Satellite Imagery: 

Sources: Sentinel-1 (SAR), Sentinel-2 (optical), Landsat-8 

Bands: Red, Green, Blue, Near-Infrared, and Shortwave 

Infrared 

Spatial Resolution: 10m–30m 

Preprocessing: Atmospheric correction, cloud masking, 

NDWI calculation 

• IoT Sensor Data: 

Variables: Rainfall, river water level, soil moisture, humidity 

Temporal Resolution: 1-hour intervals 

Sources: Government hydromet sensors and custom 

LoRaWAN deployments 
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Preprocessing: Imputation for missing data, normalization, 

and time alignment using dynamic time warping 

To test RQ4, we conduct correlation analyses and ablation 

studies to examine the relative impact of each sensor variable 

on the model’s accuracy and recall.  

3.3 Spatial Feature Learning via CNN 

(RQ2) 
We use a pretrained ResNet-50 model as the backbone CNN, 

fine-tuned on our flood classification task. The CNN ingests 

temporally aligned multispectral or SAR images and produces 

feature maps that capture: 

• Water body expansion 

• Vegetation indices 

• Topographic and built environment context 

These features help detect pre-flood spatial cues, such as 

saturated catchments or rising water lines. 

CNN block output: 

 

Where: 

• It= satellite image at time t 

• B = batch size 

D = feature dimensionality 

3.4 Temporal Pattern Learning via LSTM 

(RQ2) 
The LSTM branch processes multivariate time-series sensor 

data for a sliding window (e.g., past 48 hours). Each timestep 

includes rainfall, river height, and soil moisture. 

LSTM equations: 

  

The final hidden state ht is used to represent the temporal 

evolution of flood-relevant environmental signals. 

3.5 Multimodal Fusion Layer (RQ3) 
To evaluate RQ3, we implement and compare three fusion 

techniques: 

•Early Fusion: Concatenation of raw inputs before CNN/LSTM 

processing 

•Late Fusion: Concatenation of final CNN and LSTM features 

before classification 

•Attention-Based Fusion: Context-aware fusion using a 

learnable attention mechanism: 

 

This mechanism allows the model to dynamically prioritize 

spatial or temporal features depending on the situation (e.g., 

satellite signals may dominate in urban areas, while river levels 

dominate upstream). 

3.6 Prediction and Loss Function (RQ1) 
The fused feature vector is passed to a fully connected neural 

network for binary classification using sigmoid activation: 

  

We use binary cross-entropy loss: 

 
Where: 

• y = ground truth label (0: no flood, 1: flood) 

• y^ = predicted probability 

This allows the model to output probabilistic forecasts that can 

be thresholder for different alert levels. 

3.7 Forecast Horizon and Lead Time 

Analysis (RQ5) 
To support RQ5, we train and evaluate the model under 

different forecast horizons: 

• Short-term: 6–12 hours 

• Mid-term: 24 hours 

• Long-term: 48 hours 

For each horizon, sensor inputs are offset by the forecast lead 

time, and satellite images are selected accordingly. We analyze 

trade-offs between forecast lead time and classification metrics 

(accuracy, recall, AUC), providing insights into operational 

utility. 

 

Fig 1: Deep Learning-Based Flood Forecasting 

Architecture 

4. DATASET AND EXPERIMENTAL 

SETUP 
To effectively train and evaluate the proposed deep learning-

based flood forecasting system, we utilized a diverse and 

multimodal dataset collected from real-world sources. This 

section outlines the data composition, preprocessing 

techniques, experimental design, and evaluation metrics used 

in the study. 

4.1 Data Set 
The research employed two synchronized data sources: satellite 

imagery and IoT sensor data, covering a multi-year period and 

spanning several flood-prone regions across sub-Saharan 

Africa. 

4.1.1 Satellite Imaginary 

Sources: 

• Sentinel-1 (SAR): 10 m resolution, used for flood 

extent detection under all-weather conditions 

• Sentinel-2 (Multispectral): 10–20 m resolution, used 

for vegetation and water indices 

• Landsat-8: 30 m resolution, for redundancy and 

cross-validation 

Temporal Coverage: 

2017–2023, with revisit intervals of 5 to 12 days 
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Spectral Bands Used: 

• Red, Green, Blue 

• Near-Infrared (NIR) 

• Shortwave Infrared (SWIR) 

• SAR VV and VH polarizations 

Labelling: 

Flood masks were manually annotated using reference maps 

from UN-SPIDER, Copernicus Emergency Management 

Service, and local disaster management records. 

4.1.2 IoT Sensor Data 
Data Collected From: 

• National meteorological and hydrological 

departments 

• Custom-deployed IoT sensors via LoRaWAN 

gateways in select test areas 

Variables: 

• Rainfall (mm/hr) 

• River water level (cm) 

• Soil moisture (%) 

• Temperature and humidity (optional auxiliary) 

Temporal Resolution: 

• Hourly readings; aggregated into 3-hour sliding 

windows 

Spatial Locations: 

• 50+ sensor stations across 3 countries (Zimbabwe, 

Malawi, Mozambique) 

Data Cleaning: 

• Missing values filled via spline interpolation 

• Noisy outliers removed using Hampel filtering 

Time series aligned with satellite pass timestamps via 

interpolation and dynamic time warpingThe heading 

4.2 Data Pre-processing 
Satellite Imagery: 

Resampled and normalized to 224x224 pixel tiles 

NDWI and NDVI computed 

Cloud and shadow masking using FMask and SentinelHub 

APIs 

Sensor Data: 

Normalization (min-max scaling) 

Rolling window sequences of 24–72 hours for model input 

Label Binarization: 

• Each instance labeled as 1 (flood) if inundation was 

detected within 12 hours of satellite/sensor 

timestamp, otherwise 0 (no flood) 

4.3 Experimental Setup 
•Hardware: 

NVIDIA A100 GPU, 40GB RAM 

256GB system memory, 4TB SSD storage 

•Software and Libraries: 

Python 3.10, TensorFlow 2.14, PyTorch 2.1 

GDAL, Rasterio for satellite processing 

Pandas, NumPy, SciPy for sensor data handlingOur model 

4.3.1 Training Strategy 
• Data Split: 

70% training, 15% validation, 15% testing 

Stratified split to preserve flood/no-flood ratio 

• Cross-validation: 

5-fold stratified cross-validation to ensure robustness 

• Optimizer: 

Adam (learning rate = 1e-4, beta1 = 0.9, beta2 = 0.999) 

• Loss Function: 

Binary Cross-Entropy (weighted to handle class imbalance) 

• Regularization: 

Dropout (0.3) 

L2 penalty (λ = 0.001) 

• Batch Size: 

64 samples per batch 

• Epochs: 

100 epochs with early stopping based on validation loss 

4.3.2 Evaluation Metrics 
To assess the model’s performance and answer RQ1–RQ5, the 

following metrics were used: 

• Accuracy: Overall prediction correctness 

• Precision and Recall: For flood detection reliability 

• F1-Score: Balance of precision and recall 

• ROC-AUC: Discriminative capability 

• IoU: For spatial flood extent accuracy (image comparison) 

• Lead Time Accuracy: Prediction performance for different 

forecast horizons (6h, 12h, 24h, 48h) 

4.4 BASELINE MODELS FOR 

COMPARISON 
We compared our model against several baseline methods: 

Table 1. Model Type 

Model Type Description 

Persistence Model Uses last sensor reading as forecast 

ARIMA Classical time-series forecast model 

CNN-only Satellite images only 

LSTM-only Sensor data only 

Early Fusion NN Concatenated satellite + sensor 

inputs 

Proposed Model 

(Ours) 

CNN + LSTM with attention-based 

fusion 

 

5. RESULTS AND DISCUSSION 
The proposed model compared against several baseline 

methods: 

5.1 Empirical Evaluations 
To evaluate the performance of the proposed deep learning 

framework, we performed a comprehensive experimental 

study involving different model configurations: 

• Model A: CNN on satellite images only 

• Model B: LSTM on IoT sensor time-series only 

• Model C: Fused CNN-LSTM model with early 

fusion 

• Model D: Fused CNN-LSTM model with attention-

based late fusion 

Data used as 70-15-15 split for training, validation, and 

testing. Five-fold cross-validation was applied to avoid 

overfitting and ensure generalizability. Performance metrics 

were computed as follows: 

Let: 

• TP = True Positives (flood correctly predicted) 

• FP = False Positives (non-flood predicted as flood) 

• FN = False Negatives (flood missed) 

• TN = True Negatives (correctly predicted no flood) 

Then: 
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5.2 Confusion Matrix Summary 
For Model D (best performer): 

Table 2: Confusion Matrix Summary 
 

Predicted 

Flood 

Predicted No 

Flood 

Actual Flood TP = 532 FN = 38 

Actual No 

Flood 

FP = 29 TN = 601 

 

Derived metrics: 

• Accuracy = 93.8% 

• Precision = 94.8% 

• Recall (Sensitivity) = 93.3% 

• Specificity = 95.4% 

• F1-Score = 94.0% 

• AUC = 0.956 

These results highlight the model’s high discriminative ability 

in both detecting flood events and avoiding false alarms. 

5.3 Ablation Study 
To understand the contribution of each data source, we 

conducted an ablation analysis: 

Table 3: Ablation Analysis 

Configuration Accuracy F1-

Score 

AUC 

Satellite only (CNN) 85.2% 0.81 0.88 

Sensor only (LSTM) 87.6% 0.84 0.91 

CNN + LSTM 

(Early Fusion) 

91.1% 0.87 0.93 

CNN + LSTM + 

Attention 

93.8% 0.94 0.956 

We observed a statistically significant improvement (p < 0.01, 

paired t-test) when fusing the two modalities. 

5.4 Correlation and Feature Importance 
A Pearson correlation analysis was performed between flood 

occurrences and sensor variables: 

Table 4: Feature and Correlation 

The most predictive variables were rainfall and river water 

level. SHAP (SHapley Additive exPlanations) analysis showed 

that CNN-extracted flood extent indicators from satellite 

images were synergistic with river level readings in generating 

predictions. 

5.5 Temporal Forecasting Analysis 
The fused model was tested for forecasting lead time at 6h, 

12h, 24h, and 48h: 

Table 5: Temporal Forecasting 

Lead Time Accuracy F1-Score 

6 hours 94.1% 0.94 

12 hours 93.6% 0.93 

24 hours 91.3% 0.89 

48 hours 85.7% 0.83 

Forecast reliability degrades with time horizon, but remains 

usable up to 24 hours, which is critical for disaster 

preparedness. 

5.6 Spatial Evaluations 
Flood extent predictions from satellite imagery were 

evaluated using Intersection over Union (IoU): 

  

 

 

Where A = predicted flood zone, B = ground truth inundation 

map. 

• Average IoU across validation samples: 0.79 

• Visual overlays show strong correspondence between 

predicted and actual flood regions, particularly in riverine 

areas 

6. CONCLUSION AND FUTURE WORK 
In this study, we developed a deep learning-based flood 

forecasting system that fuses satellite imagery and IoT sensor 

data using a dual-stream architecture comprising a CNN for 

spatial feature extraction and an LSTM for temporal pattern 

modeling. By integrating multiple data modalities through 

attention-based fusion, our model achieved significantly higher 

accuracy and earlier detection capabilities compared to single-

modality and traditional baselines. Empirical evaluations 

across multiple lead times (6–48 hours) demonstrated the 

robustness of our approach, especially in capturing the 

spatiotemporal dynamics preceding flood events. 

The findings affirm that multimodal fusion, particularly with 

learnable attention mechanisms, offers a meaningful 

improvement in flood prediction—both in terms of detection 

accuracy and interpretability. The experiments also highlighted 

the complementary nature of satellite and sensor inputs, where 

spatial cues (e.g., water surface expansion) and temporal trends 

(e.g., rainfall-to-river lag) interact to provide richer context for 

Feature Correlation Coefficient (r) 

Rainfall (24h) +0.84 

Soil Moisture +0.67 

River Water Level +0.89 

Humidity +0.41 
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model decision-making. 

Despite these advances, there remain several avenues for future 

exploration: 

• Incorporating Real-Time Feedback Loops: 

Integrating ground feedback from mobile devices or 

community reports could improve the system’s 

responsiveness during live deployments. 

• Generalization Across Geographies: While our 

dataset spans multiple countries, expanding to 

diverse hydrological basins and climates would test 

model transferability. 

• Multi-resolution and Multi-scale Fusion: Exploring 

hierarchical architectures that integrate data at 

different spatial and temporal resolutions could 

enhance fine-grained predictions. 

• Uncertainty Quantification: Providing confidence 

intervals or probabilistic forecasts would increase 

trust and utility in disaster response settings. 

• Edge Deployment and Optimization: Adapting the 

system for deployment on edge devices in 

bandwidth-constrained or rural areas would support 

last-mile flood early warning systems. 

In conclusion, this work demonstrates the tangible potential of 

deep learning and multimodal data fusion in advancing flood 

forecasting systems. By continuing to refine and scale such 

approaches, we can contribute toward more resilient, data-

driven early warning systems that protect lives and livelihoods 

in vulnerable regions. 
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